三角形的内角和练习题
三角形的内角和

18、如图③,在△ABC中,∠ABC的平分钱与∠ACB的平分线交于点O,如果∠A=α,那么∠BOC=。
19、在Rt△ABC中,若∠C=90度,∠B—∠A=30度,则∠A=度。
20、在以下四个条件①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=2∠B=3∠C;④∠A=∠B=∠C中能确定△ABC是直角三角形的有。
练习题:
4、在△ABC中,如果∠A=300,∠B=2∠C,则∠C=
5、如二班作业图①,∠1=600,则∠2+∠3+∠4+∠500,∠3=600,则∠4=度。
7、如二班作业图③,在△ABC中,∠ABC的平分钱与∠ACB的平分线交于点O,如果∠A=700,那么∠BOC=0;如果∠A=α,那么∠BOC=。
24、填写证明过程。如下图,求证△ABC的内角和是180度。
证明:作CD∥
∴∠B=∠(两直线平行,)
∴∠A=∠(两直线平行,)
∵∠ACB+∠1+∠2=
∴∠A+∠B+∠C=
∴△ABC的内角和是180度。
三角形的内角和(一班)
知识点:
1、三角形三个内角的和是。
2、直角三角形的两个锐角。
3、有两个角互余的三角形是。
10、在直角三角形中,两个锐角的差等30度,则这个三角形中最小角的度数是。
11、如图①,∠A=500,则∠2+∠3+∠4+∠1=度。
12、如图②,如果∠1=300,∠2=500,∠3=600,则∠4=度。
13、如图③,在△ABC中,∠ABC的平分钱与∠ACB的平分线交于点O,如果∠1=20度,∠2=40度,那么∠A的度数是,∠BOC的度数是。
三角形的内角和练习题

三角形的内角和练习题三角形是几何学中的基本概念,它有着许多有趣和重要的特性。
其中一个重要的特性就是它的内角和,即三个内角的度数之和。
本文将为你提供一系列的练习题,帮助你巩固并深入理解三角形的内角和。
练习题一:三角形内角和的基础题1. 计算一个等边三角形的内角和。
解析:等边三角形的三个内角必定相等,设每个内角的度数为x,则有:x + x + x = 180°。
化简得到3x = 180°,解得x = 60°。
因此,等边三角形的内角和为180°。
2. 计算一个等腰直角三角形的内角和。
解析:等腰直角三角形的两个锐角必定相等,并且等于45°,直角为90°。
所以,内角和为45° + 45° + 90° = 180°。
练习题二:三角形内角和的进一步探索1. 设一个三角形的两个内角分别为30°和60°,求第三个内角。
解析:三角形的内角和为180°。
设第三个内角的度数为x,则有:30° + 60° + x = 180°。
化简得到90° + x = 180°,解得x = 90°。
因此,第三个内角的度数为90°。
2. 一个三角形的两个内角分别为75°和x°,其中x是一个锐角,求第三个内角。
解析:三角形的内角和为180°。
设第三个内角的度数为y,则有:75° + x° + y° = 180°。
化简得到x° + y° = 180° - 75°,即x° + y° = 105°。
根据题意,x°是一个锐角,所以y°是一个钝角,根据三角形的性质,钝角的度数大于90°,因此答案无解。
四年级数学下册《三角形的内角和》练习题及答案解析

四年级数学下册《三角形的内角和》练习题及答案解析学校:___________姓名:___________班级:_______________一、填空题1.一个等边三角形,每个内角是( )度。
2.一个三角形中一个角是35°,一个角是110°,另一个角是( ),这个三角形按边分是( )三角形,按角分是( )三角形。
3.给它们分分类。
(只填序号)4.∠1、∠2、∠3是一个三角形的3个内角,已知∠1=∠2=60°,那么∠3=( )°,这是一个( )三角形,也是一个( )三角形。
二、选择题5.如果一个三角形三个内角的度数比是3∠1∠5,那么这个三角形是()三角形。
A.锐角B.直角C.钝角6.等腰三角形的一个底角是52°,则它的顶角是()。
A.128°B.104°C.76°三、图形计算7.算出下面各个未知角的度数。
四、解答题8.用一根铁丝能围成一个长是10厘米,宽8厘米的长方形,如果用这根铁丝围成一个底边是16厘米的等腰三角形(铁丝无剩余),腰长是多少厘米?9.求出下面三角形各个角的度数。
参考答案与解析:1.60【分析】等边三角形的三个内角都相等,三角形的内角和为180°,因此用180°除以3即可,依此计算并填空。
【详解】180°÷3=60°【点睛】此题考查的是等边三角形的特点,以及三角形的内角和,应熟练掌握。
2.35°等腰钝角【分析】利用三角形内角和定理,用180°减去已知的两个角的度数,就是第三个角的度数;然后根据三角形按边、按角分类的特点,写出三角形的分类即可。
【详解】180°﹣35°﹣110°=35°,因为三角形中有两个角相等,所以有两条边也相等,所以这个三角形是等腰三角形;因为一个角是110°,是钝角,所以这个三角形是钝角三角形。
(完整版)三角形内角和练习题

三角形的内角和练习例题分析】例1. 在△ABC 中,已知∠ A=1∠B=1∠C,请你判断三角形的形状。
23 分析:三角形的形状按边分和按角分两类,本题由于不可能按边分,因此只有计算各角的度数,按角来确定形状,由于在该题中∠ C 是最大的角,因此只需求出∠ C 的度数即可判断三角形的形状。
例2. 如图,已知DF⊥AB 于点F,且∠ A=45°,∠ D=30°,求∠ ACB 的度数。
例3. 如图,在△ ABC 中,∠ 1=∠ 2,∠ 3=∠ 4,∠ BAC =54°,求∠ DAC 的度数例4. 已知在△ ABC 中,∠A=62°,BO、CO 分别是∠ ABC 、∠ ACB 的平分线,且BO、CO 相交于O,求∠ BOC 的度数。
〖拓展与延伸〗(1)已知△ AB 中C,BO、CO分别是∠ ABC 、∠ ACB 的平分线,且BO、CO相交于点O,试探索∠ BOC 与∠A 之间是否有固定不变的数量关系。
(2)已知BO、CO分别是△ ABC 的∠ ABC 、∠ ACB 的外角角平分线,BO、CO相交于O,试探索∠ BOC 与∠A 之间是否有固定不变的数量关系。
(3)已知:BD为△ABC 的角平分线,CO为△ABC 的外角平分线,它与BO的延长线交于点O,试探索∠ BOC 与∠A 的数量关系由前面的探索同学们可以发现三角形三个角(或外角)的平分线所夹的角与第三个内角之间存在着一定的数量关系。
例5. 已知多边形的每一个内角都等于135°,求这个多边形的边数。
例6. 一个零件的形状如图,按规定∠ A=90°,∠B 和∠C 应分别是32°和21°,检验工人量得∠ BDC=149°,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。
分析:验证的关键是求出∠ A 的度数,即把∠ A 用已知的角∠ B、∠ C、∠BDC 联系起来,利用三角形关于角的性质就可以发现它们之间的关系CE随堂检测】A组1、在△ ABC 中,∠A=40°,∠ B=∠C,则∠ C=。
三角形内角的和练习题

三角形内角的和练习题1. 已知一三角形的两个内角分别为60°和70°,求第三个内角的度数。
解答:三角形的内角和为180°,已知两个内角为60°和70°,将其相加得130°,所以第三个内角的度数为180°-130°=50°。
2. 若一三角形的两个内角的度数分别是x°和(2x-10)°,求第三个内角的度数。
解答:三角形的内角和为180°,已知两个内角的度数分别为x°和(2x-10)°,将其相加得x° + (2x-10)° = 180°,整理方程可得3x - 10 = 180,解得x = 63,所以第三个内角的度数为2x-10 = 2(63)-10 = 116°。
3. 已知一三角形的两个内角的度数之比为3:4,求这两个内角的度数。
解答:设一个内角的度数为3x,另一个内角的度数为4x,根据题意得到方程3x:4x = 3:4,通过求解比例系数可得3x = 3,解得x = 1,所以第一个内角的度数为3x = 3,第二个内角的度数为4x = 4。
4. 若一三角形的两个内角的度数之差为20°,求这两个内角的度数。
解答:设一个内角的度数为x,另一个内角的度数为x+20°,根据题意得到方程x - (x+20°) = 20°,整理方程可得-20° = 20°,这是一个不可能成立的等式,所以不存在满足条件的三角形。
5. 若一三角形的两个内角的度数之和为110°,求这两个内角的度数。
解答:设一个内角的度数为x,另一个内角的度数为110°-x,根据题意得到方程x + (110°-x) = 110°,整理方程可得110° = 110°,这是一个恒等式,所以存在无数个满足条件的三角形,例如一个内角为50°,另一个内角为60°。
三角形的内角和 练习题

三角形的内角和练习题1.一个三角形中,有1个角是44°,另外两个角可能是()A.96°,50° B.80°,56° C.90°,36°2.用10倍的放大镜看一个三角形,这个三角形三内角和是()。
A.108° B.180° C.1800° D.1080°3.三角形中最大的一个角一定()A.不小于60° B.大于90° C.小于90° D.大于60°而小于90°4.两个不相等的三角形,它们的内角和()。
A.相等 B.面积大的三角形内角和大C.面积小的三角形内角和小 D.不能比较5.一个三角形最小的内角是50度,这是一个()A.锐角三角形B.直角三角形C.钝角三角形D.以上都不对6.一个三角形中,有两个角都是锐角,另一个角()A.一定是钝角 B.一定是锐角C.可能是钝角、锐角或直角7.下面能组成一个三角形的三个角是()A.∠1= 80度,∠2= 70度,∠3 =15度B.∠1= 50度,∠2= 85度,∠3 =63度C.∠1= 60度,∠2= 60度,∠3 =70度D.∠1= 74度,∠2= 16度,∠3 =90度8.把一个等边三角形从顶点起用一条直线分成两个同样大小的三角形,其中一个三角形的内角和是()A.30 B.60° C.90° D.180°9.一个三角形中,如图所示,∠1=70度,∠3=35度,∠2=()A.45度 B.180度 C.75度 D.90度10.在一个等腰直角三角形中,它的一个底角是()A.30° B.45° C.60°11.下列图形中,内角和不是180度的图形是()A.等腰三角形 B.平行四边形 C.锐角三角形12.一个等腰三角形的顶角是60度,它的底角和是()A.70° B.120° C.140°13.下面每组三个角,不可能在同一个三角形内的是()A.15度、87度、78度B.120度、55度、5度C.80度、50度、50度D.90度、16度、104度14.一个直角三角形中的一个锐角是另一个锐角的2倍,则这个三角形中最小锐角是()A.450° B.30° C.25°15.一个等腰三角形的底角为a度,顶角可表示为()度。
三角形内角和练习题

三角形内角和练习题在几何学中,三角形是一个基本的图形,它由三条边和三个内角组成。
三角形的内角和是指三个内角的度数总和。
本文将提供一些关于三角形内角和的练习题,旨在帮助读者加深对此概念的理解和运用。
练习题一:计算三角形内角和1. 已知三角形ABC的三个内角分别为60度、70度和x度,求x的值。
解析:根据三角形内角和的性质,三个内角的和必须等于180度。
因此,我们可以列出等式:60 + 70 + x = 180。
解方程得到x的值。
2. 已知三角形DEF的三个内角分别为2x度、3x度和4x度,求x的值。
解析:同样地,根据三角形内角和的性质,三个内角的和必须等于180度。
我们可以列出等式:2x + 3x + 4x = 180。
解方程得到x的值。
练习题二:应用三角形内角和1. 已知三角形PQR的内角和为180度,且两个内角的度数比为3:5,求这两个内角的度数。
解析:设其中一个内角的度数为3x度,另一个内角的度数为5x度。
根据题意,我们可以列出方程:3x + 5x = 180。
解方程得到x的值,进而计算出两个内角的度数。
2. 已知三角形STU的内角和为180度,且其中一个内角的度数为3x度,另一个内角的度数为4x度。
求三角形STU的另一个内角的度数。
解析:根据题意,我们可以列出方程:3x + 4x + 另一个内角的度数= 180。
解方程得到另一个内角的度数。
练习题三:图形中的三角形内角和1. 如图所示,ABCD是一个四边形,角A和角B的度数已知,求角C和角D的度数。
解析:根据四边形的性质,四个内角的和为360度。
由此我们可以列出等式:角A + 角B + 角C + 角D = 360。
已知角A和角B的度数,可以通过解方程计算出角C和角D的度数。
[插入示意图]2. 如图所示,在平行四边形EFGH中,AB是平行于CD的一条线段,角A的度数已知,求角F的度数。
解析:由于AB与CD平行,根据平行线性质,角A和角F是对应角,它们的度数相等。
三角形内角和定理练习题(供参考)

三角形内角和定理练习题1.在△ABC中,∠A=∠B=∠C,那么△ABC是三角形.2.如图,在△ABC中,BE、CF别离是∠ABC和∠ACB的角平分线,它们相交于点I,已知∠A=56°,那么∠BIC =.3.如图,在△ABC中,∠B=25°,延长BC至E,过点E作AC的垂线ED,垂足为O,且∠E=40°,那么∠A =.4.如图,假设AB=AC,BG=BH,AK=KG,那么∠BAC的度数为.5.假设等腰三角形一腰上的高和另一腰上的高的夹角为58°,那么那个等腰三角形顶角的度数是.6.如图,将三角形纸片ABC的一角折叠,折痕为EF,假设∠A=80°,∠B=68°,∠CFB=22°,那么∠CEA =.7.在一个三角形中,三个内角中至少有个锐角,最多有个直角或钝角.8.如图,AB∥CD,假设∠ABE=135°,∠CDE=110°,那么∠DEF=.9.如图,在△ABC中,∠B=∠C,FD⊥BC,DE⊥AB,∠AFD=158°,那么∠EDF等于( )A.64°B.65°C.67°D.68°10.如图,已知AB∥CD,BE平分∠ABD,DE平分∠BDC,那么∠E是( )A.锐角B.直角C.钝角D.无法确信11.如图,已知在△ABC中,AD平额外角∠EAC,AD∥BC,那么△ABC的形状是( ) A.等边三角形 B.直角三角形 C.等腰三角形 D.任意三角形12.如图,在△ABC中,∠ABC和∠ACB的外角平分线交于点D,设∠BAC=∠α,那么∠D等于( )A.180°-2∠αB.180°-∠αC.90°-∠αD.90°-2∠α13.若是三角形的一个外角等于与它相邻的内角,那么那个三角形的形状是( )A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形14.如图,∠1=20°,∠2=25°,∠A=35°,那么∠BDC的度数等于( )A.60°B.70°C.80°D.无法确信15.如图,∠A=32°,∠B=45°,∠C=38°,那么∠DFE等于( )A.108°B.110°C.115°D.无法计算16.如图,在△ABC中,D是BC边延长线上的一点,连接AD,∠BAC=∠BCA,∠B=∠D=∠α,∠CAD=∠β,那么∠α与∠β之间的关系是( )A.∠α+∠β=180°B.3∠α+2∠β=180°C.∠α=2∠βD.3∠α+∠β=180°17.如图,在△ABC中,AD⊥BC,∠DAC=∠B,判定△ABC是什么形状的三角形,并写出你的判定理由.18.在△ABC中,∠B=∠C,BD是AC边上的高,∠ABD=20°,求∠C的度数.19.如图,已知E是BC上一点,且∠1=∠2,∠3=∠4,且AB∥CD.求证:AF⊥DE.20.如图,在△ABC中,∠B=∠C,点D在BC上,∠BAD=50°,AE=AD.求∠EDC的度数.21.如图,点D是△ABC中∠ACE的外角平分线与BA延长线的交点.求证:∠BAC>∠B.类型一:三角形内角和定理的应用1.已知一个三角形三个内角度数的比是1:5:6,那么其最大内角的度数为()A.60° B.75° C.90° D.120°触类旁通:【变式1】在△ABC中,∠A=55°,∠B比∠C大25°,那么∠B的度数为()A.50° B.75°C.100° D.125°【变式2】三角形中至少有一个角不小于________度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形的内角和
一、填空
1、每个三角形的内角和都是()度。
2、在三角形ABC中,∠A=900 ,∠B+∠C= ( )度。
3、在三角形中至少有()个锐角。
4、在三角形ABC中,∠A=250 ,∠C=260,∠B=(),它是()三角形。
5、一个顶角是500的等腰三角形的底角是()度。
6、等边三角形的每个内角都是()。
二、判断(对的打“√”,错的打“×”)
1、等腰三角形一定是锐角三角形。
()
2、等腰直角三角形的底角一定是450。
()
3、三角形越大,它的内角和就越大。
()
4、一个三角形至少有一个角是锐角。
()
三、选择
1、一个等腰三角形,顶角是1000,一个底角是()
A 1000
B 400
C 550
2、一个三角形中,有一个角是650 ,另外两个角可能是()
A 950,200
B 450,800
C 650,600
3、一个等腰三角形,一个底角是500,顶角是()
A 1000
B 800
C 550
4、一个等腰三角形,一个底角是顶角的2倍,这个三角形的顶角是()
A 360
B 720
C 450。