第六章风速、风道及风口设计(第二版)

合集下载

风速的控制

风速的控制

中央空调系统风道风速和风口的选择作者:admin 来源:本站原创时间:2011-01-04 浏览次数:1072 【大中小】【复制】【打印】1、风管内的风速一般空调房间对空调系统的限定的噪音允许值控制在40~50dB(A)之间,即相应NR(或NC)数为35~45dB(A)。

根据设计规范,满足这一范围内噪音允许值的主管风速为4~7m/s,支管风速为2~3m/s。

通风机与消声装置之间的风管,其风速可采用8~10m/s。

2、出风口尺寸的计算为防止风口噪音,送风口的出风风速宜采用2~5m/s。

风口的尺寸计算与风管道尺寸的计算基本相同,一般当层高在3~4米的房间大约取风速在2~2.5米每秒。

根据经验一般可将使每个风口在20~25平方米的面积,其风量大约在500立方米左右。

3、回风口的吸风速度回风口位于房间上部时,吸风速度取4~5m/s,回风口位于房间下部时,若不靠近人员经常停留的地点,取3~4m/s ,若靠近人员经常停留的地点,取1.5~2m/s ,若用于走廊回风时,取1~1.5m/s 。

4、风管安装注意事项及风管计算在风管设计尽量小的情况下保证主管风速5m/s,支管风速3m/s,风管计算公式:所选设备风量÷3600÷风速=风管截面积同时注意保证风管:长边÷短边≤4 一般不要>4 特殊情况特殊对待。

风口的选择:所选房间风量÷3600÷风速=散流器喉部截面积注意:双百叶风口截面积为以上公式所得面积÷0.75、计算风管尺寸1)等阻尼法(等压法)是一种方便的计算法,适用于多种场合。

2)根据下表确定主风管中的基本阻尼系数。

因回风管位于吸风部位,主要承受外部压力,应注意减轻其风管负担。

对于风管系统,常采用送风管0.08-0.15mmH2O/m,回风管0.06-0.1 mmH2O/m作为基准。

6、在进行风管机的风管道设计时,注意在风管机的进、出风处加静压箱,以均衡风压,减少噪音,并且使静压箱内的流速保证在3米每秒以下,其长度可根据实际情况来定。

暖通规范中关于各类常见风管风速、风口风速、水管流速的规定

暖通规范中关于各类常见风管风速、风口风速、水管流速的规定

暖通规范中关于各类常见风速的规定一、各类风口风速规定1、采暖风口1.1、采用热风采暖系统时,应遵守下列规定:送风口的送风速度V(m/s),应根据送风口的高度、型式及布置经过计算确定,当送风口位于房间上部时,送风速度宜取:V= 5~15m/s;当送风口位于离地不高处时,送风速度宜取:V =0.3m/s~0.7m/s;回风口的回风速度,宜取:V=0.3m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.71.2、热风幕的送风速度:公共建筑的外门,风速不宜大于6 m/s,高大外门不应大于25m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.152、送排回风口2.1、进风、排风口风速(m/s)注:风口风速应按实际有效面积计算,一般百叶风口的遮挡率取50%。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.1.4.82.2、自然通风系统的进排风口风速宜按下表采用:来源GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.42.3、机械通风的进排风口风速宜按下表采用:来源:GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.52.4、厨房排风系统的风管风速不宜小于8m/s,且不宜大于10m/s;排风罩接风管的喉部风速应取4~5m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.2.102.5、侧送和散流器平送的出口风速采用2m/s~5m/s。

孔板下送风的出口风速,从理论上讲可以采用较高的数值。

因为在一定条件下,出口风速较高时,要求稳压层内的静压也较高,这会使送风较均匀;同时,由于送风速度衰减快,对人员活动区的风速影响较小。

但当稳压层内的静压过高时,会使漏风量增加,并产生一定的噪声。

一般采用3m/s"'_'5m/s 为宜。

中央空调系统风道风速和风口的选择讲解

中央空调系统风道风速和风口的选择讲解

中央空调系统风道风速和风口的选择1、风管内的风速一般空调房间对空调系统的限定的噪音允许值控制在40~50dB(A)之间,即相应NR(或NC)数为35~45dB(A)。

根据设计规范,满足这一范围内噪音允许值的主管风速为4~7m/s,支管风速为2~3m/s。

通风机与消声装置之间的风管,其风速可采用8~10m/s。

2、出风口尺寸的计算为防止风口噪音,送风口的出风风速宜采用2~5m/s。

风口的尺寸计算与风管道尺寸的计算基本相同,一般当层高在3~4米的房间大约取风速在2~2.5米每秒。

根据经验一般可将使每个风口在20~25平方米的面积,其风量大约在500立方米左右。

3、回风口的吸风速度回风口位于房间上部时,吸风速度取4~5m/s,回风口位于房间下部时,若不靠近人员经常停留的地点,取3~4m/s ,若靠近人员经常停留的地点,取1.5~2m/s ,若用于走廊回风时,取1~1.5m/s 。

4、风管安装注意事项及风管计算❖在风管设计尽量小的情况下保证主管风速5m/s,支管风速3m/s,❖风管计算公式:所选设备风量÷3600÷风速=风管截面积❖同时注意保证风管:长边÷短边≤4 一般不要>4 特殊情况特殊对待。

❖风口的选择:所选房间风量÷3600÷风速=散流器喉部截面积❖注意:双百叶风口截面积为以上公式所得面积÷0.75、计算风管尺寸1)等阻尼法(等压法)是一种方便的计算法,适用于多种场合。

2)根据下表确定主风管中的基本阻尼系数。

因回风管位于吸风部位,主要承受外部压力,应注意减轻其风管负担。

对于风管系统,常采用送风管0.08-0.15mmH2O/m,回风管0.06-0.1 mmH2O/m作为基准。

6、在进行风管机的风管道设计时,注意在风管机的进、出风处加静压箱,以均衡风压,减少噪音,并且使静压箱内的流速保证在3米每秒以下,其长度可根据实际情况来定。

7、风压估算❖如弯头、三通、变径等较少的情况下每米损失4pa左右。

6第六章 通风与气流组织

6第六章 通风与气流组织

第六章通风与气流组织在本书的第三、四和五章中已经分别介绍了热湿环境和室内空气品质,而合理的气流组织是实现室内热湿环境和保证空气品质的最终环节。

通风空调系统通过送风口(机械通风)或建筑的开口(自然通风)将满足要求的空气送入建筑中,形成合理的气流组织,从而实现所需要的热湿环境和空气品质。

一般来说,狭义的气流组织指的是上(下、侧、中)送上(下、侧、中)回或置换送风、个性化送风等具体的送回风形式,也称气流组织形式;而广义的室内气流组织,是指一定的送风口形式和送风参数所带来的室内气流分布(Air Distribution)。

其中,送风口的形式包括风口(送风口、回风口、排风口)的位置、形状、尺寸,送风参数包括送风的风量、风速的大小和方向以及风温、湿度、污染物浓度等。

本章所讨论的内容即为这种广义的气流组织。

本章将着重介绍气流组织与室内空气环境的关系,包括常见的气流组织形式、气流组织的描述方法和评价指标、气流组织的测量与计算方法以及典型的气流组织示例等。

第一节通风(空调)的目的与方法1.1 通风(空调)的目的所谓通风,是指把建筑物室内污浊的空气直接或净化后排至室外,再把新鲜的空气补充进来,从而保持室内的空气环境符合卫生标准。

空调和通风有类似的作用,没有严格的区分,但是一般来说,空调还要考虑到控制房间的热环境,因此送风要经过较为复杂的处理过程,空调对效果的要求也更为严格。

建筑内部的空调通风条件是决定生活在建筑内部的人们健康、舒适的重要因素。

通风(或空调)的目的主要有以下几个方面:一、保证排除室内污染物。

室内空气污染物的来源多种多样。

有从室外带入的污染物:工业燃烧和汽车尾气排放的NO2、SO2、臭氧等;有室内产生的污染物:室内装饰材料散发的挥发性有机化合物、人体新陈代谢产生的CO2、家用电器产生的臭氧,以及厨房油烟等其它污染物。

室内污染物源可以散发到空间各处,在室内形成一定的污染物分布。

大量的污染物在空间存在,会对人体健康存在不利影响,而对房间进行通风则可以带走室内的污染物。

暖通规范中关于各类常见风管风速、风口风速、水管流速的规定

暖通规范中关于各类常见风管风速、风口风速、水管流速的规定

暖通规范中关于各类常见风速的规定一、各类风口风速规定1、采暖风口1.1、采用热风采暖系统时,应遵守下列规定:送风口的送风速度V(m/s),应根据送风口的高度、型式及布置经过计算确定,当送风口位于房间上部时,送风速度宜取:V= 5~15m/s;当送风口位于离地不高处时,送风速度宜取:V =0.3m/s~0.7m/s;回风口的回风速度,宜取:V=0.3m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.71.2、热风幕的送风速度:公共建筑的外门,风速不宜大于6 m/s,高大外门不应大于25m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)2.8.152、送排回风口2.1、进风、排风口风速(m/s)注:风口风速应按实际有效面积计算,一般百叶风口的遮挡率取50%。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.1.4.82.2、自然通风系统的进排风口风速宜按下表采用:来源GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.42.3、机械通风的进排风口风速宜按下表采用:来源:GB50736-2012《民用建筑供暖通风与空气调节设计规范》6.6.52.4、厨房排风系统的风管风速不宜小于8m/s,且不宜大于10m/s;排风罩接风管的喉部风速应取4~5m/s。

来源:《全国民用建筑工程设计技术措施/暖通空调·动力》(2009年版)4.2.102.5、侧送和散流器平送的出口风速采用2m/s~5m/s。

孔板下送风的出口风速,从理论上讲可以采用较高的数值。

因为在一定条件下,出口风速较高时,要求稳压层内的静压也较高,这会使送风较均匀;同时,由于送风速度衰减快,对人员活动区的风速影响较小。

但当稳压层内的静压过高时,会使漏风量增加,并产生一定的噪声。

一般采用3m/s"'_'5m/s 为宜。

(完整版)第六章风速、风道及风口设计(第二版)

(完整版)第六章风速、风道及风口设计(第二版)

第六章风速风道及风口设计6.1 风速6.1.1风速大小的确定风速指通风管道内空气流动的速度。

一般空调系统的风速在14m/s以下(低速风道)。

低速空调系统的风速因处于通风系统的不同位置而不同,可参照表6-1。

若已知空调房间的送风量和风管的尺寸,即可用下式求出该风道内的风速。

V=L/(F×3600) (m/s) (6-1)式中,L——风量(m3/h);F——风道截面积(m2)6.1.2风速查表法以下几种风速表有助于设计人员确定风速。

用于各种场所的低速风管系统的流速见表6-2所示。

低速风管系统的最大允许流速见表6-3所示。

以噪声标准控制的允许风速见表6-4所示。

逗留区的送风流速见表6-5所示。

已知建筑条件空调场所及风道情况即可通过查表法求得不同的风速。

表6-2 用于各类场所的低速风管流速(m/s)表6 -3 低速风管系统的最大允许流速(m/s)6.2风道6.2.1风道截面积的确定当空调房间送风量为已知时,确定送风管道截面尺寸的方法有两种:假定风速法和比阻法,假定速度法比较常用,现介绍之。

首先应已知空调送风量(参照前述的方法),然后根据建筑物的空调送风系统查出风速值(假定风道中的风速,再通过下式计算出风道面积。

最后确定风道的管径(圆管直径或矩形管道的边长)。

风道截面积计算公式F=L/(v ×3600) m 2 (6-2)式中 L--风量 m 3/h v--风速 m/sF--风道面积 m 2例如:某空调系统送风量L=7200m 3/h ,属工业空调,现安装一主风管,试确定其风管尺寸。

假定风速,查表6-1可知,工厂空调系统主风道风速推荐值为6~9m/s ,现取8m/s 。

风道面积可计算求F=L/v ×3600=7200/8×3600=0.25 m 2 若采用圆形风管,其直径可由下式计算出πFd 4=m (6-3)式中 π——圆周率 π=3.14F ——风管面积 m 2D=0.56m=560 mm 若采用方形风管,其边长应为 25.0==F A =500 mm若采用矩形风道,管道的长短边尺寸可参考表6-7选用。

通风与空调工程第二版 习题答案1-6章

通风与空调工程第二版 习题答案1-6章

习题和思考题参考答案第一章空气污染物及室内空气品质1.答:病态建筑综合症是指长期生活和工作在现代化建筑物内的人们出现的一些明显病态反应,如眼睛发红、流鼻涕、嗓子痛、头痛、恶心、头晕、困倦嗜睡和皮肤骚痒等。

2.答:民用建筑室内污染物主要有甲醛、苯、甲苯、二甲苯、氨、氡、总挥发性有机物( TVOC)、二氧化碳、一氧化碳、二氧化硫、可吸入颗粒物( PM)等。

3.答:按照污染物的性质可以分为物理性污染、化学性污染和生物性污染。

按照污染物在空气中存在的状态可以分为悬浮颗粒物和气态污染物两大类。

4.答:室内空气污染的来源是多方面的,少部分是来源于室外空气污染,而大部分是由室内装饰、装修材料释放的空气污染物所致。

5.答:甲醛对人体健康的影响主要表现在嗅觉异常、刺激、过敏、肺功能异常、肝功能异常和免疫功能异常等方面。

室内含量为0.5mg·m-3时可刺激眼睛引起流泪;浓度再高可引起恶心、呕吐、咳嗽、胸闷、气喘甚至肺气肿。

长期接触低剂量甲醛可以引起慢性呼吸道疾病、女性月经紊乱、妊娠综合症, 引起胎儿畸形、新生儿体质降低甚至引起鼻咽癌。

6.答:可接受的室内空气品质:空调房间内绝大多数人(80%或更多)没有对室内空气表示不满意,并且空气中没有已知的污染物达到了可能对人体健康产生严重威胁的浓度。

感受到的可接受的室内空气品质:空调房间中绝大多数人没有因为气味或刺激性而表示不满。

7.答:影响室内空气品质的主要因素有:建筑外环境、建筑设计、暖通空调系统、建筑装饰材料及设备、在室人员及其活动等。

8.答:暖通空调系统对室内环境的污染主要表现在以下几个方面:(1)室外新风品质下降,新风过滤不足。

(2)新风处理设备、送风管道潮湿,滋生细菌。

(3)气流组织不合理。

气流组织形式选择不合理主要体现为以下几个方面:1) 送风方式不合理。

2) 排风口或回风口设置不合理。

(4)空调系统运行、维护管理制度不健全,专业技术管理人员相对较少且水平有限。

空调工程中风口风速设计知识

空调工程中风口风速设计知识

空调工程中风口风速设计知识空调工程中的风口风速设计知识是制定空气环境管理、合理使用空调设施的重要保障之一。

在空调系统中,风口的设计和风速的控制是影响空气品质、减少能源消耗的两个重要参数,设计合理的风口和精准的风速控制可以让空调系统得到最佳的运行效果,从而为我们创造一个更加舒适、更加优质的室内空气环境。

一、空调系统中风口的设计原则1.1 单通风口的设计原则在大部分场合下,单通风口被广泛应用于空调系统中。

单通风口的设计原则主要包括以下几点:(1)单通风口的口径不宜过大或过小,一般来说,单通风口的口径应略大于所需的空气流量,以避免噪音过大,降低室内空气品质。

(2)单通风口安装的位置要合理,在房间中部的位置上方,以便室内空气能均匀流动,避免形成死角,堆积灰尘对空气质量的影响。

(3)对于风口吹送的的空气质量要求较高的场所,比如医院、药房等,要采用杀菌过滤技术,确保空气质量符合相关的环境标准。

1.2 多通风口的设计原则当房间面积较大,单通风口的风量无法满足室内空气流通而使用多通风口设计时,需要满足以下几个原则:(1)不同方向的风口风量要匹配,以保证室内空气流通形成完整的空气环境。

(2)多通风口的处理方式要有限,避免口径大、数量多、布局惨淡,采用优质的管道和接口,以保证其完美的连接性和协调性。

(3)多通风口适用于噪音较大、空气流动相对强劲的场所,对于需要保证空气质量的场所,还需要定期检查和维护。

二、空调系统中风速的控制在空调系统中,风速的控制是保证空气流动状况的关键,合理的风速控制可以减少空调设施的能源消耗,提高室内空气环境质量。

空调系统中风速的控制主要涉及以下细节:2.1 防寒保暖在冬季使用空调设施时,要根据不同的房间功能和温度水平,按需将风速设置为合适的参数,确保室内的温度水平符合所需。

对于冷气房间来说,风速要适量减缓,避免寒风直冲。

对于保暖房间来说,风速要稍微加大,增加空气透气性,以便更好地保持房间温暖和舒适。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章风速风道及风口设计6.1 风速6.1.1风速大小的确定风速指通风管道内空气流动的速度。

一般空调系统的风速在14m/s以下(低速风道)。

低速空调系统的风速因处于通风系统的不同位置而不同,可参照表6-1。

V=L/(F×3600) (m/s) (6-1)式中,L——风量(m3/h);F——风道截面积(m2)6.1.2风速查表法以下几种风速表有助于设计人员确定风速。

用于各种场所的低速风管系统的流速见表6-2所示。

低速风管系统的最大允许流速见表6-3所示。

以噪声标准控制的允许风速见表6-4所示。

逗留区的送风流速见表6-5所示。

已知建筑条件空调场所及风道情况即可通过查表法求得不同的风速。

表6-2 用于各类场所的低速风管流速(m/s)6.2风道6.2.1风道截面积的确定当空调房间送风量为已知时,确定送风管道截面尺寸的方法有两种:假定风速法和比阻法,假定速度法比较常用,现介绍之。

首先应已知空调送风量(参照前述的方法),然后根据建筑物的空调送风系统查出风速值(假定风道中的风速,再通过下式计算出风道面积。

最后确定风道的管径(圆管直径或矩形管道的边长)。

风道截面积计算公式F=L/(v ×3600) m 2(6-2)式中 L--风量 m 3/h v--风速 m/sF--风道面积 m 2例如:某空调系统送风量L=7200m 3/h ,属工业空调,现安装一主风管,试确定其风管尺寸。

假定风速,查表6-1可知,工厂空调系统主风道风速推荐值为6~9m/s ,现取8m/s 。

风道面积可计算求F=L/v ×3600=7200/8×3600=0.25 m 2若采用圆形风管,其直径可由下式计算出πFd 4=m (6-3)式中 π——圆周率 π=3.14 F ——风管面积 m 2D=0.56m=560 mm 若采用方形风管,其边长应为 25.0==F A =500 mm若采用矩形风道,管道的长短边尺寸可参考表6-7选用。

表中给出了矩形风道的流量当量直径,由圆管直径可变为矩形边长而维持管中空气的流量(风量)不变。

表中当量直径接近560mm 的有460mm ×580mm,440×600mm 两种规格。

6.2.2低压风管尺寸及材料选用表低压风管尺寸选择见表6-6所示。

当量直径见表6-7所示。

低速风道的结构要求见表6-16 所示。

各类形状风管的钢板厚度见表6-16所示。

圆形风管标准规格见表6-8所示。

矩形风管标准规格见表6-9所示。

非金属玻璃钢风管与配件壁厚见表6-10所示。

玻璃钢风管法兰规格见表6-11所示。

不锈钢板风管和配件板材厚度见表6-12所示。

不锈钢板风管法兰规格见表6-13所示。

铝板风管和配件板材厚度见表6-14所示。

铝板风管法兰规格见表6-15所示。

低速矩形风管数据见表6-16所示。

低速圆形风管数据见表6-17所示。

矩形风量法兰见表6-18所示。

矩形风管加强法兰和连接法兰见表6-19所示。

安装风管用的吊卡和支架见表6-20所示。

风管制作咬口宽度见表6-21所示。

6-6 低压风管尺寸选择表6-8 圆形风管规格表6-16 矩形标准风管规格(a)矩形标准风管规格(b)6.2.3 空调通风管道阻力计算风道系统的计算总阻力包括:沿程损失和局部阻力(摩擦阻力和局部阻力)。

一般在通风系统中用的最多的是等压损法和假定速度法,现以假定速度法为例说明之。

计算前应先绘制出风道系统的轴侧图,然后进行分段编号,表出风道尺寸、风道长度和风量。

然后假定风道内的风速,然后根据公式进行阻力计算。

例1 某一中央空调的风道系统见图6-1所示,管道分段ABCDEFZ 。

对于ZA 段,风量L=18000m 3/h ,风速取8m/s ,可以得到阻力系数R=0.066H 2O/m ,管道面积为0,625m 2若采用圆形风道,则直径为88cm 。

但从吊顶空间尺寸考虑,风道高度要限制在40cm 以内,故从当量直径表可查得与直径88cm 相当的矩形风道尺寸1850×400cm ,其面积为1.850×0.4=0.74m 。

ZA 段的实际风速应为U=18000/0.74×3600=6.76m/s ,再由此风速查有关空调设计手册中的局部阻力表,求局部阻力并决定送风机的静压。

此例中的各段数据见表6-22 所示。

例2 图6-2是中央空调风机盘管的新风系统风道布置,风管为镀锌钢板,每个送风口的风量为0.3m 3/s (1080m 3/h ),空气处理箱的阻力为295Pa ,试确定风机所需的风量、静压及风管尺寸。

风道系统按图中所示的分段并进行编号。

现取图中1-2-3-4-5-6为最不利的环路进行计算。

具体计算方法如下:(1) 假定各管段的风速 (2) 计算出该段的管道截面尺寸 (3) 选出标准风管尺寸(4) 重新按标准风管尺寸,计算出管 内的实际流速(5)进行各管段的阻力计算以1~2段为例说明之:此段有一个送风口,风管内风量为1080m3/h(0.3m/s),现假定管内风速为4m/s,则风管的截面积应为F=1080/4×3600=0.3/4=0.075m2根据管道截面积选取矩形风道尺寸为0.32×0.25m,则风管实际面积为F=0.08m2。

实际风速为U1=0.3/0.08=3.75m/s。

由表6-7可查得当量直径为α=0.309m.根据风量0.3m/s和d=0.309m查图6-3可知比摩阻R=0.65Pa/m。

其他各段用同样方法计算。

管段1~2、2~3、3~4、4~5、5~6及分支管7~3、8~2的风道阻力计算列入表6-23中供参考。

表6-23 阻力计算表(a)局部阻力系数计算表6.2.4 风道的保温空调管道和设备在下列情况下需保温:(1)不保温,冷、热损耗大,且不经济时;(2)由于冷、热损耗大,使管内介质温度达不到要求时;(3)当管道通过室内空气参数要求严格控制的房间,而且由于管道散出的冷、热量使室内参数不易达到规定值时;(4)管道冷表面可能结露时。

保温材料应根据因地制宜,就地取材的原则,选取来源广泛、价格低廉、保温性能好、易于施工、耐用的材料。

常用的保温材料有岩棉板,聚苯乙烯塑料板、铝箔岩棉板等。

保温材料一定要隔热、防潮、体轻、防火。

常用保温材料及技术性能见第七章表7.16所示。

近几年生产厂家推出了一种新型高分子保温材料—高倍率独立气泡聚乙烯塑料(俗称PEF保温材料)。

密度22~34kg/m3,导热系数0.034 W/m·℃。

此材料吸水率极小(0.1%),水蒸气渗透系数为1.34x10-6g/mhPa。

同时,此材料化学稳定性好,可用任何胶类粘贴。

它的阻燃性能也好(氧指数27.5),为难燃性材料,燃烧时不释放有毒物质。

而且,它施工简便,综合工程造价仅为传统保温结构的60%左右。

保温层的厚度因材料不同而异,它们的导热系数一般在0.12 W/m·℃以内,通过保温后风道壁传热系数一般应在1.75 W/m·℃以内。

6.3 风口6.3.1风口的特性及送风量空调房间气流流型主要取决于送风射流,送风口形式对它有直接影响。

回风口的位置对室内气流流型和区域温差的影响较小。

各种不同的空调系统采用不同的风口,常用的风口有百叶风口(单层、双层)、散流器风口(圆形或方、矩形)、孔板送风口、条形风口、喷嘴等五种。

对室温波动范围要求严格的空调大多采用前三种。

不同送风口的特性见表6-24所示。

不同送风方式的送风量和室内平均流速见表6-25所示。

表6-24 不同送风口特性表6-25 不同送风方式的送风量和室内平均流速(m/s)方式,图中(b)为矩形风口的侧吹送形式。

图6-3 风口的形式从建筑物内吊顶(天花板)下送的散流器气流见图6-4所示。

圆形散流器的扩散半径、到达距离、静压损失及噪声NC值见表6-26所示。

表6-26 圆形散流器特性带有调节阀的散流器其气流吹送均匀,而没有调节阀的散流器往往出现偏吹不均匀,图6-4为圆形散流器有无调节阀的不同气流对比,调节阀的作用不仅如此,而且还可以对送风量进行调节,使各风口的送风平衡。

图6-4 散流器的调节阀散流器送风的压力损失:全压损失=动压之差+静压损失。

动压与送风速度有关,可用下式求出23.1⎪⎪⎭⎫⎝⎛=v VP Pa (6-4)式中,V ——风速m/s ;散流器的安装位置不仅影响到气流分布和吹送效果而且还会影响阻力的大小。

图6-5所示为圆形散流器安装在不同位置的情形。

图(a)的管道过长或有弯头使单位静压损失加大。

图(b)为在终端风口前加设一个小静压箱的例子,其管道阻力减小了。

图6-5 阻力损失散流器安装在吊顶上,首次送风因通风管道内不清洁而将风口附近的吊顶污染。

这对于建筑装饰不利。

为防止此类风口污染的发生需采取必要的措施进行处理。

侧送用的风口一般为百叶风口,有单层百叶和双层百叶之分。

风口百叶为活动可调节的,即风量和风向均可调节。

关闭一部分百叶时送风量会相应减少。

百叶可左、右或上下调节,以改变风向。

见图6-6所示还有一种固定百叶风口,可与风量调节阀配合使用,见图6-7所示。

风量调节阀安装在百叶风口的背面。

侧送型风口的特性见表所示。

图6-6 百叶风口(双层可调)图6-7 固定风口与调节阀配合使用表6-27 侧送风口特性侧送风口吹出角度实例见图6-8所示。

此图中的吹出角度A、B、C、D与表6-27中相对应。

侧送气流的水平射程及下落高度见图6-9所示。

侧送风口的送风量取决于送风口面积及送风速度,其风量范围在100~4000m3/h之间。

图6-8 侧送风口的气流角度图6-9 侧送气流图6-10 侧送气流下降回风口是为吸引房间的风回到空调机中而设置的,回风口可以置于吊顶上,侧壁上或门的下部。

回风口有条状格栅、百叶窗形或花格形等。

回风口的材制一般为铝合金和木材。

回风口的推荐面风速为1.0~4.0m/s。

回风口所需全压见表6-287所示。

表6-28 回风口需要全压值(Pa)回风口的位置:可装于侧壁,。

也可装于吊顶下面(如风机盘管风口)、门的下部。

回风口也可兼检查口,在恒温恒湿的电子计算机中回风口与灯具合二为一即使空气循环又富于装饰性。

回风口的风量一般不安装调节阀,如有必要时可安装调节阀门以调节回风量。

百叶窗和回风格栅的推荐速度见表6-29所示。

回风口、新风入口和排风口的最大风量见表6-30所示。

表6-29 百叶窗和回风格栅的推荐流速(m/s)表6-30 回风口新风口和排风口的最大风量(m3/h)6.3.2气流组织由空调送风口,回风口的不同布置可形成不同的气流组织。

图6-11为几种不同的气流组织形式。

气流组织有上送下回、侧送侧回等等形式。

气流组织的计算步骤:侧送:(1)布置风口,选定风口形式。

相关文档
最新文档