实验三存储管理实验
存储管理实验报告

存储管理实验报告存储管理实验报告引言:存储管理是计算机系统中非常重要的一部分,它负责管理计算机系统中的存储资源,包括内存和外存。
合理的存储管理能够提高计算机系统的性能和效率,保证系统的稳定运行。
本次实验旨在通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。
一、实验目的本次实验的主要目的是通过实践操作,深入了解存储管理的原理和方法,并通过实验结果分析,探讨存储管理的优化策略。
具体目标如下:1. 了解存储管理的基本概念和原理;2. 掌握存储管理的常用方法和技术;3. 分析实验结果,探讨存储管理的优化策略。
二、实验环境本次实验使用了一台配置较高的计算机,具备较大的内存和高速的硬盘。
实验环境如下:1. 操作系统:Windows 10;2. 内存:16GB;3. 硬盘:1TB。
三、实验过程1. 内存管理实验在内存管理实验中,我们使用了一段较大的程序代码进行测试。
首先,我们通过编程语言将程序代码写入内存中,然后通过内存管理技术将程序代码加载到内存的合适位置。
在加载过程中,我们使用了分页和分段两种常用的内存管理技术,并比较了它们的性能差异。
实验结果显示,分页技术相对来说更加高效,能够更好地利用内存资源,提高系统的运行速度。
2. 外存管理实验在外存管理实验中,我们模拟了大文件的读写操作。
首先,我们将一个较大的文件写入硬盘中,然后通过外存管理技术将文件加载到内存中进行读取。
在加载过程中,我们使用了磁盘调度算法和文件系统管理技术,并比较了它们的性能差异。
实验结果显示,磁盘调度算法的选择对系统的读写速度有较大的影响,而文件系统的合理管理能够提高文件的存取效率。
四、实验结果分析通过对实验结果的分析,我们可以得出以下结论:1. 内存管理中,分页技术相对于分段技术更加高效,能够更好地利用内存资源,提高系统的运行速度;2. 外存管理中,磁盘调度算法的选择对系统的读写速度有较大的影响,合理选择磁盘调度算法能够提高系统的性能;3. 文件系统的合理管理能够提高文件的存取效率,减少文件的碎片化,提高系统的整体性能。
存储管理 实验报告

存储管理实验报告存储管理实验报告一、引言存储管理是计算机系统中一个非常重要的组成部分,它负责管理计算机内存的分配、回收和保护。
本次实验旨在通过实际操作,深入理解存储管理的原理和技术,并探索不同的存储管理策略对系统性能的影响。
二、实验目的1. 理解存储管理的基本概念和原理;2. 掌握常见的存储管理算法和策略;3. 分析不同存储管理策略对系统性能的影响。
三、实验环境本次实验使用了一台配置较低的个人电脑,操作系统为Windows 10,内存容量为4GB。
四、实验内容1. 静态分区分配算法静态分区分配算法是最简单的存储管理算法之一。
在实验中,我们使用了最先适应算法(First Fit)和最佳适应算法(Best Fit)进行静态分区分配。
通过对比两种算法的分配效果,我们发现最佳适应算法在减少内存碎片方面表现更好。
2. 动态分区分配算法动态分区分配算法是一种更加灵活的存储管理策略。
在实验中,我们实现了首次适应算法(First Fit)和最佳适应算法(Best Fit)两种动态分区分配算法。
通过观察不同算法的分配效果,我们发现首次适应算法在处理大量小内存块时效率较高,而最佳适应算法在处理大内存块时表现更好。
3. 页面置换算法页面置换算法是虚拟内存管理中的重要组成部分。
在实验中,我们实现了最近最少使用(LRU)算法和先进先出(FIFO)算法两种页面置换算法。
通过模拟内存不足的情况,我们观察了不同算法对系统性能的影响。
结果显示,LRU算法在减少页面置换次数方面比FIFO算法更为优秀。
五、实验结果与分析通过本次实验,我们对不同的存储管理算法和策略进行了实际操作,并观察了它们对系统性能的影响。
实验结果显示,最佳适应算法在静态分区分配中表现更好,而首次适应算法在动态分区分配中效率更高。
在页面置换算法中,LRU 算法在减少页面置换次数方面更为出色。
六、实验总结本次实验通过实际操作,深入理解了存储管理的原理和技术,并探索了不同的存储管理策略对系统性能的影响。
存储管理实验报告

int m=0;//已分配作业数
int flag;//分配成功标志
int isup,isdow n; //回收区域存在上邻和下邻的标志
int is=0;
struct jcb {
char n ame[10];
char state;
int ntime; //所需时间
给作业占用;另一部分又成为一个较小的空闲区,留在空闲区表中。 为了尽量减少由于
分割造成的空闲区,尽可能分配低地址部分的空闲区,而尽量保存高地址部分有较大的
连续空闲区域,以利于大型作业的装入。 为此,在空闲区说明表中,把每个空闲区按其 地址顺序从低到高登记, 即每个后继的空闲区其起始地址总是比前者大。为了方便查找
为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表
长度——指出从起始地址开始的一个连续空闲的长度。
状态一一有两种状态,一种是 “未分配”状态,指出对应的由起址指出的某个长度的 区域是空闲区;另一种是 “空表目”状态, 表示表中对应的登记项目是空白(无效) 可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个
{
JCB *first;
if(ready==NULL) ready=p;
else{
first=ready;
while(first->li nk!=NULL)
first=first->li nk;
first->li nk=p;
p->li nk=NULL;
}
}
void sort3()/*建立对已分配作业队列的排列函数,直接插在队列之尾*/
实验三、存储管理
存储管理实训报告

一、实训目的1. 通过本次实训,加深对存储管理方案的理解,掌握虚拟存储器的管理方式,熟悉虚存管理的各种页面淘汰算法。
2. 通过编写和调试地址转换过程的模拟程序,加强对地址转换过程的理解。
3. 培养编程能力和问题解决能力,提高实际操作水平。
二、实训环境1. 操作系统:Windows 102. 编程语言:C++3. 开发环境:Visual Studio 20194. 硬件配置:CPU:Intel Core i5,内存:8GB,硬盘:256GB SSD三、实训原理1. 虚拟存储器:虚拟存储器是一种将内存与外存相结合的存储管理技术,可以扩大程序可访问的存储空间。
2. 页面置换算法:页面置换算法是虚拟存储器中的一种内存管理技术,用于确定在内存中保留哪些页面,淘汰哪些页面。
3. 地址转换过程:地址转换过程是将逻辑地址转换为物理地址的过程。
四、实训内容1. 设计一个请求页式存储管理方案,并编写模拟程序实现。
2. 产生一个需要访问的指令地址流,其中50%的指令是顺序执行的,25%的指令均匀地散布在前地址部分,25%的地址是均匀地散布在后地址部分。
3. 指定内存页表的最大长度,并对页表进行初始化。
4. 每访问一个地址时,计算该地址所在的页的页号,然后查页表,判断该页是否在主存。
5. 如果该页已在主存,则打印页表情况;如果该页不在主存,则采用FIFO页面淘汰算法淘汰一页,并将该页在页表中抹去。
6. 编写代码实现上述功能,并进行测试。
五、实训过程1. 确定虚拟存储器的大小、内存大小、页面大小和页面置换算法。
2. 设计数据结构存储页面信息,包括页号、是否在内存中、是否被修改等。
3. 编写函数实现地址转换过程,包括计算页号、判断页是否在内存中等。
4. 编写FIFO页面淘汰算法,淘汰不在内存中的页面。
5. 编写测试程序,生成指令地址流,并调用相关函数进行测试。
六、实训结果1. 成功实现了请求页式存储管理方案,并编写了相应的模拟程序。
实验三 仓储管理系统规划和分析(完整)

实验三仓储管理系统规划和分析前言随着企业管理信息化的发展,网络及计算机的引入使管理跃上了一个新的发展平台。
管理信息系统已成为企业规范化、信息化、自动化管理系统的一部分,为了适应日趋激烈的市场竞争,企业需要对自身的经营状况有充分的了解,并通过有效的管理不断提高效率。
因此,对仓库的管理也成为提高生产经营效率的一个重要途径。
可见仓库的管理对于企业来说尤为重要,也正是基于这个原因我把毕业设计的方向定在了企业的仓库管理上。
仓库管理系统是一个企业不可缺少的部分,它的内容对于企业的决策者和管理者来说都至关重要,所以仓库管理系统应该能够为用户提供充足的信息和快捷的查询手段。
但一直以来人们使用传统人工的方式管理产品,这种管理方式存在着许多缺点,如:效率低、保密性差等。
另外,由于时间一长,将产生大量的文件和数据,这对于查找、更新和维护产品都带来了不少的困难。
作为计算机应用的一部分,使用计算机对仓库信息进行管理,有着手工管理所无法比拟的优点。
例如:检索迅速、查找方便、可靠性高、存储量大、保密性好、寿命长、成本低等。
这些优点能够极大地提高仓库管理的效率。
由于时间紧迫,加之水平有限,设计中的缺点和不足之处在所难免,敬请导师批评指正,不胜感激。
1.1仓库管理系统研究背景与意义随着我国经济的飞速发展,各种类型规模的公司企业迅速崛起,许多从事生产和经营管理的企业都有自己生产和销售的产品,而这些产品都需要储存在仓库中,对于每个企业来说,随着企业规模的不断扩大,产品数量的急剧增加,所生产产品的种类也会不断地更新与发展,有关产品的各种信息量也会成倍增长。
面对庞大的产品信息量,如何有效地管理仓库产品,对这些企业来说是非常重要的,仓库管理的重点是销售信息能否及时反馈,从而确保企业运行效益。
而仓库管理又涉及入库、出库的产品、经办人员及客户等方方面面的因素,如何管理这些信息数据,是一项复杂的系统工程,充分考验着仓库管理员的工作能力,工作量的繁重是可想而知的,所以这就需要由仓库管理系统来提高仓库管理工作的效率,这对信息的规范管理、科学统计和快速查询,减少管理方面的工作量,同时对于调动广大员工的工作积极性,提高企业的生产效率,都具有十分重要的现实意义。
实验三 存储管理实验

实验三存储管理实验一. 目的要求:1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。
熟悉虚存管理的各种页面淘汰算法。
2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
二 . 例题设计一个请求页式存储管理方案。
并编写模拟程序实现之。
产生一个需要访问的指令地址流。
它是一系列需要访问的指令的地址。
为不失一般性,你可以适当地(用人工指定地方法或用随机数产生器)生成这个序列,使得 50%的指令是顺序执行的。
25%的指令均匀地散布在前地址部分,25%的地址是均匀地散布在后地址部分。
为简单起见。
页面淘汰算法采用 FIFO页面淘汰算法,并且在淘汰一页时,只将该页在页表中抹去。
而不再判断它是否被改写过,也不将它写回到辅存。
具体的做法可以是:产生一个需要访问的指令地址流;指令合适的页面尺寸(例如以 1K或2K为1页);指定内存页表的最大长度,并对页表进行初始化;每访问一个地址时,首先要计算该地址所在的页的页号,然后查页表,判断该页是否在主存——如果该页已在主存,则打印页表情况;如果该页不在主存且页表未满,则调入一页并打印页表情况;如果该页不足主存且页表已满,则按FIFO页面淘汰算法淘汰一页后调入所需的页,打印页表情况;逐个地址访问,直到所有地址访问完毕。
存储管理算法的流程图如下:三 . 实验题:1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
可以假定每个作业都是批处理作业,并且不允许动态申请内存。
为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。
测试结果:注:(代码见工程task1)2、设计一个可变式分区分配的存储管理方案。
并模拟实现分区的分配和回收过程。
对分区的管理法可以是下面三种算法之一:首次适应算法循环首次适应算法最佳适应算法测试结果:注:(代码见工程task2)3、编写并调试一个段页式存储管理的地址转换的模拟程序。
存储管理实验报告

存储管理实验报告一、实验目的1.了解存储管理的概念及作用;2.掌握存储管理的基本操作和技术;3.熟悉常见的存储管理工具和方法;4.分析存储管理对系统性能的影响。
二、实验内容1.了解存储管理的基本概念:存储管理是指对计算机中的存储器进行有效管理和利用的一种技术手段。
主要包括内存管理和外存管理两个方面。
2.学习常见的存储管理工具和方法:(1)内存管理方案:连续内存管理、非连续内存管理和虚存管理;(2)外存管理方案:磁盘存储管理、文件系统管理和缓存管理等。
3.实际操作存储管理工具:(1)使用操作系统的内存管理工具,如Windows的任务管理器和Linux的top命令等,查看内存使用情况和进程占用的内存大小;(2)使用磁盘管理工具,如Windows的磁盘管理器和Linux的fdisk命令等,查看磁盘的分区情况和使用状况;(3)使用文件系统管理工具,如Windows的资源管理器和Linux的ls命令等,查看文件和目录的存储和管理状态。
4.分析存储管理对系统性能的影响:(1)使用性能监控工具,如Windows的性能监视器和Linux的sar 命令等,实时监测系统的内存、磁盘和文件系统等性能指标;(2)对比不同存储管理方案的优缺点,分析其对系统性能的影响;(3)根据实验结果提出优化存储管理的建议。
三、实验步骤1.阅读相关文献和资料,了解存储管理的基本概念和原理;2.使用操作系统的内存管理工具,查看当前系统内存的使用情况;3.使用操作系统的磁盘管理工具,查看当前系统磁盘的分区情况;4.使用操作系统的文件系统管理工具,查看当前系统文件和目录的存储和管理状态;5.使用性能监控工具,实时监测系统的内存、磁盘和文件系统等性能指标;6.根据实验结果,分析存储管理对系统性能的影响;7.结合实验结果,提出优化存储管理的建议。
四、实验结果1.使用内存管理工具查看系统内存使用情况,发现部分进程占用内存过高,导致系统运行缓慢;2.使用磁盘管理工具查看系统磁盘分区情况,发现磁盘分区不合理,造成磁盘空间利用率较低;3.使用文件系统管理工具查看文件和目录的存储和管理状态,发现有大量重复和冗余的文件,需要进行清理和整理;4.使用性能监控工具实时监测系统的性能指标,发现内存和磁盘的利用率较高,需要优化存储管理。
计算机操作系统实验三存储器管理

计算机操作系统实验三存储器管理引言存储器管理是计算机操作系统中非常重要的一部分。
它负责管理计算机中的存储器资源,以便有效地分配和管理内存。
在操作系统的设计和实现中,存储器管理的性能和效率对整个系统的稳定性和性能有着重要的影响。
本文档将介绍计算机操作系统实验三中的存储器管理的实验内容及相关的知识点。
我们将从内存分区管理、页式存储管理和段式存储管理三个方面进行讨论。
内存分区管理内存分区管理是一种常见的存储器管理方法,旨在将物理内存分成若干个不同大小的区域,以便为不同的进程分配内存。
在实验三中,我们将学习和实现两种内存分区管理算法:首次适应算法和最佳适应算法。
首次适应算法是一种简单直观的算法,它从内存的起始位置开始查找第一个满足要求的空闲分区。
而最佳适应算法则是通过遍历整个内存空间,选择最合适的空闲分区来满足进程的内存需求。
通过实验,我们将学习如何实现这两种算法,并通过比较它们的性能和效果来深入理解内存分区管理的原理和实现。
页式存储管理页式存储管理是一种将物理内存分成固定大小的页框(page frame)和逻辑地址分成固定大小的页面(page)的管理方法。
在操作系统中,虚拟内存通过将进程的地址空间划分成大小相等的页面,并与物理内存中的页框相对应,实现了大容量的存储管理和地址空间共享。
在实验三中,我们将学习和实现页式存储管理的基本原理和算法。
我们将了解页表的结构和作用,以及如何通过页表将逻辑地址转换为物理地址。
此外,我们还将学习页面置换算法,用于处理内存不足时的页面置换问题。
段式存储管理段式存储管理是一种将逻辑地址分成不同大小的段并与物理内存中的段相对应的管理方法。
在操作系统的设计中,段式存储管理可以提供更灵活的地址空间管理和内存分配。
实验三将介绍段式存储管理的基本原理和实现方法。
我们将学习段表的结构和作用,以及如何通过段表将逻辑地址转换为物理地址。
同时,我们还将探讨段的分配和释放过程,并学习如何处理外部碎片的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验三存储管理实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】实验三存储管理实验一. 目的要求:1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。
熟悉虚存管理的各种页面淘汰算法。
2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。
二.实验内容:1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。
可以假定每个作业都是批处理作业,并且不允许动态申请内存。
为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。
算法描述:本算法将内存的用户区分成大小相等的四个的分区,设一张分区说明表用来记录分区,其中分区的表项有分区的大小、起始地址和分区的状态,当系统为某个作业分配主存空间时,根据所需要的内存容量,在分区表中找到一个足够大的空闲分区分配给它,然后将此作业装入内存。
如果找不到足够大的空闲分区,则这个作业暂时无法分配内存空间,系统将调度另一个作业。
当一个作业运行结束时,系统将回收改作业所占据的分区并将该分区改为空闲。
算法原程序#include ""#include ""#include <>#include <>#define PCB_NUM 5 行程序.");printf("\n\t\t\t0.退出程序.");scanf("%d",&m);switch(m){case1:break;case0:system("cls");menu();break;default:system("cls");break;}}void paixu(struct MemInf* ComMem,int n){int i,j,t;for(j=0; j<n-1; j++)for(i=0; i<n-j-1; i++)if(ComMem[i].size>ComMem[i+1].size){t=ComMem[i].size;ComMem[i].size=ComMem[i+1].size;ComMem[i+1].size=t;}}void paixu2(){int i,j,t;for(j=0; j<4; j++)for(i=0; i<4-j; i++)if(pcbList[i].size>pcbList[i+1].size){t=pcbList[i].size;pcbList[i].size=pcbList[i+1].size; pcbList[i+1].size=t;}}void main(){DD:menu();char ch;int i,j,n,a=0;struct MemInf* ComMem;system("cls");printf("你要分多少个分区呢,请输入数值吧:");scanf("%d",&n);ComMem=(struct MemInf*)malloc(n*sizeof(struct MemInf));printf("请划分内存固定大小分区:\n");ize);if(i==0) ComMem[i].addr=40;ddr=ComMem[i-1].addr+ComMem[i-1].size;tate=0;ize+a;if(a>=INT){printf("超出规定内存范围");ch=getchar();ch=getchar();goto DD;}}paixu(ComMem,n);cbID =1;pcbList[0].RunState =0; ize=30;pcbList[0].RunTime =0;pcbList[0].TolTime =5;pcbList[1].pcbID =2;pcbList[1].RunState =0;pcbList[1].size=15;pcbList[1].RunTime =0;pcbList[1].TolTime =6;pcbList[2].pcbID =3;pcbList[2].RunState =0;pcbList[2].size=50;pcbList[2].RunTime =0;pcbList[2].TolTime =3;pcbList[3].pcbID =4;pcbList[3].RunState =0;pcbList[3].size=120;pcbList[3].RunTime =0;pcbList[3].TolTime =4;pcbList[4].pcbID =5;pcbList[4].RunState =0;pcbList[4].size=125;pcbList[4].RunTime =0;pcbList[4].TolTime =9;ch=getchar();ch=getchar();while(pcbList[PCB_NUM-1].RunTime < pcbList[PCB_NUM-1].TolTime){{for(j=0; j<PCB_NUM; j++){tate ==0&& pcbList[j].RunState==0) ize >= pcbList[j].size) tate =pcbList[j].pcbID ;pcbList[j].RunState=1;}}unTime >=pcbList[j].TolTime) tate == pcbList[j].pcbID){ComMem[i].state =0; unState=2; unState==1&& pcbList[i].RunTime < pcbList[i].TolTime) unTime++;cbID,pcbList[i].size, pcbList[i].RunState,pcbList[i].TolTime ,pcbList[i].RunTime);printf("分区ID\t 分区大小\t 状态\n");for(i=0; i<n; i++)printf("%d\t %d\t\t %d\n",i,ComMem[i].size ,ComMem[i].state );printf("按回车键继续...\n");getchar(); tart=-1;frees[i].length=0;strcpy(frees[i].tag,"free");occupys[i].start=-1;occupys[i].length=0;strcpy(occupys[i].tag,"");}free_quantity=0;occupy_quantity=0;}void writedata() tart);printf("输入第%d个分区的长度:\n",j);scanf("%d",&frees[i].length);}if((fp=fopen(fname,"wb"))==NULL)printf("错误,文件打不开,请检查文件名\n");for(i=0;i<SIZE;i++)if(fwrite(&frees[i],sizeof(struct node),1,fp)!=1)printf("文件写入错误!\n");fclose(fp);}void readdata() tart<=frees[t].start)t=j;}frees[free_quantity].start=frees[i].start;frees[free_quantity].length=frees[i].length;frees[i].start=frees[t].start;frees[i].length=frees[t].length;frees[t].start=frees[free_quantity].start;frees[t].length=frees[free_quantity].length;}}void view() tart,frees[i].length,frees[i].tag);printf("\n\n已分配分区表显示如下:\n");printf("起始地址\t长度\t占用作业名\n");for(j=0;j<occupy_quantity;j++)printf("%6dk\t%10dk\t%s\t\n",occupys[j].start,occupys[j].length,occupys[j].t ag);getchar();getchar();}void earliest() ength>=joblength)f=1;}if(f==0){printf("\n当前没有能满足你申请长度的空闲内存,请稍候再试\n");getchar();}else{ ength>=joblength){t=1;}j++;}j--;occupys[occupy_quantity].start=frees[j].start; ag,jobname); occupys[occupy_quantity].length=joblength;occupy_quantity++;if(frees[j].length>joblength){frees[j].start+=joblength;frees[j].length-=joblength;}else{for(i=j;i<free_quantity-1;i++){frees[i].start=frees[i+1].start;frees[i].length=frees[i+1].length;}free_quantity--;}printf("作业申请内存空间成功!\n");getchar();getchar();}}void excellent() ength>=joblength)f=1;}if(f==0){printf("\n当前没有能满足你申请长度的空闲内存,请稍候再试\n");getchar();}else ength>=joblength){t=1;}j++;}j--;for(i=0;i<free_quantity;i++){if(frees[i].length>=joblength&&frees[i].length<frees[j].length) j=i;}occupys[occupy_quantity].start=frees[j].start; ag,jobname);occupys[occupy_quantity].length=joblength;occupy_quantity++;if(frees[j].length>joblength){frees[j].start+=joblength;frees[j].length-=joblength;}else{for(i=j;i<free_quantity-1;i++){frees[i].start=frees[i+1].start;frees[i].length=frees[i+1].length;}free_quantity--;}printf("作业申请内存空间成功!\n");getchar();getchar();}}void worst(){char jobname[20];int joblength,f=0;int i,j;printf("请输入作业名:\n");scanf("%s",&jobname);printf("输入作业的长度:\n");scanf("%d",&joblength);for(i=0;i<free_quantity;i++){if(frees[i].length>=joblength)f=1;}if(f==0){printf("\n当前没有能满足你申请长度的空闲内存,请稍候再试\n");getchar();getchar();}else ength>=joblength){t=1;}j++;}j--;for(i=0;i<free_quantity;i++){if(frees[i].length>=joblength&&frees[i].length>frees[j].length) j=i;}occupys[occupy_quantity].start=frees[j].start; ag,jobname);occupys[occupy_quantity].length=joblength;occupy_quantity++;if(frees[j].length>joblength){frees[j].start+=joblength;frees[j].length-=joblength;}else{for(i=j;i<free_quantity-1;i++){frees[i].start=frees[i+1].start;frees[i].length=frees[i+1].length;}free_quantity--;}printf("作业申请内存空间成功!\n");getchar();getchar();}}void main(){initial();int n;writedata();system("cls");readdata();for(;;){sort();printf("************************************\n"); printf("************************************\n"); printf("** 欢迎使用可变分区存储管理系统 **\n");printf("************************************\n"); printf("** 1.显示空闲表和分配表 **\n");printf("** 2.首次适应算法 **\n");printf("** 3.最佳适应算法 **\n");printf("** 4.最坏适应算法 **\n");printf("** 0.退出系统 **\n"); printf("************************************\n"); printf("************************************\n"); printf("请输入您要选择的项目:\n");scanf("%d",&n);for(;;){if(n<0||n>4){printf("没有这个选项,请重新输入!");scanf("%d",&n);}elsebreak;}switch(n){case0:printf("感谢您的使用!再见!\n");exit(0);case1:view();break;case2:earliest();break;case3:excellent();break;case4:worst();break;}system("cls");}}测试结果:使用首次适应算法的结果:使用最佳适应算法:使用最坏适应算法:内存过满:3、编写并调试一个段页式存储管理的地址转换的模拟程序。