机械原理——构件、约束、运动副
机械原理知识点

1构件:具有确定运动的单元体组成的,这些运动单元体称为构件零件:组成构件的制造单元体运动副:两构件直接接触的可动联接构件的自由度:构件的独立运动数目运动链:若干个构件通过运动副所构成的系统机架:固定的构件原动件:机构中做独立运动的构件从动件:机构中除原动件外其余的活动构件运动链→机构:将运动链中的一个构件固定,并且它的一个或几个构件作给定的独立运动时,其余构件便随之作确定的运动,这样运动链就成了机构2机构运动简图:表示机构中各构件间相对运动关系的简单图形。
机构运动简图必须与原机械具有完全相同的运动特性。
示意图:只为了表明机械的结构,不按比例来绘制简图3约束和自由度的关系:增加一个约束,构件就失去一个自由度4机构具有确定运动的条件:机构自由度等于机构的原动件数5瞬心:在任一瞬间,两构件的运动都可以看作是绕某一重合点的相对转动,该重合点称为他们的瞬心速度中心绝对瞬心:运动构件上瞬时绝对速度为零的点相对瞬心:两运动构件上瞬时绝对速度相等的重合点6摩擦力增大并不是运动副元素材料间摩擦因数发生了变化,而是运动副元素的几何结构形状发生变化所致。
7摩擦圆:对于一具体的轴颈,r和fv为定值,因此ρ为定值,以轴心O 为圆心,ρ为半径做一圆,该圆成为摩擦圆。
8机械自锁:由于摩擦的存在,会出现无论施加多大的驱动力,都不能使机械沿驱动方向产生运动的现象。
自锁条件:η≤0 机械发生自锁9连杆机构(低副机构):若干个构件通过低副联接所组成的机构10平面四杆机构基本形式:铰链四杆机构11曲柄:在两连杆中能做整周回转机构摇杆:只能在一定角度范围内摆动的构件周转副:将两构件能做360°相对转动的转动副摆动副:不能将两构件能做360°相对转动的转动副12铰链四杆机构的曲柄存在条件:1最短杆与最长杆长度之和小于或等于其他两杆长度之和 2连架杆和机架中有一杆是最短杆13最短杆为连杆时,该机构为双摇杆机构;最短杆为连架杆时,该机构为曲柄摇杆机构;最短杆为机架时,该机构为双曲柄机构;14有急回运动:θ≠0时,偏置曲柄滑块机构和导杆机构无急回运动:对心曲柄滑块机构和双摇杆机构15死点位置:压力角为90°,传动角为0°。
机械原理 第一章 构件 约束 运动副

按在机械传动中的功能分类:
机 构件分成 活动构件 从动件 机 架:机架是指要被固定、而作为机构运动的参考 系的构件 。 原动件:作用有驱动力或驱动力矩的活动构件,又称主 动件。 从动件:在机构中除机架和原动件以外的其余构件则称 为从动件 。
动画链接1 2
架(或固定构件) 原动件(主动件)
机架 原动件
从动件
传动构件
从动件
输出构件
按照其几何和运动特征进行分类:
如齿轮、凸轮、摩擦轮、滑块、导槽、杆件等
滑块、导槽、杆件
动画链接
广义来讲,随着科学技术的不断发展,机构中的构件可 以是有形的,也可以是无形的,只要它在传递运动和力或在 运动的导引的过程中能完成一些确定的运动任务,我们都可 以将其视为一个构件。例如:液态介质或气态介质、可塑性 的颗粒状物质等等,只要这些物质能够充满所提供的空腔, 在运动的传递过程中起到了必不可少的作用,都可以看作为 压力构件;机械运动的计算机控制程序等也可以看作是一个 构件。
只有1个自由度
用平面和曲面构造约束:用四个平面构造的相对移动约束
只有1个自由度
约束中加入中间元件,改变接触处的摩擦状态 滑动摩擦
滚动摩擦
钢球
滑动摩擦
保持架
滚动摩擦
2-9(b)
2-9(c)
1.4
1.4.1
运动副及其分类
运动副
运动副:两个构件直接接触组成的仍能产生某些相对运 动的联接。
三个条件,缺一不可
第一章 构件、约束和运动副
1.2 构件及其分类
构件和零件是两个不同的概念:构件是运
动时的单元体,而零件是制造时的单元体。
构件是由一个或若干个零件组成。
这些零件之间没有任何的相对运动。
机械原理重点归纳

机械原理不考试内容 六、§8-4 平面四杆机构的设计中
2. 用解析法设计四杆机构
机械原理复习
4.四杆机构的优化设计
§8-5 多杆机构 七、§9-3 凸轮轮廓曲线的设计中
3.用解析法设计凸轮的轮廓曲线
八、§10-11 其他齿轮传动简介 §10-12 齿轮机构动力学简介 九、§11-6 行星轮系的效率 §11-7 行星轮系的类型选择及设计的基本知识中
第8章
1.基本类型:
平面连杆机构及其设计
一、 平面四杆机构的类型和应用 铰链四杆机构:①曲柄摇杆机构 ,②双曲柄机构,③双摇杆机构 2.演化方法: ①改变构件的形状和运动尺寸:曲柄滑块机构、正弦机构
②改变运动副的尺寸:偏心轮机构
③取不同构件为机架:导杆机构、摇块机构 、直动滑杆机构 ④运动副元素的逆换;: 3.应用:举例: ①如何把定轴转动变换为往复直线移动; ②如何把定轴转动变换为往复摆动; ③
作业集7-1——7-3
第7章 机械的运转及其速度波动的调节
三、机械速度波动的调节方法 1.周期性速度波动— 可以利用飞轮储能和放能的特性来调节
2.非周期性速度波动—不能用飞轮进行调节 ,当系统不具有自调性 时,则需要利用调速器来对非周期性速度波动进行调节。 3.飞轮设计的基本问题,是根据 Me、Je、ωm、δ来计算飞轮的转动 惯量 JF ①在一个周期内:Wd=Wr,求未知外力(矩),得出盈功和亏功; ②画出能量指示图,求出最大盈亏功∆Wmax(熟练掌握) ③计算 J Wmax J F C 2
1.应遵循的原则是: 使机械系统在等效前后的动力学效应不变,即
① 动能等效:等效构件所具有的动能,等于整个机械系统的总动能。 ② 外力所做之功等效:作用在等效构件上的外力所做之功,等于作 用在整个机械系统中的所有外力所做之功的总和。 2.要求掌握等效力矩和等效转动惯量的求解
机械原理第八版课后练习答案(西工大版)(孙恒等)

齿轮 3、5 和齿条 7 与齿轮 5 的啮合高副所提供的约束数目不同,因为齿轮 3、5 处只有一个 高副,而齿条 7 与齿轮 5 在齿的两侧面均保持接触,故为两个高副。 2-13 图示为一新型偏心轮滑阎式真空泵。其偏心轮 1 绕固定轴心 A 转动,与外环 2 固连在一 起的滑阀 3 在可绕固定轴心 C 转动的圆柱 4 中滑动。当偏心轮按图示方向连续回转时可将设 备中的空气吸入,并将空气从阀 5 中排出,从而形成真空。(1)试绘制其机构运动简图;(2) 计算其自由度。
解:
f 37210 1 2-18 图示为一刹车机构。刹车时,操作杆 j 向右拉,通过构件 2、3、4、5、6 使两闸瓦刹住 车轮。试计算机构的自由度,并就刹车过程说明此机构自由度的变化情况。(注;车轮不属于 刹车机构中的构件。
(1)未刹车时,刹车机构的自由度 2)闸瓦 G、J 之一剃紧车轮时.刹车机构的自由度 3)闸瓦 G、J 同时刹紧车轮时,刹车机构的自由度
解:
1> f 3628 2
2> f 3527 1
3> f 3426 1
2-23 图示为一内然机的机构运动简图,试计算自由度 t 并分析组成此机构的基本杆组。如在 该机构中改选 EG 为原动件,试问组成此机构的基本杆组是否与前者有所不同。
解:
f 37210 1
2-21
图示为一收放式折叠支架机构。该支架中的件 1 和 5 分别用木螺钉连接于固定
收起(如图中双点划线所示)。现已知机构尺寸 lAB=lAD=90 mm;lBC=lCD=25 mm,其余尺寸
见图。试绘制该机构的运动简图,并计算其自由度。
解:机械运动简图如下:
F=3n-(2p1+pb-p`)-F`=3×5-(2×6+1-0)-1=1
机械原理复习

机械原理复习第2章机构的结构分析1.学习要求1)搞清构件、运动副、约束、⾃由度及运动链等重要概念。
2)能绘制⽐较简单的机械的机构运动简图。
3)能正确计算平⾯机构的⾃由度,并能判断其是否具有确定的运动;对空间机构⾃由度的计算有所了解。
4)对虚约束对机构⼯作性能的影响及机构结构合理设计问题的重要性有所认识。
52.学习的重点及难点本章的重点:构件、运动副、运动链等的概念,机构运动简图的绘制,机构具有确定运动的条件及机构⾃由度的计算。
本章的难点:机构中虚约束的判定问题。
⾄于平⾯机构中的⾼副低代则属于拓宽知识⾯性质的内容。
3. 基本概念题)对平⾯机构的组成原理有所了解。
1)何谓构件?构件与零件有何区别?2)何谓⾼副?何谓低副?在平⾯机构中⾼副和低副⼀般各带⼊⼏个约束?3)何谓运动链?运动链与机构有何联系和区别?4)何谓机构运动简图?它与机构⽰意图有何区别?绘制机构运动简图的⽬的和意义是什么?绘制机构运动简图的主要步骤如何?5)何谓机构的⾃由度?在计算平⾯机构的⾃由度时应注意哪些问题?6)机构具有确定运动的条件是什么? 若不满⾜这⼀条件,机构将会出现什么情况?4. 运动简图绘制题4-1 试画出图⽰泵机构的机构运动简图,并计算其⾃由度。
5. ⾃由度计算题计算下列各图所⽰机构的⾃由度,并指出复合铰链、局部⾃由度和虚约束所在位置第三章平⾯机构的运动分析1.学习要求1)正确理解速度瞬⼼(包括绝对瞬⼼及相对瞬⼼)的概念,并能运⽤“三⼼定理”确定⼀般平⾯机构各瞬⼼的位置。
2)能⽤瞬⼼法对简单⾼、低副机构进⾏速度分析。
3)能⽤⽮量⽅程图解法或解析法对Ⅱ级机构进⾏运动分析。
2.学习的重点及难点本章的学习重点是对Ⅱ级机构进⾏运动分析。
难点是对机构的加速度分析,特别是两构件重合点之间含有哥⽒加速度时的加速度分析。
3. 基本概念题1)何谓速度瞬⼼?相对瞬⼼与绝对瞬⼼有何区别?2)何谓三⼼定理?3)速度瞬⼼法⼀般适⽤于什么场合?能否利⽤速度瞬⼼法对机构进⾏加速度分析?4)何谓速度影像和加速度影像,应⽤影像法必须具备什么条件?要注意哪些问题?5)既然每⼀个构件与其速度图和加速度图之间都存在影像关系,那末整个机构也存在影像关系,对吗?机构中机架的影像在图中的何处?4. 运动分析题4-1 图⽰机构构件l等速转动,⾓速度为。
《机械原理》讲义

绪论一、研究对象1、机械:机器和机构的总称机器(三个特征):①人为的实物组合(不是天然形成的);②各运动单元具有确定的相对;③必须能作有用功,完成物流、信息的传递及能量的转换。
机器的组成:原动机、工作机、传动部分、自动控制工作机机构:有①②两特征。
很显然,机器和机构最明显的区别是:机器能作有用功,而机构不能,机构仅能实现预期的机械运动。
两者之间也有联系,机器是由几个机构组成的系统,最简单的机器只有一个机构。
2、概念构件:运动单元体零件:制造单元体构件可由一个或几个零件组成。
机架:机构中相对不动的构件原动件:驱动力(或力矩)所作用的构件。
→输入构件从动件:随着原动构件的运动而运动的构件。
→输出构件机构:能实现预期的机械运动的各构件(包括机架)的基本组合体称为机构。
二、研究内容:1、机构的结构和运动学:①机械的组成;②机构运动的可能性和确定性;③分析运动规律。
2、机构和机器动力学:力——运动的关系·F=ma功——能3、要求:解决二类问题:分析:结构分析,运动分析,动力分析综合(设计):①运动要求,②功能要求。
新的机器。
第一章平面机构的结构分析(一)教学要求1、了解课程的性质与内容,能根据实物绘制机构运动简图2、熟练掌握机构自由度计算方法。
了解机构组成原理(二)教学的重点与难点1、机构及运动副的概念、绘机构运动简图2、自由度计算,虚约束,高副低代(三)教学内容§1-1 机构结构分析的目的和方法研究机构的组成原理和机构运动的可能性以及运动确定的条件一、用规定的符号和线条按一定的比例表示构件和运动副的相对位置,并能完全反映机构特1231)2)345§1-4 平面机构的自由度FF>0,三、计算F(1m-1例:F(2(3图1-15作业:P(1(2(3(4F1、=F2、=(一)教学要求1、能根据实物绘制机构运动简图2、熟练掌握机构自由度计算方法。
了解机构组成原理3、了解平面机构运动分析的方法,掌握瞬心法对机构进行速度分析4、熟练掌握相对运动图解法(二)教学的重点与难点1、机构及运动副的概念、绘机构运动简图2、自由度计算,虚约束,高副低代3、瞬心的概念及求法4、矢量方程,速度和加速度多边形,哥氏加速度,影像法(三)教学内容§2-1 研究机构运动分析的目的和方法一、目的:都必须首先计算其机构的运动参数。
机械基础名词

1.机械:机器、机械设备和机械工具的统称。
2.机器:是执行机械运动,变换机械运动方式或传递能量的装置。
3.机构:由若干零件组成,可在机械中转变并传递特定的机械运动。
4.构件:由若干零件组成,能独立完成某种运动的单元5.零件:构成机械的最小单元,也是制造的最小单元。
6.标准件:是按国家标准 (或部标准等 ) 大批量制造的常用零件。
7.自由构件的自由度数:自由构件在平面内运动,具有三个自由度7.自由度:根据机械原理,机构具有确定运动时所必须给定的独立运动参数的数目,亦即为了使机构的位置得以确定,必须给定的独立的广义坐标的数目,称为机构自由度,其数目常以 F 表示。
8.约束:起限制作用的物体,称为约束物体,简称约束。
9.运动副:构件之间的接触和约束,称为运动副。
10.低副:两个构件之间为面接触形成的运动副。
11.高副:两个构件之间以点或线接触形成的运动副。
12.平衡:是指物体处于静止或作匀速直线运动的状态。
13.屈服极限:材料在屈服阶段,应力波动最低点对应的应力值,以ζs 表示。
14.强度极限:材料ζ -ε曲线最高点对应的应力,也是试件断裂前的最大应力。
15.弹性变形:随着外力被撤消后而完全消失的变形。
16.塑性变形:外力被撤消后不能消失而残留下来的变形。
17.延伸率:δ =(l1-l)/l ×100%,l 为原标距长度, l1 为断裂后标距长度。
18.断面收缩率:Ψ=( A-A1)/ A×100%,A为试件原面积,A1 为试件断口处面积。
19.工作应力:杆件在载荷作用下的实际应力。
20.许用应力:各种材料本身所能安全承受的最大应力。
21.安全系数:材料的机限应力与许用应力之比。
22.正应力:沿杆的轴线方向,即轴向应力。
23.剪应力:剪切面上单位面积的内力,方向沿着剪切面。
24.挤压应力:挤压力在局部接触面上引起的压应力。
25.力矩:力与力臂的乘积称为力对点之矩,简称力矩。
26.力偶:大小相等,方向相反,作用线互相平行的一对力,称为力偶27.内力:杆件受外力后,构件内部所引起的此部分与彼部分之间的相互作用力。
机械原理基本概念

机械原理重要概念零件:独立的制造单元构件:机器中每一个独立的运动单元体运动副:由两个构件直接接触而组成的可动的连接运动副元素:把两构件上能够参加接触而构成的运动副表面运动副的自由度和约束数的关系f=6-s运动链:构件通过运动副的连接而构成的可相对运动系统平面运动副的最大约束数为2,最小约束数为1;引入一个约束的运动副为高副,引入两个约束的运动副为平面低副机构具有确定运动的条件:机构的原动件的数目应等于机构的自由度数目;根据机构的组成原理,任何机构都可以看成是由原动件、从动件和机架组成高副:两构件通过点线接触而构成的运动副低副:两构件通过面接触而构成的运动副由M个构件组成的复合铰链应包括M-1个转动副平面自由度计算公式:F=3n-(2Pl+Ph)局部自由度:在有些机构中某些构件所产生的局部运动而不影响其他构件的运动虚约束:在机构中有些运动副带入的约束对机构的运动只起重复约束的作用虚约束的作用:为了改善机构的受力情况,增加机构刚度或保证机械运动的顺利基本杆组:不能在拆的最简单的自由度为零的构件组速度瞬心:互作平面相对运动的两构件上瞬时速度相等的重合点。
若绝对速度为零,则该瞬心称为绝对瞬心相对速度瞬心与绝对速度瞬心的相同点:互作平面相对运动的两构件上瞬时相对速度为零的点;不同点:后者绝对速度为零,前者不是三心定理:三个彼此作平面平行运动的构件的三个瞬心必位于同一直线上速度多边形:根据速度矢量方程按一定比例作出的各速度矢量构成的图形驱动力:驱动机械运动的力阻抗力:阻止机械运动的力质量代换法:为简化各构件惯性力的确定,可以设想把构件的质量按一定条件用集中于构件上某几个选定点的假想集中质量来代替,这样便只需求各集中质量的惯性力,而无需求惯性力偶距,从而使构件惯性力的确定简化质量代换法的特点:代换前后构件质量不变;代换前后构件的质心位置不变;代换前后构件对质心轴的转动惯量不变机械自锁:有些机械中,有些机械按其结构情况分析是可以运动的,但由于摩擦的存在却会出现无论如何增大驱动力也无法使其运动判断自锁的方法:1、根据运动副的自锁条件,判定运动副是否自锁移动副的自锁条件:传动角小于摩擦角或当量摩擦角转动副的自锁条件:外力作用线与摩擦圆相交或者相切螺旋副的自锁条件:螺旋升角小于摩擦角或者当量摩擦角2、机械的效率小于或等于零,机械自锁3、机械的生产阻力小于或等于零,机械自锁4、作用在构件上的驱动力在产生有效分力Pt的同时,也产生摩擦力F,当其有效分力总是小于或等于由其引起的最大摩擦力,机械自锁机械自锁的实质:驱动力所做的功总是小于或等于克服由其可能引起的最大摩擦阻力所需要的功提高机械效率的途径:尽量简化机械传动系统;选择合适的运动副形式;尽量减少构件尺寸;减小摩擦铰链四杆机构有曲柄的条件:1、最短杆与最长杆长度之和小于或等于其他两杆长度之和2、连架杆与机架中必有一杆为最短杆在曲柄摇杆机构中改变摇杆长度为无穷大而形成的曲柄滑块机构在曲柄滑块机构中改变回转副半径而形成偏心轮机构曲柄摇杆机构中只有取摇杆为主动件是,才可能出现死点位置,处于死点位置时,机构的传动角为0急回运动:当平面连杆机构的原动件(如曲柄摇杆机构的曲柄)等从动件(摇杆)空回行程的平均速度大于其工作行程的平均速度极为夹角:机构在两个极位时原动件AB所在的两个位置之间的夹角θθ=180°(K-1)/(K+1)压力角:力F与C点速度正向之间的夹角α传动角:与压力角互余的角(锐角)行程速比系数:用从动件空回行程的平均速度V2与工作行程的平均速度V1的比值K=V2/V1=180°+θ/(180°—θ)平面四杆机构中有无急回特性取决于极为夹角的大小试写出两种能将原动件单向连续转动转换成输出构件连续直线往复运动且具有急回特性的连杆机构:偏置曲柄滑块机构、摆动导杆加滑块导轨(牛头刨床机构)曲柄滑块机构:偏置曲柄滑块机构、对心曲柄滑块机构、双滑块四杆机构、正弦机构、偏心轮机构、导杆机构、回转导杆机构、摆动导杆机构、曲柄摇块机构、直动滑杆机构机构的倒置:选运动链中不同构件作为机架以获得不同机构的演化方法刚性冲击:出现无穷大的加速度和惯性力,因而会使凸轮机构受到极大的冲击柔性冲击:加速度突变为有限值,因而引起的冲击较小在凸轮机构机构的几种基本的从动件运动规律中等速运动规律使凸轮机构产生刚性冲击,等加速等减速,和余弦加速度运动规律产生柔性冲击,正弦加速度运动规律则没有冲击在凸轮机构的各种常用的推杆运动规律中,等速只宜用于低速的情况;等加速等减速和余弦加速度宜用于中速,正弦加速度可在高速下运动凸轮的基圆半径是从转动中心到理论轮廓的最短距离,凸轮的基圆的半径越小,则凸轮机构的压力角越大,而凸轮机构的尺寸越小齿廓啮合的基本定律:相互啮合传动的一对齿轮,在任一位置时的传动比,都与其连心线O1O2被其啮合齿廓在接触点处的公法线所分成的两线段长成反比渐开线:当直线BK沿一圆周作纯滚动时直线上任一一点K的轨迹AK渐开线的性质:1、发生线上BK线段长度等于基圆上被滚过的弧长AB2、渐开线上任一一点的发线恒于其基圆相切3、渐开线越接近基圆部分的曲率半径越小,在基圆上其曲率半径为零4、渐开线的形状取决于基圆的大小5、基圆以内无渐开线6、同一基圆上任意弧长对应的任意两条公法线相等渐开线函数:invαK=θk=tanαk-αk渐开线齿廓的啮合特点:1、能保证定传动比传动且具有可分性传动比不仅与节圆半径成反比,也与其基圆半径成反比,还与分度圆半径成反比I12=ω1/ω2=O2P/O1P=rb2/rb12、渐开线齿廓之间的正压力方向不变渐开线齿轮的基本参数:模数、齿数、压力角、(齿顶高系数、顶隙系数)记P180表10-2一对渐开线齿轮正确啮合的条件:两轮的模数和压力角分别相等一对渐开线齿廓啮合传动时,他们的接触点在实际啮合线上,它的理论啮合线长度为两基圆的内公切线N1N2渐开线齿廓上任意一点的压力角是指该点法线方向与速度方向间的夹角渐开线齿廓上任意一点的法线与基圆相切根切:采用范成法切制渐开线齿廓时发生根切的原因是刀具齿顶线超过啮合极限点N1一对涡轮蜗杆正确啮合条件:中间平面内蜗杆与涡轮的模数和压力角分别相等重合度:B1B2与Pb的比值ξα;齿轮传动的连续条件:重合度大于或等于许用值定轴轮系:如果在轮系运转时其各个轮齿的轴线相对于机架的位置都是固定的周转轮系:如果在连续运转时,其中至少有一个齿轮轴线的位置并不固定,而是绕着其它齿轮的固定轴线回转复合轮系:包含定轴轮系部分,又包含周转轮系部分或者由几部分周转轮系组成定轴轮系的传动比等于所有从动轮齿数的连乘积与所有主动轮齿数的连乘积的比值中介轮:不影响传动比的大小而仅起着中间过渡和改变从动轮转向的作用二、简答题:1.图示铰链四杆机构中,已知l AB=55mm,l BC=40mm,l CD=50mm,l AD=25mm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
可以通过加入中间元件改善磨损状况 无摩擦的柔顺机构
2.3运动副及其分类 如果仅仅考虑构件之间接触所提供的 运动约束的类型,这种对构件之间的 物理连接所作的理想化的描述定义为 运动副。
2.3.2.1 力闭合运动副、形闭合运动副 及材料闭合运动副
力闭合运动副
第2章 构件、约束和运动副
机械运动 约束运动
接触 点\线\面
2.1 构件及其分类 2.1.1构件 运动单元体
2.1.2构件的类型 刚性构件,拉曳件 机架、原动件和从动件
2.2 构件的运动约束
空间自由运动的构件有6个自由度
平面自由运动的构件有3个自由度
y
y
x
z
x
构件接触形成约束,约束性质与接触方式相关
形闭合运动副
材料闭合运动副
2.3.2.2 平面运动副和空间运动副
常见的平面运动副有移动副、转动 副和曲线副
(a)
(b)(c)(d)源自空间运动副2.3.2.3 低副和高副
高副,构件之间为一个点或一条线接触 低副,构件之间为平面或圆柱面接触
2.3.2.4 运动副的级
根据运动副所引入的约束数可以将运动副分为五 级:引入一个约束的运动副为Ⅰ级副,引入两个约束 的运动副为Ⅱ级副,依次类推,还有Ⅲ级副、Ⅳ级副, 最多为Ⅴ级副。
分析图示机器人机构构件和运动副组成
至少有三个活动构 件、机架和三个移 动副组成
直角坐标机械手 柱坐标机械手 极坐标机械手
机构设计鉴赏
肘关节设计
y
x
z
j
Pi
j i
y
j
j
x
i
i
2.2.1构件之间的运动 自由度与约束数的关 系
自由度 N 约束 S 空间N+S=6 平面N+S=3
利用点、线、面接触 构成各种运动约束
可拆卸焊接烧锅的固定装置设计
2.2.2日常生活中的各种机械约束
面接触形成的约束 约束的形式不同, 但产生的运动约束 的效果相同。
(a) (b) (c)