电子技术基础实验7 比例求和运算电路
实验七比例求和运算电路

03 实验步骤与操作
搭建比例运算电路
选择合适的运算放大器
搭建电路
根据实验需求,选择具有适当性能指 标的运算放大器,如低失真、低噪声 等。
按照设计好的电路图,在面包板上搭 建比例运算电路,注意元件布局和走 线。
设计比例运算电路
根据所需放大倍数,设计合适的比例 运算电路,包括电阻、电容等元件的 选型和取值。
搭建求和运算电路
设计求和运算电路
根据实验需求,设计能够实现两 个或多个输入信号求和的运算电
路。
选择合适的元件
根据设计需求,选择合适的电阻、 电容等元件,实现信号的加权和求 和。
搭建电路
在面包板上按照设计好的电路图搭 建求和运算电路,确保连接正确且 紧固。
组合比例求和运算电路
连接比例运算电路和求和运算电路
实验意义及价值
拓展电子技术应用领域
比例求和运算电路作为一种基本的模拟电路,在电子技术应 用领域具有广泛的应用前景,如信号处理、自动控制等。
促进电子技术教学发展
通过本次实验,可以帮助学生深入理解和掌握模拟电路的基 本原理和设计方法,提高其实践能力和创新意识。
对未来研究的建议
深入研究高性能比例求和运算电路
实验七比例求和运算电路
目 录
• 引言 • 比例求和运算电路基本原理 • 实验步骤与操作 • 实验数据分析与讨论 • 实验结论与总结
01 引言
实验目的
掌握比例求和运算电 路的基本原理和实现 方法。
通过实验验证理论分 析和电路设计的正确 性。
学会使用运算放大器 构建比例求和电路。
实验背景
比例求和运算电路是模拟电子技术中的一种基本电路,广泛应用于信号处理、自动 控制等领域。
实验四-比例求和运算电路实验报告

实验四 比例求和运算电路一、实验目的1.掌握用集成运算放大器组成比例、求和电路的特点及性能。
2.学会上述电路的测试和分析方法。
二、实验仪器1.数字万用表2.信号发生器3.双踪示波器其中,模拟电子线路实验箱用到直流稳压电源模块,元器件模组以及“比例求和运算电路”模板。
三、实验原理(一)、比例运算电路 1.工作原理a .反相比例运算,最小输入信号min i U 等条件来选择运算放大器和确定外围电路元件参数。
如下图所示。
10k Ω输入电压i U 经电阻R 1加到集成运放的反相输入端,其同相输入端经电阻R 2接地。
输出电压O U 经R F 接回到反相输入端。
通常有: R 2=R 1//R F 由于虚断,有 I +=0 ,则u +=-I +R 2=0。
又因虚短,可得:u -=u +=0 由于I -=0,则有i 1=i f ,可得:Fo1i R u u R u u -=---由此可求得反相比例运算电路的电压放大倍数为: ⎪⎪⎩⎪⎪⎨⎧==-==1i i if 1F i o uf R i uR R R u u A反相比例运算电路的输出电阻为:R of =0输入电阻为:R if =R 1b .同相比例运算10k Ω输入电压i U 接至同相输入端,输出电压O U 通过电阻R F 仍接到反相输入端。
R 2的阻值应为R 2=R 1//R F 。
根据虚短和虚断的特点,可知I -=I +=0,则有 o Fu R R R u ⋅+=-11且 u -=u +=u i ,可得:i o Fu u R R R =⋅+111F i o uf R R 1u u A +==同相比例运算电路输入电阻为: ∞==iiif i u R 输出电阻: R of =0以上比例运算电路可以是交流运算,也可以是直流运算。
输入信号如果是直流,则需加调零电路。
如果是交流信号输入,则输入、输出端要加隔直电容,而调零电路可省略。
(二)求和运算电路 1.反相求和根据“虚短”、“虚断”的概念1212i i o Fu u uR R R +=- 1212()F F o i i R R u u u R R =-+当R 1=R 2=R ,则 12()F o i i R u u u R=-+四、实验内容及步骤1、.电压跟随电路实验电路如图1所示。
电子技术基础实验7 比例求和运算电路

1
2
3
电压跟随电路
实验电路如图6.1所示。
4 D
C
A1
Vo
Vi
RL 5K1
B
按表6.1内容实验并测量记录。
Title
Vi(V)
Si z e
-2 Number
-0.5
0
+0.5Revision
1
Vo(V)
B
R =∞ Date: FiLle:
5-May-2 003
Sheet of
C:\PROG RAM FILES\DE SIGN EXPLOR ER 99 SE\EXAM PLDErSa\wMnyBDeys:ig n.ddb
A
1
RL=5K1 2
3
4
2020/7/27
1
反相2 求和放大3 电路 4
实验电路如图6.4所示
D
按表6.6内容进行实验测量,并与预习计算比较。
R2
RF
10K
100K
Vi1
C
R1 10K
C
Vi2
A1
Vo
R3 10K
B
B
Vi1(V) Vi2A (V) VO(V) 1
2020/7/27
Title
0.3
比例求和运算电路
实验目的 掌握用集成运算放大电路组成比例、求和电路的特点及性能。 学会上述电路的测试和分析方法。
实验仪器 数字万用表 示波器 信号发生器
预习要求 计算表6.1中的Vo和Af 估算表6.3的理论值 估算表6.4、表6.5中的理论值 计算表6.6中的Vo值 计算表6.7中的Vo值
2020/7/27
实验电路如图6.5所示 按表6.7内容进行实验测量
《电工学》比例求和放大电路实验

比例求和放大电路实验一、实验目的1、掌握用集成运算放大器组成比例、求和电路的特点及性能;2、学会上述电路的测试和分析方法;3、掌握各电路的工作方法。
二、实验仪器与设备三、实验原理实验采用LM324集成运算放大器和外接电阻、电容等构成基本运算电路。
运算放大器是具有高增益、高输入阻抗的直接耦合放大器。
它外加反馈网络后,可实现各种不同的电路功能。
如果反馈网络为线形电路,运算放大器可实现加、减、微分、积分运算;如果反馈网络为非线形电路,则可实现对数、乘法、除法等运算;除此之外还可组成各种波形发生器,如正弦波、三角波、脉冲发生器等。
1、电压跟随器图2.7.1 电压跟随器图 图2.7.2 反相比例反大器 电路如图2.7.1所示,设组件LM324为理想器件时,则o i v v =即输出电压跟随输入电压的变化。
2、反相比例运算在图2.7.2所示电路中,设组件LM324为理想器件时,则fo i 1R v v R =-其输入电阻if 1R R ≈,2f11R R R R =≈。
由上式可知,输出与输入反相,选择不同的电阻比值,就改变了运算放大器的闭环增益vf A 。
在选择电路参数时应考虑:(1)根据增益,确定f R 与1R 的比值,即vf f 1/A R R =-(2)具体确定f R 与1R 的值若f R 太大,则1R 也大,这样容易引起较大的失调温漂;若f R 太小,则1R 也小,输入电阻i R 也小,,不能满足高输入阻抗的要求。
一般取f R 为几十千欧~几百千欧。
若对放大器的输入电阻已有要求,则可根据i 1R R =,先定1R ,再求f R 。
(3)为减小偏置电流和温漂的影响,一般取2f1R R R =,由于反相比例运算电路属于电压负反馈,其输入、输出阻抗均较低。
3、同相比例放大器在图2.7.3所示电路中,设组件LM324为理想器件时,则f o i 11R v v R ⎛⎫=+ ⎪⎝⎭由上式可知,输出与输入同相,选择不同的电阻比值,就改变了运算放大器的闭环增益vf A 。
电子技术实验课件2-比例求和运算电路

以上实验内容与1、2相似,参考实验讲义。
返回
五、思考题
⒈ 总结:本实验中5种运算电路的 特点及性能。
⒉ 分析:理论计算与实验结果误 差的原因。
返回
图26-1 同相比例 放大电路
直流电压Vi
测电压Vo
+12V
-12V
3.反相比例放大器 4.反相求和放大电路 5. 差动放大电路
uo RF Au ui R1
RF RF uo ( ui1 ui 2 ) R1 R2
R3 RF RF uo (1 ) ui 2 ui1 R1 R2 R3 R1
2. 信号发生器
3. 数字万用表
返回
三、预习要求
1.
2. 3. 4. 5.
计算表1中的V0和Af
估算表3的理论值 估算表4、表5中的理论值 计算表6中的V0值 计算表7中的V0值
返回
四、实验内容与步骤
1. 电压跟随电路,如图26-1所示。
表 1 Vi(V) V0(V) RL=∞ RL=5K1 相对误差 -2 -2 -0.5 0 +0.5 +1 -2.00
-2
uo u u ui26-1 电压跟随电路
直流电压Vi
测电压Vo
+12V
-12V
2. 同相比例放大器 实验电路如图26-2所示。
R3 RF uo (1 ) ui R1 R2 R3
按表2内容测量并 记录实验数据。
实验电路板的连接如下。
实验 比例求和运算电路
电子技术实验
河北工业大学 电气与自动化学院
电工电子教学中心
实验
比例求和运算电路
一、实验目的 二、实验仪器 三、预习要求 四、实验内容与步骤
比例求和电路心得体会

比例求和电路心得体会比例求和电路是一种常用的电路组成部分,在我学习的电路课程中,我对比例求和电路有了更深入的了解。
通过学习和实践,我深刻体会到了比例求和电路的原理和应用。
首先,比例求和电路是由一个或多个电阻、电容、电感等组成的,其作用是将多个输入信号比例相加,并输出一个综合信号。
比例求和电路的基本原理是利用不同元件对电压或电流的比例关系,将输入信号按照一定权重相加,形成一个输出信号。
这样的设计可以实现对多个输入信号的加权求和,使得我们能够根据不同权重的信号得到一个综合的结果。
其次,比例求和电路有许多实际应用。
在音频处理领域中,比例求和电路可用于音频混音器。
通过调节不同输入信号的权重,混音器可以实现不同声音的综合,以产生最终的音频输出。
在通信系统中,比例求和电路可以用于信号的合并与处理。
如在天线选择器中,可以利用比例求和电路将多个信号按照一定比例合并,以实现信号的共享和切换。
此外,比例求和电路还广泛应用于自动控制系统、传感器信号处理和仪器测量等领域。
在学习比例求和电路的过程中,我对其原理有了更深入的理解。
比例求和电路利用了电阻、电流等元件之间的比例关系,通过调节不同元件的参数,可以设置不同输入信号的权重,从而获得所需的输出结果。
此外,我还学到了比例求和电路的分析方法,如节点法、回路法等。
这些方法帮助我更加清晰地理解电路的工作原理,并能够准确地计算电路参数和输出结果。
除了理论知识,我还进行了一些比例求和电路的实验,锻炼了实际操作的能力。
在实验中,我使用示波器和函数发生器等仪器观察和测量电路的输入输出波形,通过调节电阻、电容等参数,实验验证了比例求和电路的工作原理。
通过实验,我不仅巩固了理论知识,还提高了解决电路问题的能力。
在学习比例求和电路的过程中,我也遇到了一些挑战。
比如,在进行电路分析时,复杂的电路结构和参数计算可能会令人头疼。
此外,在实际操作中,出现的电路故障和测量误差也会对实验结果产生影响。
2013_4_比例求和运算电路

实验四比例求和运算电路一、实验目的1、掌握用集成运算放大电路组成比例、求和电路的特点及性能。
2、学会上述电路的测试和分析方法。
二、实验仪器1、数字万用表2、信号发生器3、双踪示波器三、预习要求1、计算表1中的V o和A f。
2、估算表3、表4、表5中的理论值。
3、计算表6、表7中的V o值。
四、实验内容1、电压跟随电路实验电路如图1所示。
按表1内容进行实验测量并记录。
图1:电压跟随电路图2:反相比例放大电路表1:电压跟随电路 直流输入电压 V i (V ) −2 −0.5 0 +0.5 1 输出电压V o (V )R L =∞R L =5.1k Ω2、反相比例放大器 实验电路如图2所示。
⑴、按表2内容进行实验测量并记录。
表2:反相比例放大电路⑴ 直流输入电压 V i (mV )30 100 300 1000 3000 输出电压 V o (mV )理论估算实际值 误差⑵、按表3要求进行实验测量并记录。
表3:反相比例放大电路⑵测试条件被测量 理论估算值实测值R L =∞,直流输入信号V i 从0变为800mV ΔV oΔV AA ΔV R1 ΔV R2V i =800mV ,R L 从开路变为5.1k ΩΔV OL⑶*、测量图2电路的上限截止频率f H 。
3、同相比例放大电路 实验电路如图3所示。
⑴、按表4和表5内容进行实验测量并记录。
图3:同相比例放大电路表4:同相比例放大电路⑴ 直流输入电压V i (mV ) 30 100 300 1000 3000 输出电压 V o (mV )理论估算实际值 误差表5:同相比例放大电路⑵测试条件被测量 理论估算值实测值R L =∞,直流输入信号V i 从0变为800mV ΔV oΔV AA ΔV R1 ΔV R2V i =800mV ,R L 从开路变为5.1k ΩΔV OL⑵*、测出图3所示电路的上限截止频率f H 。
4、反相求和放大电路实验电路如图4所示。
电子技术实验课件-比例求和运算电路

比例求和运算电路的应用与展望
应用领域
比例求和运算电路在模拟电路、控制系统、信号处理等领域有广泛应用。例如, 在自动控制系统中的调节器、执行器等部件中,比例求和运算电路用于实现比 例、积分和微分控制。
发展趋势
随着电子技术的不断发展,比例求和运算电路将朝着更高精度、更小体积、更 低功耗的方向发展。未来,比例求和运算电路将更加集成化、智能化,能够实 现更复杂的功能和控制。
验证比例求和运算电路的输出结果
学生将通过对比实际测量结果与理论计算结果,来验证比例求和运算电路的功能 是否正确实现。这将帮助他们发现并纠正实验中的错误,提高他们的实验技能和 理论水平。
02
实验设备
电源
01
02
03
电源类型
提供稳定的直流电源,通 常采用线性电源或开关电 源。
电源电压
根据电路需求选择适当的 电源电压,如±5V、 ±12V等。
电源容量
根据电路的电流消耗选择 合适的电源容量,以确保 电源的稳定性和可靠性。
电阻器
电阻类型
根据需要选择不同类型的 电阻,如碳膜电阻、金属 膜电阻等。
电阻值
根据电路需求选择适当的 电阻值,以满足比例求和 运算电路的阻抗匹配和信 号处理要求。
功率
根据电路的电流消耗选择 适当的电阻功率,以确保 电阻的可靠性和稳定性。
分析输出信号与输入信号之间的 关系,理解比例求和运算电路的
工作原理。
分析实验结果并验证理论
根据实验数据和观察结果,分析比例 求和运算电路的性能指标。
总结实验结论,指出实验中存在的问 题和改进方向。
将实验结果与理论值进行比较,验证 理论的正确性。
04
实验结果与讨论
实验数据记录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
同相比例放大电路
RF
实验电路如图6.3所示 C 按表6.4 6.5内容实验并测量记录
R1
100K
10K A
A1
Vo
测量图6.3电路的上限截止频率Leabharlann ViB R2 10KB
直流输入电压Vi(mV) 30
输出电 理论估算
压Vo
实际值
误差
A
100
Title
Size B
Date: File: 1
300 1000 3000
Num be r
Revision
5-May-2 003
Sheet of
C:\PROG RAM FILES\DE SIGN EXPLOR ER 99 SE\EXAM PLDErSa\wMnyBDeys:ig n.ddb
2
3
2020/7/10
1
反相2 求和放大3 电路 4
实验电路如图6.4所示
D
D
按表6.6内容进行实验测量,并与预习计算比较。
2
3
4
双端输入求和放大电路
实验电路如图6.5所示 按表6.7内容进行实验测量
Vi1(V)
1
2
0.2
Vi2(V)
0.5
1.8
-0.2
VO(V)
2020/7/10
实验报告
总结本实验中5种运算电路的特点及性能。 分析理论计算与实验结果误差的原因。
2020/7/10
比例求和运算电路
实验目的 掌握用集成运算放大电路组成比例、求和电路的特点及性能。 学会上述电路的测试和分析方法。
实验仪器 数字万用表 示波器 信号发生器
预习要求 计算表6.1中的Vo和Af 估算表6.3的理论值 估算表6.4、表6.5中的理论值 计算表6.6中的Vo值 计算表6.7中的Vo值
2020/7/10
R2
RF
10K
100K
Vi1
C
R1 10K
C
Vi2
A1
Vo
R3 10K
B
B
Vi1(V) Vi2A (V) VO(V) 1
2020/7/10
Title
0.3
Size
Num be r
-0.3 Revision
0.2 B
Date:
5-May-2 003
0.2 Sheet of
A
File:
C:\PROG RAM FILES\DE SIGN EXPLOR ER 99 SE\EXAM PLDErSa\wMnyBDeys:ig n.ddb