2019级数学分析(1)期末复习(大字)9页

合集下载

数学分析知识点总结

数学分析知识点总结

数学分析知识点总结数学分析是数学的一个重要分支,它研究数学对象的极限、连续性和变化率等性质。

在数学分析的学习过程中,我们掌握了许多重要的知识点,下面我将对其中的一些知识点进行总结。

1. 极限与连续在数学分析中,极限是一个非常重要的概念。

我们通常用符号lim来表示一个函数的极限,如lim (x→a) f(x)。

极限可以理解为函数在某一点附近值的稳定性。

如果极限存在且与a点无关,我们就说函数在a点是连续的。

在求极限的过程中,常用的方法有代数运算法、夹逼准则、洛必达法则等。

2. 导数与微分导数是函数在某一点的变化率,也可以理解为函数的斜率。

函数f(x)在点x=a处的导数可以用f'(a)或df/dx(x=a)表示。

导数的计算方法有基本求导法则和高阶导数法则等。

微分是一个近似的概念,它表示函数在某一点附近的线性近似。

微分有利于研究函数的性质和进行近似计算。

3. 积分与微积分基本定理积分是求解曲线下面的面积或曲线长度的运算。

在积分计算中,常用的方法有换元法、分部积分法、定积分的性质等。

微积分基本定理是微积分中的核心理论之一,它将导数与积分联系起来。

基本定理分为牛顿-莱布尼茨公式和柯西中值定理两部分,它们在微积分的理论和应用中都起着重要的作用。

4. 级数与收敛性级数是无穷多项之和,其求和问题是数学分析中的一个重要内容。

级数的收敛性判断是一个关键问题,主要有比较判别法、积分判别法、根值判别法等。

级数的收敛性与和的计算直接关系到级数的应用,如泰勒级数、傅里叶级数等。

5. 无穷极限与无穷小量无穷极限是指当自变量趋于无穷大或无穷小时,函数的趋势和性质。

无穷小量的概念是微积分的基础,它表示比自变量趋于零更小的量。

在求解极限、导数等问题时,无穷小量具有非常重要的应用价值。

6. 参数方程与极坐标参数方程是一种以参数形式给出函数方程的表达方式。

在参数方程中,通常我们会用一个参数来表示自变量和函数值,通过参数的取值范围可以得到函数图形。

2019-2020第一学期数学分析期末考试试题

2019-2020第一学期数学分析期末考试试题

2019-2020本科数学系期末考试试题数学分析(一)(A 卷)本试卷共4道大题,满分100分.一、选择题(本大题10分,每小题2分)1. 设数列{}n x 单调增,{}n y 单调减,且0lim =−∞→n n n x y ,则( A )(A ){}n x 、{}n y 均收敛 (B ){}n x 收敛,{}n y 发散 (C ){}n x 发散,{}n y 收敛 (D ){}n x 、{}n y 均发散2. 设函数)(1)(3x x x f ϕ−=,其中)(x ϕ在1=x 处连续,则0)1(=ϕ是)(x f 在1=x 处可导的( A )(A )充分必要条件 (B )必要但非充分条件(C )充分但非必要条件 (D )既非充分也非必要条件 3. 设0()0f x '=是)(x f 在0x 取得极值的( D )(A )充分条件; (B )必要条件; (C )充要条件; (D )既非充分条件也非必要条件.4. 设()353−=x y ,下述结论正确的是( A )(A )()0,3是曲线)(x f y =的拐点; (B )3=x 是)(x f 的极值点; (C )因为)3(f ''不存在,所以()0,3不是曲线)(x f y =的拐点;(D )当3<x 时,曲线)(x f y =为凹的,当3>x 时,曲线)(x f y =为凸的.5. 设xe e xf xx1arctan 11)(11+−=,则0=x 是)(x f 的( C )(A )连续点 (B )第一类(非可去)间断点 (C )可去间断点 (D )第二类间断点6. 设)(x f y =且21)(0='x f ,则当0>∆x 时,在0x 处dy 是( B ) (A) 与x ∆等价的无穷 (B) 与x ∆同阶但不等价的无穷小; (C) 比x ∆高阶的无穷 (D) 比x ∆低阶的无穷小 二、填空题(本大题10分,每小题2分)1. 若)(0x f '存在,则=−−→000)()(limx x x f x x xf x x 000()()f x x f x '−.2. 曲线21xy xe =的渐近线方程是 0x =.3. 设⎪⎩⎪⎨⎧==te y t e x ttcos 2sin ,则曲线上点(0,1)M 处的法线方程是12=+y x .4. 设x x x f 2sin )(2=,则)2()20(πf = 19202π⋅ .三、计算题(本大题35分,每小题5分)1.(5分)求极限20sin )1()cos 1(limx e x x x x −−→答案与评阅要点:由于 0→x 时,2~cos 12x x − ,22~sin x x ,x e x ~1−所以 21)(2lim sin )1()cos 1(lim 22020−=⋅−⋅=−−→→x x x x x e x x x x x2.(5分)求极限()tan 2lim sin xx x π→;答案与评阅要点: 令()tan sin xy x =,ln tan ln sin y x x =.22221cos ln sin sin lim ln lim lim cot csc x x x xx x y x x πππ→→→⋅==−2lim sin cos 0x x x π→=−⋅=,所以 原式=01e =. 3.(5分)求极限30sin (1)lim x x e x x x x→−+ 答案与评阅要点:2331()2!3!xx x e x o x =++++,33sin ()3!x x x o x =−+3333001()sin (1)16lim lim 6xx x x o x e x x x x x →→+−+== 4.(5分)计算不定积分33tan sec x xdx ⎰答案与评阅要点:⎰xdx x 33sec tan ⎰=x xd x sec sec tan 22⎰−=x xd x sec sec )1(sec 22.sec 31sec 5135C x x +−=5.(5分)计算不定积分⎰+−dx xx xx 5cos sin sin cos答案与评阅要点:⎰+−dx xx xx 5cos sin sin cos ⎰++=5cos sin )cos (sin x x x x d .)cos (sin 4554C x x ++=6.(5分)计算不定积分⎰−dxxx 224答案与评阅要点:设2sin ()22x t t ππ=−<<,则2cos .dx tdt =⎰−dx xx 224⎰=tdt t tcos 2cos 2sin 42dt t ⎰−=)2cos 1(2C t t +−=2sin 2 .4212arcsin22C x x x +−−=7.(5分)计算不定积分⎰xdx x ln 3答案与评阅要点:⎰xdxx ln 3⎰=)4(ln 4x xd ⎰−=dx x x x 3441ln 41.161ln 4144C x x x +−=四、证明题(本大题45分)1.(10分)设函数()f x 在],[b a 上二阶可导,0)()(='='b f a f .证明存在一点),(b a ∈ξ,使得)()()(4)(2a fb f a b f −−≥''ξ.答案与评阅要点:因为2()()()()()()2222a b a b f a bf f a f a a a ξ''+++'=+−+−1()2a b a ξ+<< 2()()()()()()2222a b a b f a bf f b f b b b ξ''+++'=+−+−2()2a b b ξ+<<(5分) 两式相减,因为0)()(='='b f a f ,得2211()()[()()]()08f b f a f f b a ξξ''''−+−−=,记12()max{(),()}f f f ξξξ''''''=,则2222112111()()()()()(()())()()()884f b f a f f b a f f b a f b a ξξξξξ''''''''''−=−−≤+−≤−即)()()(4)(2a fb f a b f −−≥''ξ,证明完毕.(5分)2.(10分)证明数列{}n x 收敛,其中11x =,113()2n n nx x x +=+,1,2,n =,并求lim n n x →∞.答案与评阅要点:1131()22n n n x x x +=+≥=,21313()022n n n n n n nx x x x x x x +−−=+−=≤,故有1n n x x +≤(5分)故{}n x 单调减有下界,从而lim n n x →∞存在设lim n n x A →∞=,在113()2n n nx x x +=+两边取极限得13()2A A A =+,从而A =5分)3.(15分)设函数()f x 定义在区间(,)a b 上:(1)(5分)用εδ−方法叙述()f x 在(,)a b 上一致连续的概念; (2)(5分)设01a <<,证明1()sin f x x=在(,1)a 上一致连续; (3)(5分)证明1()sinf x x=在(0,1)上非一致连续. 答案与评阅要点:(1)对0ε∀>,0δ∃>,对12,(,)x x a b ∀∈,只要12x x δ−<,就有12()()f x f x ε−<(5分)(2)对0ε∀>,取2a δε=,12,(,1)x x a ∀∈,只要12x x δ−<,12121212111111()()sinsin 2cos sin 22x x x x f x f x x x +−−=−= 121222121211x x x x x x x x a a δε−−≤−=<<=故1()sinf x x=在(,1)a 上一致连续.(5分) (1)在(0,1)内取2n x n π=,2(1)n x n π'=+,取012ε=,对0δ∀>,只要n 充分大总有2(1)n n x x n n δπ'−=<+,而1201()()sin sin 122n n f x f x ππε+−=−=>,故1()sinf x x=在(0,1)非一致连续.(5分) 4.(10分)(1)(5分)叙述函数极限lim ()x f x →+∞的归结原则,并应用它lim sin x x →+∞不存在. (2)(5分)叙述极限lim ()x f x →+∞存在的柯西收敛准则;并证明lim sin x x →+∞不存在.证明:(1)设()f x 在[,)a +∞有定义.lim ()x f x →+∞存在的充分必要条件是:对任意含于[,)a +∞,当lim n n x →∞=+∞时当lim n n x →∞=+∞时且趋于+∞的数列{}n x ,极限lim ()n n f x →∞存在且相等.取2,2,2n n x n x n πππ'''==+则lim lim 2,n n n x n π→∞→∞'==+∞lim lim(2),2n n n x n ππ→∞→∞''=+=+∞但lim ()lim sin(2)0,n n n f x n π→∞→∞'==lim ()limsin(2)1,2n n n f x n ππ→∞→∞''=+=lim ()lim (),n n n n f x f x →∞→∞'''≠故lim ()x f x →+∞不存在.(5分)(2)设函数()f x 在[,)a +∞有定义,则极限lim ()x f x →+∞存在的充要条件是:对于任何0,ε>存在正数0(),M M a >>当12,x x M >时有12|()()|.f x f x ε−<对于012ε=及任意正整数M,取122,2,2x M x M πππ=+=则有1,x M >2,x M >且有1201|()()|sin 2sin 21,22f x f x M M πππε⎛⎫−=+−=>= ⎪⎝⎭所以lim sin x x →+∞不存在.(5分)试题来源:微信公众号 学术之星。

数学分析(1)复习要点

数学分析(1)复习要点

数学分析(一)复习要点第一章函数、极限与连续1、区间与邻域。

2、基本初等函数的性质。

3、求函数的定义域。

4、函数的复合运算。

5、数列与函数极限的精确定义,用定义证明简单极限。

6、单调有界原理、加逼准则及其相关证明。

7、几个常用不等式与两个重要极限公式。

8、无穷小的概念与性质,无穷小阶的比较。

9、等价无穷小替换定理及常用等价无穷小公式。

10、函数连续的概念。

11、间断点的概念、分类及判别。

12、闭区间上连续函数的最值性质与零点定理。

第二章导数与微分1、导数与微分的定义、几何意义。

2、函数的可导性、可微性及连续性的关系,“微商”的含义。

3、基本初等函数的求导公式与微分公式。

4、导数的四则运算法则与复合函数的求导法则。

5、隐函数的求导方法、对数求导法、参数方程确定函数的求导公式。

6、高阶导数的概念与二、三阶导数的计算。

第三章微分学基本定理及其应用1、微分中值定理及其相关命题的证明。

2、求不定式极限的洛必达法则及其与等价无穷小替换定理的综合运用。

3、函数的单调性、凹凸性的判别,极值与拐点的求法(必要条件和充分条件)。

4、闭区间上连续函数的最值、以及实际问题中简单最值的求法。

5、曲线渐近线的求法。

6、不等式的证明(利用函数的单调性、凹凸性,拉格朗日中值定理及泰勒公式等)。

7、方程根的讨论。

第四章不定积分1、原函数与不定积分的概念,积分运算与微分运算的互逆性。

2、基本积分公式(22个)。

3、求不定积分的“凑微分法”(第一类换元法)。

4、求不定积分的第二类换元法。

5、求不定积分的分部积分法,LIATE选择法,被积函数为一个函数时如何分部积分。

6、利用“凑微分法”求简单有理函数的不定积分。

7、利用第二类换元法求简单无理函数的不定积分。

数学分析总结复习提纲

数学分析总结复习提纲

数学分析总结复习提纲数学分析(一)总结复习提纲用词说明:本提纲中冠以“掌握、理解、熟悉”等词的内容为较高要求内容,冠以“会、了解、知道”等词的内容为较低要求内容。

一、内容概述第一章函数、极限与连续§1函数1. 实数集的性质,2. 区间与邻域的概念及其表示,3. 函数的概念与几个特殊函数,4. 函数的奇偶性、周期性、单调性和有界性,4. 复合函数的概念与运算,5. 反函数的定义与性质,6. 初等函数的概念与基本初等函数的性质。

§2 数列极限1. 数列极限的定义以及用定义证明极限,2. 收敛数列的性质,3. 子列的概念以及收敛数列与其子列之间的关系。

§3 函数极限1. ∞x时函数的极限,2. 0x→x→时函数的极限,3. 函数极限的性质,4. 函数极限与数列极限的关系。

§4 无穷小与无穷大1. 无穷小的概念以及函数极限与无穷小的性质,2. 无穷大的概念以及无穷小与无穷大的关系。

§5 极限运算法则1. 无穷小的性质,2. 极限四则运算法则,3. 复合函数的极限运算法则,4. 加逼准则。

§6 单调有界原理与两个重要极限1. 单调有界原理,2. 几个常见不等式,3. 两个重要极限公式。

§7 无穷小的比较1. 无穷小量阶的比较概念,2. 等价无穷小的性质。

§8 函数的连续性与间断点1.函数的连续性概念,2. 函数的间断点及其分类。

§9 连续函数的运算与初等函数的连续性1. 连续函数的四则运算,2. 反函数的连续性,3. 复合函数的连续性,4. 初等函数的连续性。

§10 闭区间上连续函数的性质1. 有界性与最大值最小值定理,2. 零点定理与介值定理。

第二章导数与微分§1 导数的概念1.导数概念的引进,2. 导数的定义,3. 导数的几何意义,4. 函数的连续性与可导性的关系。

§2 函数的求导法则1.导数的四则运算法则,2. 反函数的求导公式,3. 复合函数的求导法则,4. 基本求导公式与求导法则。

《数学分析》考试知识点.

《数学分析》考试知识点.

《数学分析》考试知识点.第一篇:《数学分析》考试知识点.《数学分析》考试知识点题目类型及所占比例:填空题(20分)、解答题(60分)、证明题(70分)考试范围:一、极限和函数的连续性考试内容:映射与函数的概念及表示法,函数的四则运算、复合函数与反函数的求法,函数的有界性、奇偶性、单调性与周期性;数列与函数极限的定义与性质,函数的左右极限,无穷小量与无穷大量的概念及关系、无穷小量与无穷大量的阶,极限的计算; 3 函数的连续性和一致连续性; 4 实数系的连续性; 5 连续函数的各种性质。

考试要求:理解映射与函数的概念,掌握函数的表示法;会函数的四则运算、复合运算;知道反函数及隐函数存在的条件及求法;了解初等函数的概念,会求初等函数的定义域;理解函数与数列极限(包括左右)的概念,会用极限的概念证明有关极限的命题;熟练掌握极限的四则运算及性质;会问题及简单的求函数熟练掌握数列极限与函数极限的概念;理解无穷小量的概念及基本性质。

掌握极限的性质及四则运算性质,能够熟练运用两面夹原理和两个特殊极限。

掌握实数系的基本定理。

熟练掌握函数连续性的概念及相关的不连续点类型。

熟练掌握闭区间上连续函数的性质。

二、一元函数微分学考试主要内容:微分的概念、导数的概念、微分和导数的意义;求导运算;微分运算;微分中值定理;洛必达法则、泰勒展式;导数的应用。

考试要求:理解导数和微分的概念。

熟练掌握函数导数与微分的运算法则,包括高阶导数的运算法则、复合函数求导法则,会求分段函数的导数。

熟练掌握Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor展式。

能用导数研究函数的单调性、极值,最值和凸凹性。

掌握用洛必达法则求不定式极限的方法。

三、一元函数积分学考试主要内容:定积分的概念、性质和微积分基本定理;不定积分和定积分的计算;定积分的应用;广义积分的概念和广义积分收敛的判别法。

考试要求:理解不定积分的概念。

掌握不定积分的基本公式,换元积分法和分部积分法,会求初等函数、有理函数和三角有理函数的积分。

《数学分析》期末复习用 各章习题+参考答案

《数学分析》期末复习用 各章习题+参考答案

f f f (x) = x + 2 ; 2x + 3
f f f f (x) = 2x + 3 。 3x + 5
9. f (x) = f (x) + f (−x) + f (x) − f (−x) , f (x) + f (−x) 是偶函数, f (x) − f (−x) 是奇
2
2
2
2
函数.
⎧− 4x + 3
2⋅4⋅6⋅
⋅ (2n) 。 (提示:应用不等式 2k > (2k − 1)(2k + 1) )。
9. 求下列数列的极限:

lim
n→∞
3n2 + 4n − 1 n2 +1 ;

n3 + 2n2 − 3n + 1
lim
n→∞
2n3 − n + 3 ;
2

3n + n3
lim
n→∞
3n+1
+ (n + 1)3
k∈Z ⎝
2
2⎠
(4) y = x −1 ,定义域: (− ∞,−1) ∪ [1,+∞),值域: [0,1)∪ (1,+∞).
x +1
5.(1)定义域: ∪ (2kπ ,(2k +1)π ),值域: (− ∞,0]; k∈Z
(2)定义域:

k∈Z
⎢⎣⎡2kπ

π 2
,2kπ
+
π 2
⎤ ⎥⎦
,值域: [0,1];
1
(3)定义域:
[−
4,1] ,值域:
⎢⎣⎡0,

(完整版)《数学分析》考试知识点.

(完整版)《数学分析》考试知识点.

《数学分析》考试知识点题目类型及所占比例:填空题(20分)、解答题(60分)、证明题(70分)考试范围:一、极限和函数的连续性考试内容:1映射与函数的概念及表示法,函数的四则运算、复合函数与反函数的求法,函数的有界性、奇偶性、单调性与周期性;2数列与函数极限的定义与性质,函数的左右极限,无穷小量与无穷大量的概念及关系、无穷小量与无穷大量的阶,极限的计算;3函数的连续性和一致连续性;4实数系的连续性;5连续函数的各种性质。

考试要求:1理解映射与函数的概念,掌握函数的表示法;会函数的四则运算、复合运算;知道反函数及隐函数存在的条件及求法;了解初等函数的概念,会求初等函数的定义域;2理解函数与数列极限(包括左右)的概念,会用极限的概念证明有关极限的命题;熟练掌握极限的四则运算及性质;会问题及简单的求函数熟练掌握数列极限与函数极限的概念;理解无穷小量的概念及基本性质。

掌握极限的性质及四则运算性质,能够熟练运用两面夹原理和两个特殊极限。

掌握实数系的基本定理。

熟练掌握函数连续性的概念及相关的不连续点类型。

熟练掌握闭区间上连续函数的性质。

二、一元函数微分学考试主要内容:微分的概念、导数的概念、微分和导数的意义;求导运算;微分运算;微分中值定理;洛必达法则、泰勒展式;导数的应用。

考试要求:理解导数和微分的概念。

熟练掌握函数导数与微分的运算法则,包括高阶导数的运算法则、复合函数求导法则,会求分段函数的导数。

熟练掌握Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor展式。

能用导数研究函数的单调性、极值,最值和凸凹性。

掌握用洛必达法则求不定式极限的方法。

三、一元函数积分学考试主要内容:定积分的概念、性质和微积分基本定理;不定积分和定积分的计算;定积分的应用;广义积分的概念和广义积分收敛的判别法。

考试要求:理解不定积分的概念。

掌握不定积分的基本公式,换元积分法和分部积分法,会求初等函数、有理函数和三角有理函数的积分。

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全

完整版)数学分析复习资料及公式大全导数公式:求导是微积分的重要内容之一,掌握导数公式对于解题至关重要。

常见的导数公式如下:tan(x)的导数为sec^2(x)cot(x)的导数为-csc^2(x)sec(x)的导数为sec(x)·tan(x)csc(x)的导数为-csc(x)·cot(x)ax的导数为ax·ln(a)log_a(x)的导数为1/(x·ln(a))基本积分表:积分是微积分的重要内容之一,掌握基本积分表对于解题至关重要。

常见的基本积分表如下:arcsin(x)的导数为1/(sqrt(1-x^2))arccos(x)的导数为-1/(sqrt(1-x^2))arctan(x)的导数为1/(1+x^2)arcctan(x)的导数为-1/(1+x^2)tan(x)dx=-ln|cos(x)|+Ccot(x)dx=ln|sin(x)|+Csec(x)dx=ln|sec(x)+tan(x)|+Ccsc(x)dx=ln|csc(x)-cot(x)|+Cdx/x=ln|x|+Csin(x)dx=-cos(x)+Ccos(x)dx=sin(x)+Cdx/(x^2+a^2)=1/a·arctan(x/a)+Cdx/(a^2-x^2)=1/(2a)·ln|(a+x)/(a-x)|+C dx/(a^2+x^2)=1/a·ln|(a+x)/x|+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+C e^x dx=e^x+Csin^2(x)dx=1/2·(x-sin(x)cos(x))+C cos^2(x)dx=1/2·(x+sin(x)cos(x))+Csec(x)·tan(x)dx=sec(x)+Ccsc(x)·cot(x)dx=-csc(x)+Ca^x dx=a^x/ln(a)+Csinh(x)dx=cosh(x)+Ccosh(x)dx=sinh(x)+Cdx/(x^2-a^2)=1/(2a)·ln|(x+a)/(x-a)|+Cπ/2+πn (n为整数)lim(1+x)→∞=e=2.xxxxxxxxxxxxxxx。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2009级数学分析(1)期末复习 第一部 各章内容基本要求第一章 实数集与函数1. 熟练掌握绝对值的三角不等式;理解实数的完备性、有理数的稠密性。

2. 熟练掌握有界集、无界集的概念;掌握上、下确界的概念及其等价刻画,明白上、下确界与最大、最小值的联系与区别;理解确界原理。

3. 掌握邻域、空心邻域的概念。

4. 掌握函数的概念及其表示方法;明白函数与其反函数的关系;理解函数是一种对应关系,函数未必都能画出图像;熟悉一些特殊函数取整函数、Dirichlet 函数、符号函数及其表示。

5. 掌握基本初等函数与初等函数的概念。

6. 掌握函数的有界性、奇偶性、单调性、周期性,理解周期的概念。

例1. 分别求 121|1,2,3,...,[0,1]S n S n ⎧⎫===⎨⎬⎩⎭的上、下确界,并证明之。

例2. 求集合(){}|0,1Sx x =∈是无理数的上、下确界,并证明之。

例3. 对任一实数集S ,证明 sup S = sup {S ⋃ {sup S}}。

例4. 证明,任何函数 f 都可以写成一个奇函数与一个偶函数之和。

第二章 数列极限1. 掌握数列极限的 ε-N 定义及其几何意义,明白极限是一种趋势,它与数列的任何有限多项无关(其任一子列都收敛且有同一极限)。

2. 掌握数列收敛性与有界性的关系。

3. 掌握收敛数列的极限唯一性、数列有界性、保号性、保序性。

4. 掌握单调有界收敛准则,两边夹定理,Cauchy 收敛准则,子列收敛判别法。

5. 掌握极限四则运算性质,掌握一些常见的以0为极限的收敛数列1ln 1,,,,,kn n n n n q n n a aαα其中 0,||1,||1,q a k N α><>∈,懂得适时变形,并能熟练运用之。

例5. 用ε-N 语言证明 22011lim02010n n n π→∞+=-。

例6. 证明,若lim 0n n a a →∞=>,则存在N > 0, 使得对 任意 n > N 有 ,22n a a a ⎛⎫∈⎪⎝⎭。

例7. 证明,若 inf S ∉ S, 则存在数列 x n ∈ S ,使得(1) x n 单调递减;(2)lim inf n n x S →∞= 。

例8. 证明,若数列 { x n } 从某项开始恒满足 | x n - x n-1 | < 1/n 2, 则数列 { x n }收敛【cauchy 准则】。

例9.求2lim n n →∞++。

【两边夹定理】例10. 若1(2,2)x ∈-,11,2,3,...n x n +==.证明:数列}{n x 收敛,并求其极限。

【单调有界收敛定理】第三章 函数极限1. 掌握函数极限的 ε-δ定义、ε- M 定义及其几何刻画,明白极限是一种趋势,它与函数在指定点的函数值无关。

2. 掌握函数左、右极限的定义及其与函数极限的关系,会用它判别分段函数在分段点处的极限存在性。

3. 掌握函数极限的唯一性、局部有界性、局部保号性。

4. 掌握函数极限存在的两边夹定理,Cauchy 收敛准则以及归结原则,掌握单调有界函数的左右极限存在性准则。

5. 掌握无穷大量、无穷小量的概念、性质及其阶(同阶、高阶、等价),理解无穷小量与有界量乘积还是无穷小量;明白无穷大量与无界量的联系与区别;掌握等价无穷大量、无穷小量代换定理。

6. 掌握两个重要极限及其变形,熟记当x → 0时如下几个常用等价无穷小量:sin x ~x , e x – 1 ~ x , ln(1+ x ) ~ x , 1– cos x ~ x 2/2, tan x ~ x , arcsin x ~ x , arctan x ~ x .7. 掌握极限四则运算性质、复合函数极限法则。

8. 会用极限四则运算性质、复合函数极限法则、两个重要极限以及等价无穷小量代换定理计算各种极限,尤其是不定式极限(00,,0,,1,00∞∞∞∞-∞∞)。

9. 理解渐近线的概念及其含义,会求三种不同的渐近线。

例11. 用ε-δ语言证明 ()22lim13x x→-=。

例12. 已知()21,0sin ln(1)()0,0tan arcsin ,0.2(1cos )x e x x x f x x x x x x ⎧-⎪>⎪+⎪==⎨⎪⎪<-⎪⎩求0lim()x f x →。

例13. 求22221cos sin (ln )lim .20112012x x x x x x x x →∞+++- 例14. 求()21/0limcos .x x x →例15.求3x →例16.求12lim .1x x →⎛ -⎝例17. 求下列曲线的渐近线:(1)321x y x x+=-; (2) y =- 第四章 函数的连续性1. 掌握连续函数的概念及其四则运算、复合运算性质;理解初等函数的连续性;理解左、右连续与函数连续的关系,会用它判别分段函数在分段点处的连续性。

2. 掌握间断点的概念及其分类,会判断一些特殊函数或分段函数的间断点类别。

3. 掌握连续函数的局部有界性、局部保号性。

4. 掌握函数在区间上一致连续的概念,会证明函数的一致连续性和非一致连续性。

5. 理解有界闭区间上连续函数的有界性、最值性、介值性和一致连续性。

例18. 分别求函数 ||/y x x =与Dirichlet 函数D(x )的间断点及其类别. 例19. 求函数11sin y x x=的间断点,并指出其类别。

例20. 求a ,b 的值,使得函数sin ,0ln(1)()0,0,0.x ax xx x f x x x ⎧+>⎪+⎪⎪==⎨⎪<为( - 2π, 2π)上的连续函数。

例21. 证明函数()f x x α=当α > 1 时在 [ 0, +∞ ) 上不一致连续;当0 < α ≤ 1 时在 [ 0, +∞ ) 上一致连续。

例22. 设函数f , g 都在区间I (有界或无界区间)一致连续且有界,则函数fg 在区间I 一致连续。

例23. 设函数f , g 都在有界闭区间 [a , b ] 连续,并且满足 ([,])([,])f a b g a b ⊂,则对任意点122011,,...,[,]x x x a b ∈,必存在至少一点[,]a b ξ∈使得20111()2011().jj f x g ξ==∑例24. 设函数f 在有界闭区间 [a , b ] 连续,并且满足([,])[,]f a b a b ⊂,则必存在至少一点[,]a b ξ∈使得().f ξξ=例25. 设函数f 在某有界闭区间有定义,且在有理点上取值为无理数,在无理点上取值为有理数,求证:f 不是连续函数。

第五章 导数和微分1. 掌握导数与微分的概念,理解其实质及意义、联系与区别;清楚函数在一点处的可导性、连续性、极限存在性及有界性的关系;掌握左、右导数的概念及其与函数可导性的关系,并会用左、右导数判别分段函数在分段点处的可导性及导数计算。

2. 掌握函数导数的四则运算、复合运算、反函数的求导法则;熟记六种基本初等函数的导数;记住一些常见初等函数的导数公式;理解一阶微分形式的不变性。

3. 掌握含参量函数的一阶、二阶导数求法。

4. 掌握函数极值点、稳定点的定义及其关系;熟悉导函数的介值定理(Darboux 定理)。

5. 理解高阶导数与高阶微分的概念;掌握函数乘积的高阶导数计算公式(莱布尼茨公式)。

6. 理解导数的几何意义与物理意义,会利用导数求曲线的切线及法线方程;会求用参数表示的函数的一阶及二阶导数;会用微分进行简单的近似计算。

例26. 求下列函数的导函数与微分:(1)22(y x a x =+ (2)ln(y x =; (3)ln tan2xy =; (4)arcsin(sin cos )y x x =;(5)22arctan1x y x =-;(6)22x xy e-+=;(7)lny =(8)(n y x =; (9)(0)xy x x = , >;(10)2ln (0)2a y x a =+>。

例27. 求,,b a 使sin ,0,()ln(1),0.x x f x a x b x ≤⎧=⎨++>⎩于0x =可导.例28. 设函数1cos ,0()0,0m x x f x xx ⎧ ≠⎪=⎨⎪ =⎩(m 为正整数). 试问:(1)m 等于何值时,()f x 在0x =连续;(2)m 等于何值时,()f x 在0x =可导; (3)m 等于何值时,'()f x 在0x =连续.例29. 求由参数方程(ln tan cos )2sin t x a t y a t⎧=+⎪⎨⎪=⎩决定的函数的导数. 例30. 求由下列参数方程决定的函数的二阶导数: (1)(sin )(1cos )x a t t y a t =-⎧⎨=-⎩;(2)'()'()()x f t y tf t f t =⎧⎨=-⎩.例31. 求下列函数的高阶导数: (1)2ln y x x =,求''y ;(2)sin(2)y x =,求'''y ;(3)22,x y x e =求()n y。

例32. 求下列曲线在指定点P 的切线方程和法线方程:(1)2,(2,1)4x y P =; (2)cos ,(0,1)y x P = ;(3)2222cos sin t t x e t y e t⎧=⎪⎨=⎪⎩,t = 0点P(1,0). 第六章 微分中值定理及其应用1. 掌握洛尔中值定理、拉格朗日中值定理和柯西中值定理的条件、结论及其含义与相互关系,能够灵活使用其解决一些存在性问题,证明一些不等式;理解这些定理条件的重要性和非必要性。

2. 掌握导数极限定理,并会用它判别分段函数在分段点处的可导性及导数计算。

3. 熟练掌握函数单调性的导数判别法,会据此计算函数的单调区间。

4. 熟练掌握函数极值的一、二阶导数判别法,能够熟练使用其解决一些应用性极值与最值问题;理解函数极值的高阶导数判别法。

5.熟练掌握求不定式极限的洛必达法则,能够用其解决不定式极限问题(00,,0,,1,00∞∞∞∞-∞∞)。

6. 掌握泰勒多项式的概念,掌握泰勒定理(泰勒公式),理解泰勒定理的思想,会求指定函数在指定点的泰勒展式,并写出其皮亚诺型余项和拉格朗日型余项,会用泰勒多项式逼近函数。

例33. 证明:方程20n x px qx r +++=(n ≥3为正整数,p , q , r ,为实数)当n 为偶数时至多有4个实根;当n 为奇数时至多有3个实根。

例34. 求证:n 次多项式最多有n 个实根。

例35. 应用拉格朗日中值定理证明下列不等式:(1)1,0;x e x x >+≠ (2)arcsin ,(0,1).x x x >∈ 例36. 设函数()f x 二阶可导且()0f x ''>, 利用Lagrange 中值定理证明:()()121222f x f x x x f ++⎛⎫<⎪⎝⎭. 例37. 应用函数的单调性证明下列不等式:(1)2ln(1),0;2x x x x x -<+<>(2)13, 1.x x>->例38. 确定下列函数的单调区间:(1)22ln ;y x x =- (2)21;x y x-= (3)22sin ;y x x =-例39. 求下列函数的极值:(1)ln(1);y x x =-+ (2)1;y x x=+ (3)331;y x x =-+ (4)21arccot ln(1).2y x x =++ 例40. 求下列函数在指定区间上的最大值与最小值(1)3229121, [0,3];y x x x =-++ (2)232, [-10,10];y x x =-+例41. 给定长为l 的线段,试把它分成两段,使以这两段为边所围成的矩形面积为最大. 例42. 求下列待定型的极限: (1)0ln(1)lim;cos 1x x x x →+-- (2)0tan lim ;sin x x xx x →--(3)011lim ;1x x x e →⎛⎫-⎪-⎝⎭ (4)0ln cos lim ;ln cos x ax bx → (5)111lim ;ln 1x x x →⎛⎫-⎪-⎝⎭(6)lim()tan ;2x x x ππ→- (7)lim (,0);b ax x x a b e →+∞> (8)ln lim(b,c>0).c bx xx →+∞ 例43. 求下列函数的在指定点的指定阶数的泰勒展式,分别写出其皮亚诺型余项和拉格朗日型余项。

相关文档
最新文档