富士伺服驱动器参数设定及基本操作技巧

合集下载

富士复合式伺服驱动器使用手册201510

富士复合式伺服驱动器使用手册201510

FAN0V

风扇用DC0V电源
■编码器电池连接 (CN9)
插座
PAP-04V-S
紧凑型
SPHD-001T-P0.5
厂商
日本压着端子制造
端子名称
引脚No.
规格
BAT1+

编码器电池1 +极
BAT1-

BAT2+

BAT2-

编码器电池1 -极 编码器电池2 +极 编码器电池2 -极
年月 日 制 图 2015-10-14 调査
署名 高山
图纸编号 S I 2 7 - 6 0 9 9 1 / 1 1
修订履历 INDEX
- 初版
变更内容
日 期 制作 20151014 高 山
调査
承认
年月 日 制 图 2015-10-14 调査
署名 高山
承认
69090 图 号
Fuji Electric Co.,Ltd.
SI27-6099 2/11
OUT6
C脉冲/逆转脉冲 用参数选择 90゜位相差2信号
开路集电极输入时上拉电源输入 (DC24V±5%) 差动输出 最大输出频率≦1[MHz] 90゜位相差2信号输出 脉冲输出数设定 n〔pulse/rev〕 16≦n≦262144 差动输出〔1pulse/rev〕
SI27-6099 5/11
.
【5】接头引脚定义 5-1.接头一览 功能 串行 I/F 编码器 I/F 控制入输出 马达动力 冷却风扇电源输出 电源输入 再生电阻连接 编码器电池连接 接地端子
搭载单元 各轴放大器单元 各轴放大器单元 各轴放大器单元 各轴放大器单元 电源单元 电源单元 电源单元 电源单元 各轴放大器单元(2个) 电源单元(2个)

伺服驱动器参数设置方法

伺服驱动器参数设置方法

伺服驱动器参数设置方法伺服驱动器是现代工业自动化控制系统中的重要组成部分,它能够精确控制电机运动,实现高精度的位置、速度和力控制。

在使用伺服驱动器时,正确的参数设置是非常重要的,它直接影响到系统的性能和稳定性。

本文将介绍伺服驱动器参数设置的方法,帮助用户正确地进行参数配置。

首先,我们需要了解伺服驱动器的基本参数,包括电机额定电流、额定转速、编码器分辨率、减速比等。

这些参数通常可以在电机铭牌上找到,也可以通过技术手册或者询问供应商获得。

在进行参数设置时,需要确保输入的参数值与实际情况相符,以保证系统的正常运行。

其次,根据具体的应用需求,确定伺服驱动器的控制模式。

通常有位置控制、速度控制和力控制等模式可供选择。

在参数设置时,需要根据实际应用场景选择合适的控制模式,并进行相应的参数配置。

例如,在位置控制模式下,需要设置位置环节的比例增益、积分时间和微分时间等参数;在速度控制模式下,需要设置速度环节的参数;在力控制模式下,需要设置力传感器的增益和偏置等参数。

另外,还需要注意伺服驱动器的限位和过载保护设置。

在实际运行中,为了保护设备和人员的安全,通常需要设置软件限位和硬件限位,以防止电机超出规定范围运动。

同时,也需要设置过载保护参数,当电机受到外部冲击或负载突变时,能够及时停止电机以避免损坏。

最后,进行参数设置后,需要进行系统的调试和优化。

通过实际运行测试,观察系统的响应和稳定性,根据实际情况对参数进行微调,以达到最佳的控制效果。

总之,伺服驱动器参数设置是一个复杂而又关键的过程,需要根据实际情况仔细调整各项参数,以确保系统的稳定性和性能。

通过本文介绍的方法,相信读者能够更好地掌握伺服驱动器参数设置的技巧,提高系统的控制精度和稳定性。

伺服驱动器参数设置方法

伺服驱动器参数设置方法

伺服驱动器参数设置方法
1. 前期准备
根据伺服驱动器使用说明书来确认系统参数的设置范围,同时要了解所需参数的具体名称和作用。

在设置参数前,先停止伺服系统的运转。

2. 主伺服参数设置
主伺服参数指防护、速度、加速度等参数。

设置前,先按照使用说明书的要求选择相应的参数。

然后进行参数设置。

3. PID参数设置
PID参数设置包括比例系数、积分时间和微分时间三个参数。

一般情况下,这三个参数是配套使用的。

一般情况下,这三个参数都是需要根据实际情况进行调整的。

在设定前,先根据使用说明书选择相应的参数,然后调整PID参数,直到达到理想的运动效果。

4. 位置误差调整
基础参数调整完成后,要进行位置误差调整。

这时,可以手动转动伺服电机,观察位置误差变化。

这个过程中,要根据速度的变化,对位置误差进行调整,直到
达到预期效果。

5. 整机参数调整
完成单个电机的参数设定后,还需要对整个伺服系统进行参数调整。

整机参数包括系统响应速度、整机加速度等。

通过调整整机参数,可以使整个伺服系统的运动更加顺畅。

6. 参数测试
参数设置完成后,还需要对其进行测试,以验证是否满足了伺服系统的设计要求。

在测试过程中,可以根据需要逐步调整参数,以达到最佳效果。

伺服驱动参数设置方法

伺服驱动参数设置方法

伺服驱动参数设置方法引言:伺服驱动参数设置是指根据具体的应用需求,对伺服驱动器进行参数配置,以实现精准的电机控制和运动控制。

正确的参数设置可以提高系统的性能和稳定性,确保电机运动的准确性和可靠性。

本文将介绍伺服驱动参数设置的方法和步骤。

一、了解伺服驱动器在进行伺服驱动参数设置之前,首先需要了解伺服驱动器的基本特性和工作原理。

伺服驱动器是一种用于控制电机运动的设备,它通过接收控制信号,输出相应的电流或电压,驱动电机实现精确的位置和速度控制。

二、确定应用需求在进行伺服驱动参数设置之前,需要明确具体的应用需求,包括所控制的电机类型、负载特性、运动要求等。

不同的应用需求可能需要不同的参数设置,因此需要在此基础上进行参数调整。

三、设置基本参数1. 电机类型:根据实际应用情况,选择正确的电机类型,包括步进电机、直流无刷电机或交流伺服电机等。

2. 电机参数:设置电机的额定电流、额定转速、极对数等参数,这些参数可以通过电机的技术手册或者其他相关资料获得。

3. 控制模式:选择合适的控制模式,包括位置控制、速度控制或力矩控制等。

四、调整闭环参数闭环参数是伺服驱动器中最关键的参数之一,它直接影响到系统的稳定性和控制精度。

根据应用需求和实际情况,逐步调整以下闭环参数:1. 比例增益:比例增益决定了控制器对误差的响应程度,过大的比例增益会导致系统震荡,过小则会导致响应不及时。

通过试验和调整,找到合适的比例增益值。

2. 积分时间:积分时间决定了控制器对误差积分的时间长度,过大的积分时间会导致系统响应迟钝,过小则会导致系统震荡。

根据实际情况,逐步调整积分时间,找到合适的值。

3. 微分时间:微分时间决定了控制器对误差变化率的响应程度,过大的微分时间可能会导致系统产生高频振荡,过小则会导致系统对噪声敏感。

通过试验和调整,找到合适的微分时间值。

五、设置限制参数为了保护系统和设备的安全运行,还需要设置一些限制参数,以避免超出系统的能力范围。

伺服驱动器参数设置步骤

伺服驱动器参数设置步骤

伺服驱动器参数设置步骤1.准备工作在开始伺服驱动器参数设置之前,首先需要进行准备工作。

包括安装好驱动器、连接好伺服电机,并确保电源和输入信号正常。

2.连接驱动器到电脑使用RS485或者以太网等通信接口,将驱动器连接到电脑。

可以通过USB转RS485接口或者以太网转串口的方式进行连接。

3.安装驱动器配置软件4.参数备份在进行参数设置之前,首先需要备份当前的驱动器参数。

通常配置软件会提供备份和还原功能,可以将当前的参数备份到电脑上,以便后续的恢复或者对比。

5.参数设置驱动器的参数设置包括基本参数、速度环参数、位置环参数和其他高级参数的设置。

5.1基本参数设置:根据具体的应用,设置伺服驱动器的工作模式、编码器类型、输出方式等基本参数。

5.2速度环参数设置:设置伺服驱动器的速度环参数,包括速度比例增益、速度积分增益、速度微分增益等。

5.3位置环参数设置:设置伺服驱动器的位置环参数,包括位置比例增益、位置积分增益、位置微分增益等。

5.4其他高级参数设置:根据具体需求设置其他高级参数,如过流保护、过压保护、过热保护等。

6.参数调试设置好驱动器参数后,需要进行参数调试。

通过配置软件提供的模拟功能,可以输入指定的速度和位置信号,观察伺服系统的响应情况。

根据实际需求,调整相应的参数,使得伺服系统的性能达到最佳状态。

7.保存参数参数调试完成后,需要将设置好的参数保存到驱动器中。

在配置软件中选择保存参数的选项,将参数写入到驱动器的非易失性存储器中。

8.参数恢复在进行参数设置之前备份的参数,可以在需要的时候恢复。

通过配置软件提供的参数还原功能,将之前备份的参数恢复到驱动器中,恢复到之前的工作状态。

以上就是伺服驱动器参数设置的详细步骤。

通过正确的参数设置和调试,可以保证伺服系统的稳定性和性能。

同时,根据具体的应用需求,可以对伺服驱动器的参数进行优化和调整,以获得更好的控制效果。

伺服电机驱动器的几个参数设置

伺服电机驱动器的几个参数设置

伺服电机驱动器的几个参数设置描述伺服电机驱动器的正确使用除按用户手册正确设置参数外,还应结合使用现场和负载情况,灵活操作。

同样,维修伺服电机系统除采用同型号的部件进行替代外,也可以对原设备的功能、信号分析后,使用不同型号部件进行替代。

伺服电机驱动器的几个参数设置1、位置比例增益设定位置环调节器的比例增益;设置值越大,增益越高,刚度越大,相同频率指令脉冲条件下,位置滞后量越小。

但数值太大可能会引起振荡或超调;参数数值由具体的伺服系统型号和负载情况确定。

2、位置前馈增益设定位置环的前馈增益;设定值越大时,表示在任何频率的指令脉冲下,位置滞后量越小;位置环的前馈增益大,控制系统的高速响应特性提高,但会使系统的位置不稳定,容易产生振荡;不需要很高的响应特性时,本参数通常设为0表示范围:0~100%。

3、速度比例增益设定速度调节器的比例增益;设置值越大,增益越高,刚度越大。

参数数值根据具体的伺服驱动系统型号和负载值情况确定。

一般情况下,负载惯量越大,设定值越大;在系统不产生振荡的条件下,尽量设定较大的值。

4、速度积分时间常数设定速度调节器的积分时间常数;设置值越小,积分速度越快。

参数数值根据具体的伺服驱动系统型号和负载情况确定。

一般情况下,负载惯量越大,设定值越大;在系统不产生振荡的条件下,尽量设定较小的值。

5、速度反馈滤波因子设定速度反馈低通滤波器特性;数值越大,截止频率越低,电机产生的噪音越小。

如果负载惯量很大,可以适当减小设定值。

数值太大,造成响应变慢,可能会引起振荡;数值越小,截止频率越高,速度反馈响应越快。

如果需要较高的速度响应,可以适当减小设定值。

6、最大输出转矩设置设置伺服电机的内部转矩限制值;设置值是额定转矩的百分比;任何时候,这个限制都有效定位完成范围;设定位置控制方式下定位完成脉冲范围。

本参数提供了位置控制方式下驱动器判断是否完成定位的依据,当位置偏差计数器内的剩余脉冲数小于或等于本参数设定值时,驱动器认为定位已完成,到位开关信号为ON,否则为OFF;在位置控制方式时,输出位置定位完成信号,加减速时间常数。

伺服驱动器参数设置方法

伺服驱动器参数设置方法

伺服驱动器参数设置方法伺服驱动器是现代工业自动化控制系统中的重要组成部分,它能够实现精准的位置控制和速度控制,广泛应用于各种机械设备中。

在使用伺服驱动器时,正确的参数设置是至关重要的,它直接影响到系统的稳定性和性能。

本文将介绍伺服驱动器参数设置的方法,帮助您正确地配置伺服驱动器,提高系统的控制精度和稳定性。

首先,我们需要了解伺服驱动器的基本参数,包括电机额定电流、编码器分辨率、控制模式等。

这些参数通常可以在伺服驱动器的技术手册中找到,我们需要仔细阅读手册,确保对这些参数有充分的了解。

在设置伺服驱动器参数时,我们需要根据实际的应用需求来调整这些参数,以确保系统能够达到最佳的性能。

其次,我们需要进行电机参数的设置。

电机参数包括电机额定电流、电机型号、编码器类型等。

在设置电机参数时,我们需要根据实际的电机型号和性能来进行调整,确保伺服驱动器能够正确地识别和控制电机。

此外,还需要根据实际的应用需求来调整电机参数,以确保系统能够实现精准的位置和速度控制。

接下来,我们需要进行控制参数的设置。

控制参数包括速度环参数、位置环参数、加速度限制等。

在设置控制参数时,我们需要根据实际的应用需求来进行调整,以确保系统能够实现稳定的控制。

通常情况下,我们可以通过试验和调试来确定最佳的控制参数,以确保系统能够达到最佳的性能。

最后,我们需要进行系统整体参数的设置。

系统整体参数包括通信参数、报警参数、保护参数等。

在设置系统整体参数时,我们需要根据实际的应用需求来进行调整,以确保系统能够安全可靠地运行。

此外,还需要对系统的报警和保护功能进行合理的设置,以确保系统能够及时发现和处理故障,避免损坏设备。

总之,伺服驱动器参数设置是一个复杂而又关键的工作,它直接影响到系统的控制精度和稳定性。

在进行参数设置时,我们需要充分了解伺服驱动器和电机的性能特点,根据实际的应用需求来进行调整,以确保系统能够达到最佳的性能。

希望本文能够帮助您正确地配置伺服驱动器,提高系统的控制精度和稳定性。

伺服驱动器重要参数的设置方法和技巧

伺服驱动器重要参数的设置方法和技巧

伺服驱动器重要参数的设置方法和技巧随着市场的发展和国内功率电子技术、微电子技术、计算机技术及控制原理等技术的进步,国内数控系统、交流伺服驱动器及伺服电动机这两年有了较大的发展,在某些应用领域打破了国外的垄断局面。

笔者因多年从事数控技术工作,使用了多套日本安川、松下、三洋等数字伺服,但最近因国产伺服性价比好,使用了一些数控技术公司生产的交流伺服驱动及电动机,对使用中某些方面总结了一些简单实用的技巧。

1 KNDSD100基本性能1.1 基本功能SD100采用国际上先进的数字信号处理器(DSP)TM320(S240)、大规模可编程门阵列(FPGA)、日本三菱的新一代智能化功率模块(1PM),集成度高,体积小,具有超速、过流、过载、主电源过压欠压、编码器异常和位置超差等保护功能。

与步进电动机相比,交流伺服电动机无失步现象。

伺服电动机自带编码器,位置信号反馈至伺服驱动器,与开环位置控制器一起构成半闭环控制系统。

调速比宽 1:5000,转矩恒定,1 r和2000r的扭矩基本一样,从低速到高速都具有稳定的转矩特性和很快的响应特性。

采用全数字控制,控制简单灵活。

用户通过参数修改可以对伺服的工作方式、运行特性作出适当的设置。

目前价格仅比步进电动机高2000~3000元。

1.2 参数调整SD100为用户提供了丰富的用户参数0~59个,报警参数1~32个,监视方式(电动机转速,位置偏差等)22个。

用户可以根据不同的现场情况调整参数,以达到最佳控制效果。

几种常用的参数的含义是:(1)“0”号为密码参数,出厂值315,用户改变型号必须将此密码改为385。

(2)“1”号为型号代码,对应同系列不同功率级别的驱动器和电动机。

(3)“4”号为控制方式选择,改变此参数可设置驱动器的控制方式。

其中,“0”为位置控制方式;“1”为速度控制方式;“2”为试运行控制方式;“3”为JOG控制方式;“4”为编码器调零方式;“5”为开环控制方式(用户测试电压及编码器);“6”为转矩控制方式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

4.2.1 第一阶段
连接伺服放大器及伺服电机,进行试运行。

配线方法参照3 章。

在伺服电机的输出轴未连接到机械系统的状态下进行试运行。

在第一阶段确认以下项目。

<确认>
・确认伺服放大器的电源配线 (L1、L2、L3)
・确认伺服电机动力线 (U、V、W)、编码器电缆线
・确认伺服放大器、伺服电机是否正常工作
・确认参数4 号(旋转方向切换/CCW(逆时针)方向旋转时的相位切换)■试运行顺序
(1) 请固定伺服电机,以防其横向翻倒。

将伺服电机牢固固定
不要在电机的输出轴上安装任何东西
(2) 请按3 章的配线,为伺服放大器与伺服电机配线。

※第一阶段进行单体试运行,故不要连接到CN1 上。

(3) 请确认4-2 页的「■初次通电前的注意事项」后,再通电。

i) 请确认充电用显示灯。

ii) 请确认触摸面板显示。

※万一报警检出时,请切断电源,确认配线后,参照9 章。

请预习说明书的第4章和第8章。

5 参数
5.1 参数构成
伺服放大器中有调整机械系统的设定、伺服的特性与精度的各种参数。

由于参数的设定值被存储在可电换写的ROM (EEPROM) 中,因此,即使切断电源也不会丢失。

作为参数一览表的 "变更" 项目的 "电源" 的参数,即使切断主电源,再接通电源时仍然有效。

(请确认主电源切断时,伺服放大器的触摸面板<7 段文字显示>灯灭。


5.1.1 利用触摸面板编集的方法
5-2
5.2 参数一览表
5.3 参数说明
以每一命令脉冲的机械系统的移动量为单位量设定参数(电子齿轮)。

利用以下计算式计算。

提示:当伺服电机旋转一周时的机械系统的移动量中有π时,355/113 可以近似。

输出脉冲数和命令脉冲补偿无关。

根据参数19 号的设定值,电机轴正转时,输出B 相进给90°相位差2 路信号。

※只在位置控制时有效。

可以选择输入脉冲串端子的信号形式。

可以设定伺服放大器的输入脉冲串端子 [CA]、[*CA]、[CB]、[*CB] 的脉冲串的形式。

最大输入频率在差动输入时为1.0 [MHz],在集电极开路输入时为200 [kHz]。

但是,请输入各种信号,以满足以下条件。

(信号CA、*CA、CB、*CB 各自条件相同)
■命令脉冲/命令符号(参数03 的设定值:0)
用命令脉冲表示旋转量,用命令符号表示旋转方向。

・差动输入
设定伺服电机每转一周时,分频输出的脉冲数。

输出形式为90 度相位差2 路信号。

伺服电机的输出轴为正转,输出B 相前进信号。

通过设定转动方向切换(参数4 号)可以切换相的顺序。

・参数4 号的设定值 = 1 或 2 时,逆时针旋转时B 相前进
・参数4 号的设定值 = 1 或 2 时,逆时针旋转时A 相前进
可以设定伺服放大器的分频输出端子 [FA],[*FA],[FB],[*FB] 端子的输出脉冲数。

A 相及
B 相信号为50[%占空比]。

Z 相信号每转一周输出1 个脉冲。

输出幅度取决于输出脉冲数。

A 相信号与Z 相信号是同步的。

输出频率请在500 [kHz] 以下使用。

伺服放大器对输出频率无限制。

不能指定伺服电机的输出轴的位置与Z 相位置的关系。

.-。

相关文档
最新文档