磁法勘探-重磁异常的地质解释与应用
物探专业生产实习-重磁法勘探部分

物探专业生产实习-重磁法勘探部分一、 重磁法勘探原理 1. 重力勘探原理重力勘探的物理基础是密度,地下地质构造及矿产资源的密度(质量)分布不均匀引起的重力变化即重力异常(几百毫迦)。
地球正常重力的变化包括空间变化(可达6000毫迦)和时间变化(0.3毫迦)。
重力异常是地质体的剩余质量对测区某点上单位质量产生的附加引力的铅垂分量.2. 磁法勘探原理磁法勘探的物理基础是地球磁场和岩矿石磁性。
θϕcos ⋅=-=∆F g g g 纬度中间层高度地形零漂和重力固体潮测量值---相对观测情况下,ϕσδg g g g g g g h ∆∆∆-∆-∆=∆T地球磁场的主体是稳定磁场。
稳定磁场=(中心偶极子磁场+非偶极子磁场)(地球基本磁场T 0)+地壳磁场(磁异常T a )变化磁场(δT )叠加在地球基本磁场之上。
岩矿石磁性包括磁化率k 和剩余磁化强度矢量Mr T a =μ0(kT 0/μ0+M r )·QQ 为空间因子,是一个和岩矿石与地面上各测点距离有关的量。
T T T T a δ++=0ΔT =T -δT -T 0=T 测量值-δT 日变值-T 0基本磁场值,这是一个标量差。
当Ta 的值不大时(此时T 和T 0的夹角应该很小,图示角度为了示例进行了夸大),cos a T T θ∆≈二.重磁法实习内容安排1.实习目的:(1) 巩固和加深对课堂理论教学的认识和理解; (2)初步进行野外工作方法技术的基本训练,了解和熟悉重磁法勘探野外工作的全过程,掌握重磁异常资料的采集、整理及解释的基本技能; (3)掌握生产报告的编写方法;(4)培养学生实事求是的科学态度和严肃认真、不怕困难、艰苦朴素的工作作风,培养学生的团结协作精神。
2.实习任务探测工区地下是否有密度异常体或磁性体存在;对测得的重力异常和磁异常进行合理解释。
3.实习应掌握的内容:(1)测区、测网和工作比例尺的选择、测网的敷设方法。
(测线应垂直于探测对象,线距应不大于最小探测对象长度的1/2,点距应保证至少有3个连续测点反映异常)工区位置:新校区工作比例尺:1:2000工区为200m×200m的方形区域。
重磁电法在地质勘查中的应用研究

重磁电法在地质勘查中的应用研究地质勘查是探索地球内部结构的重要手段,而重磁电法作为其中主要的地球物理勘探方法之一,其应用范围和效果备受关注。
本文将从重磁电法的基本原理、应用场景及其技术进展等方面展开探讨。
一、重磁电法的基本原理重磁电法是利用地球物理场中的重力、磁力和电力相互作用的物理现象,通过观测和分析地球物理场的变化,来研究地下的地质、构造和矿产资源等。
它利用了地下不同岩石和矿物质的密度、磁性和电导率等特性的差异,通过测量和分析这些差异,揭示地下结构的空间分布和特征。
重磁电法在地质勘查中的应用十分广泛,例如在找矿勘探中,可以利用地磁法探测矿产赋存的磁性异常;在工程勘察中,通过重力法可以评估地基稳定性和地下水资源的分布情况;而电法则常用于寻找地下水位和检测地下坑洞等场景。
二、重磁电法的应用场景1. 找矿勘探重磁电法在找矿勘探中起到了至关重要的作用。
通过对地磁异常的测量和解释,能够确定磁性矿产的产状和分布情况,为矿床开发提供重要的参考。
同时,通过电法勘探,可以检测到含水层下伏的充水物质,进而揭示地下结构和水文地质情况。
2. 工程勘察重磁电法在工程勘察中也有广泛的应用。
通过重力法的研究,可以评估地下岩体的稳定性,为基础工程和地下结构的建设提供参考;利用地磁法则可以探测地下管道和设备,预防钻探和挖掘过程中的事故发生;电法则可以检测地下坑洞、空蚀和岩溶洞等隐患,为工程安全提供保障。
三、重磁电法的技术进展随着科学技术的进步,重磁电法在地质勘查中也得到了长足发展。
现代重磁电法的测量仪器和数据处理软件日益先进,使数据采集、处理和解释更加高效和精准。
同时,多物理场、多参数联合勘探成为了重磁电法的发展方向,如在地磁、电法和地震波场的联合勘探中,可以提高地下结构的精细化解释和勘探效果。
此外,重磁电法也与人工智能技术相结合,应用机器学习和深度学习算法对地球物理数据进行分析和解释,进一步提高勘探效率和准确性。
这些技术的引入使重磁电法在地质勘查领域的应用更加高效和精细。
磁法在地质构造解释评估中的应用

磁场在地质构造解释评估中的应用磁场是一种重要的地球物理勘探方法,广泛应用于地质构造解释评估中。
通过测量地球磁场的强度和方向变化,可以获取有关地下岩石、矿产和地壳构造的相关信息。
本文将重点讨论磁场在地质构造解释评估中的应用。
1. 磁场原理及仪器磁场勘探利用地球磁场强度和方向的变化来推断地下物质的性质和分布情况。
其原理基于以下几个关键概念:地磁场、磁性物质、磁化强度以及磁化方位。
地磁场是地球表面附近的磁场,由地球内部的磁性物质所产生。
磁性物质包括铁矿石、铁镍合金等具有磁性的物质。
磁化强度是表征磁性物质的磁化程度,可用来推测地下岩石的性质。
磁化方位是磁性物质的磁化方向,可用来研究地下构造的走向和倾角。
磁场勘探一般采用磁导仪器进行测量。
常见的磁导仪器有全站仪、磁差计等。
全站仪可同时测量地磁场的强度和方向,提供详细的磁场数据。
磁差计则通过测量磁场的差值,进行简化的磁场测量。
这些仪器可以精确测量地球磁场的变化,为地质构造解释提供重要的数据支持。
2. 磁场在断裂带识别中的应用地质断裂带是地球表面裂缝、裂隙的集合,通常形成于地球构造活动中。
磁场可以通过测量地磁场的异常变化来识别断裂带的存在和分布。
断裂带一般具有磁场异常、磁性物质富集等特征。
通过分析地磁场数据,可以确定断裂带的走向、倾角和规模,进而揭示地质构造的演化过程。
磁性物质在地磁场中会产生磁异常,其中具有正异常和负异常。
正异常表示磁场强度增加,可能与含磁矿物质的富集有关;负异常表示磁场强度减小,可能与磁性物质稀少或被去除有关。
在断裂带附近,由于构造活动和断裂破坏,在地下磁性物质的分布会发生变化,从而引起磁场异常。
通过对磁场异常的测量、分析和处理,可以准确判定断裂带的位置和性质。
3. 磁场在岩石矿产评价中的应用岩石和矿产的磁性对地磁场也会产生不同的影响,磁场可以利用这一特点进行岩石矿产的评价。
比如,在铁矿勘探中,可以通过测量地磁场的异常变化,找出潜在的铁矿矿体。
磁力异常解释与矿产资源勘探

磁力异常解释与矿产资源勘探磁力异常是地球物理勘探中常见且重要的现象之一,它在矿产资源勘探中具有重要的应用价值。
本文将探讨磁力异常的解释原理以及其在矿产资源勘探中的应用。
一、磁力异常的解释原理磁力异常是指地球表面某一点的地磁场数值与该点的磁场理论值之间的差异。
磁力异常是由于地下物质的磁性不均匀分布所引起的。
地球内部的岩石和矿石都具有一定的磁性,不同类型的岩石和矿石有不同的磁化强度和磁化方向,因此它们对地球磁场的影响也不同。
磁力异常解释的基本原理是通过测量地磁场的强度和方向,计算出理论值,并将其与实际测量值进行对比。
当实际测量值与理论值存在差异时,可以推断该区域可能存在磁性物质,从而初步判断地下是否存在矿产资源。
二、磁力异常在矿产资源勘探中的应用1. 磁力异常在磁性矿产资源勘探中的应用某些矿石具有较强的磁性,如铁矿石、铁矿、铁磁体等。
在磁力异常勘探过程中,可以利用磁力仪器对区域内的磁场进行测量,从而发现磁性矿产资源。
通过分析磁力异常的强度和分布规律,可以初步判断磁性矿物的类型、储量和分布区域,为矿产资源勘探提供重要的参考依据。
2. 磁力异常在非磁性矿产资源勘探中的应用除了磁性矿产资源外,一些非磁性矿石也可能对地磁场产生微弱的磁化作用,从而引起磁力异常。
通过测量地磁场的变化,可以对非磁性矿产资源进行初步研究。
在非磁性矿产资源勘探中,磁力异常的分析往往与其他地球物理勘探方法相结合,如电法、重力法等,以提高勘探的准确性和有效性。
3. 磁力异常在区域勘探中的应用磁力异常不仅在点位勘探中有重要价值,也在区域勘探中有重要应用。
通过对区域内磁力异常的分析,可以推测区域内的岩性、构造特征和地质演化历史,从而为区域内矿产资源的勘探提供指导。
同时,磁力异常还能够辅助判断断裂带、深部构造和隐伏矿体,有助于进一步优化矿产资源勘探的布局。
三、磁力异常解释与矿产资源勘探的挑战与发展虽然磁力异常在矿产资源勘探中具有重要的应用价值,但其解释过程也面临一些挑战。
磁法勘探6-解释

划分大地构造单元
在典型的地台区,磁异常则主要主要表现为异 常走向的多样性,这是于不同期造山旋回,地 壳变动的主要构造线方向不一致所引起的。 在地槽区和地台区的过渡带,由于其兼具槽台 的地质特征,磁异常也应表现为两者的过渡形 式;如果地槽和地台以深大断裂为界,磁场特 点是相邻区域异常特征截然不同。
沉积盆地磁性基底的航磁异常特征
磁异常的幅值大小并不对应于基底的深浅,而 是异常的宽缓形态与深度对应。
凹陷区的磁异常宽缓,隆起区的磁异常小且多 变。
沉积盆地基底的磁异常剖面
局部构造在磁异常图上表现
磁异常与地震勘探的解释结果有偏差,但还是 比较接近的。
断裂带上雁行排列的T异常 郯城—庐江深大断裂中部T异常
断裂构造的磁异常标志
异常梯级带、走向突变带
串珠状异常
异常性质突变带
3. 划分不同岩性区
利用磁测资料划分不同岩性区的前提是不同岩 石的磁性参数不同,所产生的异常特征不同。 虽然根据密度差别,利用重力资料也可以划分 岩性,但不如磁测资料的效果好。岩石(地层) 间磁性差异较大,磁场特征明显不同。
火山喷发岩的磁场
火山岩磁异常共同的特 点是异常呈跳跃变化, 尖锐而且梯度大,相邻 测线难以对比。狭窄的 磁力高或低可能是火山 喷出裂隙的反映;单个 极强的峰值可能是火山 口的反映。 另一个特点是异常强度 随高度的增加而迅速衰 减。
火山侵入岩的磁场
侵入岩异常峰值可能很 大,但形态比较圆滑, 相邻测线上的异常曲线 可以对比。 异常形态与埋深之间有 明显的依赖关系,埋藏 较浅时常表现为多个孤 峰,埋藏较深时只显示 异常不规则的背景。
第七节 磁异常的解释及应用
磁异常的处理、解释及应用

上面,简单概述了磁异常各类正问题及其正演方法。其中,均匀磁化规则形体正(演) 问题、正演方法及场的解析表达式,是磁法的基础,具有重要的理论意义和实际意义将重点 讨论。
第二节 有效磁化强度矢量与总磁场异常 Δ T 的一般表达
一、有效磁化强度矢量
已知总磁化强度矢量由感应磁化强度与剩余磁化强度两矢量组成。设总磁化强度矢量 M
K 这种磁性体的参数 k 和 M r 需用张量来描述,其正演问题是磁法中最复杂的正问题。从
70 年代后期,国内外学者相继研究出一些数值正演方法。我国学者把有限元和边界元等数 值计算方法引用到这一复杂正演问题中来,取得了一系列有理论和实际价值的成果。
(五)磁场的模拟测定
前述各类正问题的求解还可以通过实验室模拟测定来解决。模拟测定方法分为静磁场 模拟方法与低频交变场模拟方法。实践已经证明,两类模拟测定方法是可行的。
3、组合体近似法:把磁化强度均匀或分区均匀的任意形态磁性体,用多个均匀磁化规 则形体的组合形体近似代替;各个均匀磁化规则形体的磁化强度可以相同或不同。该磁性体 磁场的近似值,等于各规则体解析场值之和。作为组件的规则形体有正方体、直立长方体、 倾斜长方体、有限长水平n棱柱体等。因为直立长方体的多个ln项可以合并成一项计算,而 且在一定条件下多个tg-1项亦可合并计算,使计算速度大大加快,又因其组合任意形体的能 力较强,故直立长方体组合法得到了普遍应用。
重磁法探测地下含矿构造

重磁法探测地下含矿构造地下矿产资源的探测一直是地质勘探工作中重要的一环。
重磁法是一种常用的地球物理勘探方法,通过测量地球重力场和地磁场的变化,可以揭示地下的矿藏和构造特征。
本文将详细介绍重磁法探测地下含矿构造的原理、方法和应用。
一、重磁法原理重磁法利用地球的重力场和地磁场的变化,通过测量地表上的重力和磁场数据,来推断地下矿产资源的分布和构造特征。
地球的重力和磁场受到地下物质的分布和性质的影响,不同的矿藏和构造特征会产生不同的重力和磁场异常值。
利用这些异常值,可以确定地下矿藏的存在和规模。
二、重磁法方法1. 重力测量:重力测量是重磁法中的重要方法之一。
重力仪器可以测量地球的重力场强度,它的原理是利用重锤的重力作用在弹簧上产生一个位移,进而推算出重力场的数值。
重力测量可以测定地球重力场的强度,通过分析重力场的变化,可以确定地下矿产资源和构造特征的分布。
2. 磁力测量:磁力测量也是重磁法中的一种重要方法。
磁力仪器可以测量地球磁场的强度和方向,它的原理是利用磁感应强度的变化来推算出矿藏的存在和规模。
磁力测量可以测定地球磁场的变化,并通过分析磁场异常值,确定地下矿产资源和构造特征的位置。
三、重磁法应用1. 矿产勘探:重磁法是一种重要的矿产勘探方法。
通过对矿区进行重磁场测量,可以推断出地下的矿藏类型、规模和分布。
这对于矿产资源的发现和评估非常重要,可以为矿产勘探提供科学的依据。
2. 地质构造研究:地质构造是地球表面和地下岩石的形成和演化过程中产生的各种构造形态和特征。
重磁法可以提供地质构造的详细信息,通过分析和解释重力和磁场异常的特征,可以揭示地球的构造演化历史。
3. 水文地质调查:重磁法还可以应用于水文地质调查。
水文地质是研究地下水分布、地下水动态和地下水对地质环境的影响的一门科学。
通过重磁法测量地下水的分布和流动状况,可以为水资源的开发和管理提供重要的参考。
四、重磁法在勘探中的优势1. 高效性:重磁法具有高效的勘探速度和较低的成本,能够在较短的时间内获取大量的勘探数据。
磁法勘探的基本原理及应用

沉积岩:
磁场微弱、平静、单调 常作为正常场
部分砂页岩或含磁铁矿的大理岩显示 磁性
五、异常特征的识别
不同地质体上的异常特征
火山岩: 基性→酸性 强→弱
起伏大、跳跃频繁、正负交替
五、异常特征的识别
不同地质体上的异常特征
变质岩:
取决于原岩磁性 含铁石英岩呈明显条带异常
五、异常特征的识别
不同地质体上的异常特征
• • • • 高斯球鞋分析模型(IRGF) 假定内部磁偶极,拟合基本场 由一组球谐系数及年变化率组成 国际上每5年发布一次球谐系数
二、地磁场及岩石磁性
• 地磁场的正常梯度:地球表面正常分布的 地磁场强度随距离的变化率(伽马/公里) • 南北向梯度大于东西向 • 随维度变化:Za梯度低纬度地区大,高纬 度地区小;H梯度与之相反 • 我国由南到北垂直分量的正常梯度值的变 化范围约为13.0—6.5伽马/公里 • 随垂直高度也有变化
高程改正→ △T
日变站选择弱磁性沉积岩区;
正常场利用国际地磁参考场
四、数据处理的方法
• 2、异常的处理与转换:
空间转换
分量转换
导数转换 不同磁化方向转化
四、数据处理的方法
• 目的:1、复杂→简化(曲面→平面;叠加 →孤立) 2、满足解释方法(某一分量→另一 分量;磁场值→频谱值) 3、突出某一方面的特点(上延→压 制浅部、突出深部;匹配滤波→可 突出深或浅的某个方面)
两侧异常特征明显 不同的分界线
(3)异常的错动
它们往往是平推断裂的反映,原来是一整体重磁异常,由于断 裂的作用,造成了异常的错动,异常轴错位。
异常轴线明显错动 的部位
(4)异常等值线的规则性扭曲
指在等值线趋势背景上的同向局部扰动,和等值线基本保持平 行的同向扭曲
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章重磁异常的地质解释与应用
一、重磁异常的地质解释
1、地质解释的主要内容
1)重磁资料的预分析:
使资料的解释建立在资料完整、可靠、便于解释的基础上。
→→有用异常是否得到明显反映。
2)数据处理
将有意义的异常从叠加异常中分离出来,去掉与任务无关的异常。
其他:延拓,化极,求导等。
3)定性解释
ⅰ:初步解释引起磁异常的地质原因。
ⅱ:大体判定异常源的形态、分布范围、异常界面的起伏变化等。
4)定量解释
得到异常源的形状大小,界面深度等几何参数。
5)地质结论和图示
2、重磁异常的多解性:
1)不同岩石的同一物性参数。
可以具有同一数量级,可能在地表引起相同的异常。
2)地表观测的异常分布不是全部空间场值的分布。
二、重力和磁法勘探的主要应用:
1、重力勘探的主要应用:
①研究地壳深部结构和划分大地构造单元。
②研究区域地质构造:基岩顶界面的深度起伏变化。
③查明沉积岩内部的局部构造和岩相变化:
④圈定隐伏的岩浆岩体:
⑤探明矿井下和地下浅部的某些地质问题:岩溶、采空区、破
碎带、老窑等
⑥金属矿床。
2、磁法勘探的主要作用:
①研究结晶基底的起伏变化:预测含煤远景区。
②圈定不同类型岩石的分布范围:
③确定断层构造。
④研究褶皱构造。
⑤煤层燃烧带。
三、实例
1) 圈定含煤岩系的岩浆岩体
我国许多煤田不同程度的受到岩浆岩侵入体的影响。
目前,主要是应用磁法勘探来解决岩浆岩的圈定问题。
1980年,中国矿业大学物探教研室曾在甘肃窑街煤田进行过圈定超基性岩的磁测工作,目前是研究该区煤矿开采过程中二氧化碳气体突然涌出的原因。
同时,磁测结果还提供了断裂构造和烧变岩石的边界位置等资料。
窖街煤田是中生代山间盆地性煤田,盆地基底是弱磁性的前震旦系变质岩,含煤岩系为侏罗纪
地层,煤系上覆的层为白垩纪、第三纪红色地层或直接为第四系黄土覆盖。
区内断裂发育,岩浆活动频繁,岩浆岩主要是中等磁化强度的超基性岩,它与周围岩石磁性差异明显。
图13—9是窖街煤田磁异常平面等值线图。
对其中四个局部正磁异常(编号为M1、M2、M3、M4)进行了更大比例尺的详测。
由图可见,四个异常呈串珠状(NW)向分布,无负异常出现,异常等直线密集,推断为一NW走向断层。
东侧磁场变化平缓,形成500一600nT的平缓异常带。
图13—11,为近东西路的磁异常剖面图,图中平缓异常带是由深部磁性体所引起的的,剖面异常是浅部超基性岩和深部磁形体异常的叠加。
为了分辨叠加异常以及研究磁性体的分布形态,对磁异常资料进行向上和向下延拓的处理(图13—12)。
从向上延拓剖面曲线可以看出,当延拓高度达200m时,异常曲线平缓,浅部超基性岩引起的局部正异常被消除,突出了深部磁性体引起的平缓异常,剖面左侧磁场平稳且变化很小,属正常场范围,右侧平缓异常反映了深部异常源的存在。
当异常向下延拓至50一100m时,异常曲线形态变窄,曲线幅度变化剧烈。
在相邻的两个延拓深度上,异常极大位两侧的陡度不再发生明显变化,此时可认为向下延招已达到岩体的顶面深度。
根据不同下延深度磁异常值绘制的空间等值线断面图也可看出,当下延到岩体顶面时等值线聚集,等值线聚集处可认为相当于岩体顶面深度。
2) 圈定煤层燃烧带范围
我国不少煤田,特别是西北地区,由于煤层露头的氧化作用可引起煤层浅部自燃。
煤层经过燃烧,其顶底板岩石和煤层恰好受到强烈的高温作用形成烧变岩。
烧变岩具有强的热剩磁,这是因为顶底板中往往含有赤铁矿、黄铁矿、菱铁矿等铁质矿物烧变之后,大部分变成磁铁矿,具有很强的磁性。
煤层自燃一般是经过低温氧化、自热、发火、燃烧和降温熄灭几个过程。
在熄灭带上磁异常最强;发火带和燃烧带处于增温燃烧阶段,尚未获得热剩磁,因此磁性较弱。
60年代开始,我国西北地区已开始应用磁法勘探方法圈定煤层燃烧区的范围,先后在20多个测区进行工作,经钻探工程验证,磁异常圈定的燃烧区范围是可靠的。
综合应用自然电场法勘探,还能研究活火区的燃烧状态和蔓延速度。
近年来,在陕西北部神木煤田圈定燃烧区也取得显著成效,确定燃烧区边界的精确度可达到5—10m,这对准确的布置开采工程,特别是露天开采工程具有很大经济意义。
神术煤田活鸡兔露天矿区是保罗组合煤地层,含五层可采煤层,其中主要可采煤层厚度达9m。
该区自燃煤层多沿沟谷向两侧燃烧,随着供氧条件不足而熄灭。
经测定烧变岩磁化率一般在90×10-6SI(k)以上,剩余磁化强度常见范围在(550~9000)×10-6SI(k)之间、与周围岩石具有明显的磁性差别。
该区垂直磁场强度异常
Z曲线的特点是在平稳的背景上出现锯齿状跳跃异常,幅度较大,变化
a
剧烈,异常剖面曲线如图13—13所示,异常最大值可达1000nT,正负异常交替出现。
Z曲线明显
a
地反映出烧变区与末烧变区边界线。
造成异常跳变的原因是由于煤层围岩中铁质矿物结核大小和分布不均匀,以及煤层燃烧程度不同所致,因而烧变岩石的磁性也很不均匀。
图13—14为总磁场强度异常T
剖面图。
图中,异常的突然跳跃点对应着火烧区的边界。
在某些测线上,异常幅度虽然不大,但锯齿状跳跃的曲线特点与平稳的背景值仍然有明显差异,随着烧变岩埋深增加,曲线的跃变程度趋于缓和。
由于烧变岩的深度、厚度、铁磁质矿物含量和燃烧程度的不同,使区内磁异常的幅度大小和异常曲线形态复杂多变,然而用磁法理论结合地质资料分析对比,可以较准确的对异常作出解释并划分出烧变区的范围。
对于磁性较弱的低温燃烧带边界,应利用高精度磁力仪,以便更准请的圈定边界位置。