碎屑岩成岩阶段划分

合集下载

储层地质学期末复习题及答案

储层地质学期末复习题及答案

储层地质学期末复习题第一章绪论一、名词解释1、储集岩2、储层3、储层地质学第二章储层的基本特征一、名词解释1、孔隙度2、有效孔隙度3、流动孔隙度4、绝对渗透率5、相渗透率6、相对渗透率7、原始含油饱和度8、残余油饱和度9、达西定律二、简答题1、简述孔隙度的影响因素..2、简述渗透率的影响因素..3、简述孔隙度与渗透率的关系第三章储层的分布特征一、简答题1、简述储层的岩性分类2、简述碎屑岩储层岩石类型3、简述碳酸盐岩储层岩石类型4、简述火山碎屑岩储层岩石类型5、风化壳储层的结构6、泥质岩储层的形成条件二、论述题1、简述我国中、新生代含油气湖盆中的主要储集砂体成因类型及主要特征..要点:重点针对河流相、三角洲、扇三角洲、滩坝、浊积岩等砂体分析其平面及剖面展布特征第四章储层孔隙成岩演化及其模型一、名词解释1、成岩作用2、同生成岩阶段3、表生成岩阶段二、简答题1、次生孔隙形成的原因主要有哪些2、碳酸盐岩储层成岩作用类型有哪些3、如何识别次次生孔隙..三、论述题1、简述成岩阶段划分依据及各成岩阶段标志2、论述碎屑岩储层的主要成岩作用类型及其对储层发育的影响..3、论述影响储层发育的主要因素有哪些方面..第五章储层微观孔隙结构一、名词解释1、孔隙结构2、原生孔隙3、次生孔隙4、喉道5、排驱压力二、简答题1、简述砂岩碎屑岩储层的孔隙与喉道类型..2、简述碳酸盐岩储层的孔隙与喉道类型..三、论述题试述毛管压力曲线的作用并分析下列毛管压力曲线所代表的含义第六章储层非均质性一、名词解释1、储层非均质性2、层内非均质性3、层间非均质性4、平面非均质性二、简答题1、请指出储层非均质性的影响因素..2、如何表征层内非均质性三、论述题1、论述裘怿楠1992关于储层非均质性的分类及其主要研究内容..2、论述宏观非均质性对油气采收率的影响要点:分析层内、层间、平面非均质性对油气采收率的影响第七章储层敏感性一、名词解释1、储层敏感性2、水敏性3、酸敏性4、速敏性二、简答题1、储层损害的原因2、储层敏感性类型储层地质学期末复习题参考答案第一章绪论一、名词解释1、储集岩:具有孔隙空间并能储渗流体的岩石..2、储层:凡是能够储存油气并能在其中参与渗流的岩岩层即为储层..3、储层地质学:是研究储层成因类型、特征、形成、演化、几何形态、分布规律;还涉及储层的研究方法和描述技术以及储层评价和预测的综合性地质学科..第二章储层的基本特征一、名词解释1、孔隙度:岩样孔隙空间体积与岩样体积之比2、有效孔隙度:指相互连通的;在一般压力条件下允许流体在其中流动的孔隙体积之和与岩石总体积的比值3、流动孔隙度:指在一定压差下;流体可以在其中流动的孔隙体积与岩石总体积的比值4、绝对渗透率:当岩石为某单一流体所饱和时;岩石与流体之间不发生任何物理—化学反应;所测得的岩石对流体的渗透能力称为该岩石的绝对渗透率5、相渗透率:又称之为有效渗透率;指岩石孔隙中存在两种或两种以上互不相溶流体共同渗流时;岩石对每一种流体的渗透能力的量度;称之为该相流体的有效渗透率6、相对渗透率:岩石孔隙为多相流体饱和时;岩石对各流体的相对渗透率指的是岩石对各种流体的有效渗透率与该岩石的绝对渗透率的比值7、原始含油饱和度:油藏开发前;所测出的油层岩石孔隙空间中原有体积与岩石孔隙体积的比值称为原始含油饱和度8、残余油饱和度:残余油是在油层内处于不可流动状态的那一部分油;其所占总孔隙体积百分数称为残余油饱和度..P139、达西定律:位时间内通过岩石截面积的液体流量与压力差和截面积的大小成正比;与液体通过岩石的长度以及液体的粘度成反比..二、简答题1、简述孔隙度的影响因素..1分选性、粒度对碎屑岩及碎屑结构储集岩的孔隙度有明显的影响;2颗粒磨圆度对储集岩孔隙度的影响;3颗粒的填集作用对储集岩孔隙度的影响;4成岩作用对孔隙度的影响..2、简述渗透率的影响因素..1岩石特征:包括粒度、分选、胶结物及层理等..如疏松砂的粒度越细;分选越差;渗透率越低..2孔隙的影响:岩石孔隙度和渗透率之间有定的内在联系;但没有严格的函数关系;尤其当存在裂缝和溶洞时..;实际上;孔隙度和渗透率的关系在很大程度上取决于孔隙机构;凡影响岩石孔隙结构的因素都影响渗透率..在有效孔隙度相同的情况下;孔隙喉道小的岩石比喉道大的岩石渗透率低;孔喉形状复杂的岩石比孔喉形状简单的岩石渗透率低..一般来说;岩石渗透率与孔隙喉道大小的平方成正比;而与喉道形状复杂程度成反比3压力和温度的影响..温度不变时;渗透率随压力增大而减小;当压力超过某一数值时;渗透率急剧下降;这是泥质砂岩比砂岩渗透率减小的更快..随温度升高;压力对渗透率影响减小..这是因为温度升高;岩石骨架和流体膨胀;阻碍压实..3、简述孔隙度与渗透率的关系大量资料表明;岩石的孔隙度与渗透率之间有一定的相关关系;常规储层相关性较好;致密储层相关性较差;但两者之间通常没有严格的函数关系..岩石的渗透性除受孔隙度影响外;还受孔道截面大小、形状、连通性以及流体性能等多方面因素的影响..一般来说;有效孔隙度大;则绝对渗透率也高;在有效孔隙度相同的条件下;孔隙直径小的岩石比直径大的岩石渗透率低;孔隙形状复杂的岩石比孔隙形状简单的岩石渗透率低..孔隙和喉道的不同配置关系;也可以使储层呈现不同的性质..第三章储层的分布特征一、简答题1、简述储层的岩性分类碎屑岩储层、碳酸盐岩储层、泥质岩储层、岩浆岩储层、变质岩储层2、简述碎屑岩储层岩石类型包括砾岩、砂岩和泥岩3、简述碳酸盐岩储层岩石类型岩性主要为石灰岩、白云岩及其过渡类型..4、简述火山碎屑岩储层岩石类型火山岩储层的岩石类型:集块岩、火山角砾岩、凝灰岩、熔结角砾岩和沉凝灰岩..5、风化壳储层的结构风化壳自上而下分为崩解带、淋滤带、水解带..6、泥质岩储层的形成条件1特定的岩相条件;2压实或欠压实的成岩条件;3断裂或其它的动力造缝条件二、论述题1、简述我国中、新生代含油气湖盆中的主要储集砂体成因类型及主要特征..P18-30我国中、新生代含油气湖盆中的主要储集砂体成因类型包括冲积扇相、河流相、三角洲相、扇三角洲相、湖底扇浊积相、滩坝等..冲积扇沉积以砾岩为主;属于碎屑岩沉积体系中最近源的沉积物;分选性最差;平面连续性较好;物性非均质性严重、层内非均质性剧烈而无序..河流沉积可以提供大量岩石物理性质量好的储层砂体;以中高渗透率为主;经常以高产储层出现;河流砂体几乎成为各类碎屑岩储层之首..其中辫状河广为发育;而一般很难形成大规模的曲流河体系..河流砂体侧向连续性差;以正韵律沉积为特征..三角洲砂体储层包括:三角洲平原上的分流河道砂体;这类砂体与河流砂体大体类似;三角洲前缘发育的水下分流河道;其储层特征于三角洲平原上的分流河道砂体基本一致;正韵律的层内非均性;侧向连续性差的条带状和明显的渗透率方向性;河口坝砂体的特征为反韵律或复合韵律;很好的侧向连续性;平面非均质性较弱;三角洲前缘发育的薄层席状砂;广布的侧向连续性..湖底扇是重力流搬运沉积建造于浪基面以下深湖环境的碎屑岩体;湖底扇储层以浊流砂体占绝大多数;特点是具有鲍玛序列;矿物结构成熟度低;砂体侧向连续性差;连续性较好的扇叶体较少..滩坝储集砂体一般都属于小型沉积、储层体积较小..但储层连续性好;储层物性较好..第四章储层孔隙成岩演化及其模型一、名词解释1、成岩作用:沉积物沉积之后转变为沉积岩直至变质作用之前;或因构造运动重新抬升到地表遭受风化以前所发生的物理、化学、物理化学和生物的作用;以及这些作用所引起的沉积物或沉积岩的结构、构造和成分的变化..2、同生成岩阶段:沉积物沉积后至埋藏前所发生的变化与作用时期..3、表生成岩阶段:处于某一成岩阶段的弱固结或固结的碳酸盐岩、碎屑岩;因构造作用抬升至地表或近地表;受大气淡水的溶滤等作用所发生的变化与作用时期..二、简答题1、次生孔隙形成的原因主要有哪些1溶解或溶蚀作用;2成岩收缩作用;3构造应力作用..2、碳酸盐岩储层成岩作用类型有哪些碳酸盐岩的成岩作用可以分为两类:1破坏孔隙的成岩作用;包括胶结作用、机械压实作用、压溶作用、重结晶作用和沉积物充填作用等;2有利于孔隙形成和演化的成岩作用;包括溶解作用、白云石化作用、生物和生物化学成岩作用、破裂作用等..3、如何识别次生孔隙..1岩石学标志通过显微镜观察;可以识别一些重要的岩石学标志来判定次生孔隙的存在及其发育过程..最重要的岩石学标志有以下八种..①部分溶解:颗粒或胶结物的不完全溶解;并在孔隙附近有残余物;残余物质有明显的溶蚀外貌..②印模:指颗粒、胶结物或交代物完全溶解后的铸模..③排列的不均一性:单个残余颗粒或孔隙次生标志不明显时;颗粒或孔隙分布的不均一性是判定次生孔隙的重要标志..这是因为次生溶解作用有选择性;易溶组分被溶解掉包括选择颗粒和胶结物后;未溶物质的分布必然排列上出现不均一..④特大孔隙:直径比相邻颗粒大得多的特大孔隙很常见;它们为次生孔隙提供了很好的证据..大多数特大孔隙是有组构选择的;并且主要是由可溶性沉积碎屑、透镜状基质或其交代物选择性溶解的产物..⑤伸长状孔隙:孔喉明显扩大并串联多个孔隙的伸长孔隙是次生孔隙标志之一;其成因显然是混合成因的..⑥溶蚀的颗粒:主要表现在颗粒边缘参差不齐;并与伸长孔隙、特大孔隙共生..⑦组分内孔隙:很明显组分内溶孔是矿物溶解造成的..按溶解程度分粒内溶孔、蜂窝状孔隙;并逐渐过渡到溶解残余孔隙..组分内溶孔一般遵循结构选择性溶解的原则..⑧破裂的颗粒裂隙:主要是由于压实致密颗粒出现微裂缝;而后进一步溶蚀所致..三、论述题1、简述成岩阶段划分依据及各成岩阶段标志答:碎屑岩的成岩作用可以划分为同生成岩阶段、早成岩阶段、中成岩阶段、晚成岩阶段和表生成岩阶段..1同生成岩阶段的主要标志有:①岩石沉积物疏松;原生孔隙发育;②海绿石主要形成于本阶段;③鲕绿泥石的形成;④同生结核的形成..⑤沿层理分布的微晶及斑块状泥晶菱铁矿;⑥分布于粒间及粒表的泥晶碳酸盐;有时呈纤维状及微粒状方解石;⑦有时有新月形及重力胶结;⑧在碱性水介质盐湖盆地中析出的自生矿物有粉末状和草莓状黄铁矿、他形粒状方沸石、基底式胶结或斑块状的石膏、钙芒硝;可见石英等硅酸盐矿物的溶蚀现象等..2早成岩阶段可分为A、B两期;下面分别对A期和B期进行阐述..1早成岩A期的主要标志有:①古温度范围为古常温小于65℃..②有机质未成熟;其镜质组反射率Ro 小于0.35%;最大热降解峰温Tmax小于430℃;孢粉颜色为淡黄色;热变指数TAI小于2.0..③岩石弱固结—半固结;原生粒间孔发育..④淡水—半咸水水介质的泥岩中富含蒙皂石层占70%以上的伊利石/蒙皂石I/S无序混层粘土矿物有序度R=0;统称蒙皂石带;碱性水介质含煤地层的砂岩中自生矿物不发育;局部见少量方解石或菱铁矿;颗粒周围还可见少量绿泥石薄膜;碱性水介质的自生矿物有粒状方沸石、泥晶碳酸盐;无石英次生加大..古温度低于42℃是石膏及钙芒硝析出;本期末;泥晶含铁方解石和含铁白云石析出;泥岩中粘土矿物以伊利石—绿泥石I—C组合和伊利石—绿泥石—伊利石/蒙皂石混层I-C-I/S组合为主;伊利石/蒙皂石I/S混层为有序混层;也有无序混层;少见蒙皂石;砂岩中可见高岭石..⑤砂岩中一般未见石英加大;长石溶解较少;可见早期碳酸盐胶结呈纤维状、栉壳状、微粒状及绿泥石环边;粘土矿物可见蒙皂石、无序混层矿物及少量自生高岭石..在碱性水介质中可见石英、长石溶蚀现象..2早成岩B期的主要标志有:①古温度范围为大于65℃~85℃..②有机质未成熟;镜质组反射率Ro 为0.35%~0.5%;最大热解峰温Tmax为43℃~435℃;孢粉颜色为深黄色;热变指数TAI为2.0~2.5..③压实强;颗粒可呈点—线状接触;压实作用使原生孔隙明显减少;④泥岩中蒙皂石明显向伊利石/蒙皂石I/S混层粘土矿物转化;蒙皂石层占70%~50%;属无序混层有序度R=0;称无序混层带⑤可见Ⅰ级石英次生加大;加大边窄或有自形晶面;扫描电子显微镜下可见石英小雏晶;呈零星或相连成不完整晶面;书页状自生高岭石较普遍;有的砂岩受火山碎屑颗粒的影响;仍可见蒙皂石3中成岩阶段;中成岩阶段同样可分为A、B两期..1中成岩A期①古温度范围为85℃~140℃..②有机质低成熟—成熟;镜质体反射率Ro大于0.5%~1.3%;最大热解峰温Tmax为435℃~460℃;孢粉颜色为橘黄—棕色;热变指数TAI为2.5~3.7..③泥岩中的伊利石/蒙皂石I/S混层粘土矿物;蒙皂石层占15%~50%;其中蒙皂石层占35%~50%时属部分有序混层R=0/R=1;蒙皂石层占15%~35%时属有序混层R=1..④砂岩中可见晚期含铁碳酸盐类胶结物;特别是铁白云石;常呈粉晶—细晶;以交代、加大或胶结形式出现⑤石英次生加大属Ⅱ级;大部分石英颗粒和部分长石颗粒具次生加大;自形晶面发育;有的见石英小晶体..⑥砂岩中的粘土矿物;可见自生高岭石、伊利石/蒙皂石I/S混层粘土矿物、呈丝发状自生伊利石、叶片状或绒球状自生绿泥石、绿泥石/蒙皂石C/S混层粘土矿物等;蒙皂石基本上消失..⑦长石、岩屑等碎屑颗粒及碳酸盐胶结物常被溶解;孔隙类型除部分保留的原生孔隙外;以次生孔隙为主..三种水介质在中成岩阶段A期;根据泥岩中伊利石/蒙皂石I/S混层粘土矿物演化和有机质热演化特征;以蒙皂石层占35%、镜质组反射率Ro为0.7%或最大热解峰温Tmax为440℃为界;还可以细分为A1、A2两个亚期..2中成岩B期①古温度范围为140℃~175℃..②有机质处于高成熟阶段;镜质组反射率Ro为 1.3%~2.0%;最大热解峰温Tmax为460℃~490℃;孢粉颜色为棕黑色;热变指数TAI为3.7~4.0..③泥岩中有伊利石及伊利石/蒙皂石I/S混层粘土矿物;蒙皂石层小于15%;属超点阵或称卡尔克博格有序混层有序度R≥3;称超点阵有序混层带..④砂岩中石英次生加大为Ⅲ级;特别是富含石英的岩石中几乎所有石英和长石具有加大且边宽;多呈镶嵌状;高岭石明显减少或缺失;有的可见含铁碳酸盐类矿物、浊沸石和钠长石化⑤孔隙类型以裂缝为主;少量溶孔;颗粒间呈线—凹凸状接触或缝合线状接触;碱性水介质中岩石致密;裂缝较发育;颗粒间以凹凸接触和缝合线状接触为主;部分颗粒间为线接触..4晚成岩阶段①古温度范围为175℃~200℃..②有机质处于过成熟阶段;镜质组反射率Ro为2.0%~4.0%;最大热解峰温Tmax>490℃;孢粉颜色为黑色;热变指数TAI>4.0..③岩石已极致密;颗粒呈缝合接触及有缝合线出现;孔隙极少且有裂缝发育..④砂岩中可见晚期碳酸盐类矿物及钠长石、榍石等自生矿物;石英加大属Ⅳ级;颗粒间呈缝合线状接触;自形晶面消失..⑤砂岩和泥岩中代表性粘土矿物为伊利石和绿泥石;并有绢云母、黑云母;混层已基本消失;称伊利石带或伊利石—绿泥石带..5表生成岩阶段的主要标志①含低价铁的矿物如黄铁矿、菱铁矿等被褐铁矿化或呈褐铁矿的浸染现象;②碎屑颗粒表面的氧化膜;③新月形碳酸盐胶结及重力胶结;④渗流充填物;⑤表生钙质结核;⑥硬石膏的石膏化;⑦表生高岭石;⑧溶蚀现象;有溶孔、溶洞产生;使不整合面下的次生孔隙发育;改善了物性;⑨断层和裂缝的发育;为地表水的向下渗透及深部地层水和地表水的对流作用提供通道;同时也形成次生孔隙..2、论述碎屑岩储层的主要成岩作用类型及其对储层发育的影响..1压实、压溶作用压实作用是指沉积物沉积后在其上覆水层或沉积层的重荷下;或在构造应力的作用下;发生水分排出、孔隙度降低、体积缩小的作用..随埋藏深度增加;碎屑颗粒接触点上承受的压力超过正常流体压力时;溶解度增加;导致发生晶格变形和溶解;称之为压溶作用..压实、压溶作用使得孔隙缩小..2胶结作用是指孔隙水的溶解组分在砂岩孔隙中沉淀晶出的作用;能将碎屑沉积物胶结成岩..常见的胶结物有氧化硅胶结物、碳酸盐胶结物和粘土胶结物..这些胶结物堵塞了孔隙;使得储层孔隙性变差..3交代作用一种矿物代替另一种矿物的作用称之为交代作用..交代作用对储层有一定的影响;交代矿物化学活泼性很强;很容易发生溶解;易于形成次生溶蚀孔隙有利于孔隙度的增加..4溶蚀作用砂岩中的碎屑颗粒、基质、胶结物;在一定的成岩环境及物化条件下可以发生程度不等的溶蚀作用和形成次生溶蚀孔隙;这些溶孔常常是油气储层的主要储集空间..砂岩的溶蚀作用可发生多次;使砂岩孔隙结构特征发生很大的变化..3、论述影响储层发育的主要因素有哪些方面..1母岩性质及物源供应母岩组合特征影响碎屑岩的成分及岩石类型;如长石砂岩是富含长石的母岩花岗岩等经受风化后被搬运至沉积盆地中沉积形成的;物源供应影响碎屑岩储层及其孔隙的发育;如若物源供应充足时;输沙量大;搬运和沉积作用快速;则碎屑岩相对沉积厚、分布广;近源沉积物粗;成分和结构成熟度低;可能富含基质;从而影响原生粒间孔隙的发育;母岩组分的稳定性影响碎屑岩储层的储集性;若母岩的不稳定组分含量高;在成岩过程中会被溶蚀而形成次生溶孔..2岩石组分、结构与构造对储层发育的影响都表现在对储层孔隙发育的影响..如储层中不稳定成分较多时易形成溶蚀孔隙;粒度较粗、分选好、圆度好的砂岩的原生砂岩粒间孔隙比粒度细、分选及磨圆度差的砂岩发育好;具块状层理的岩石比具斜层理的岩石孔隙度发育好..3构造地质作用对储层发育的影响区域构造背景控制沉积环境与相的展布与变化;进而控制了储集岩的发育与分布;区域性抬升引起不整合面的分化淋滤作用;产生次生孔隙或形成风化壳型储层;构造变动剧烈地区和断裂发育带地区易产生裂隙;有利于储集性能的改善..4气候对储层发育的影响气候影响风化产物的性质与储集岩的成因类型;不同气候条件可引起不同类型风化产物及储集岩的形成;气候影响储集岩岩石类型;如干热或寒冷气候有利于碎屑岩中不稳定矿屑和岩屑的保存..5沉积环境控制储层发育沉积环境可控制储集岩体的发育与分布;对其岩性和物性也有很大影响..一定沉积环境形成一定的储集岩体;且储集岩体的几何形态和分布有一定的规律性..6成岩作用对储集岩及其孔隙发育的影响成岩作用对储集岩及其孔隙的演化与发育可能起促进作用;也可能起破坏作用..产生次生孔隙的作用主要是溶蚀作用、白云石化作用、岩溶作用..破坏孔隙发育的作用主要是压实作用、胶结作用和部分重结晶作用..第五章储层微观孔隙结构一、名词解释1、孔隙结构:是指岩石中孔隙和喉道的几何形态、大小及其相互连通和配置的关系..2、原生孔隙:是岩石沉积过程中形成的孔隙;它们形成后没有遭受过溶蚀或胶结等重大成岩作用的改造..3、次生孔隙:是岩石经过成岩作用改造后产生的孔隙;最主要的类型是溶蚀孔隙;还有少数交代作用和胶结作用形成的晶间孔隙..4、喉道:是孔隙系统中相对较小的、局限在两个颗粒之间连通的狭窄空间部分..5、排驱压力:润湿相北非润湿相驱替所需要的最小压力二、简答题1、简述砂岩碎屑岩储层的孔隙与喉道类型..1孔隙类型:1成因分类①原生孔隙;②次生孔隙;⑧混合孔隙..2按孔隙产状及溶蚀作用分类①粒间孔隙;②粒内孔隙;③填隙物内孔隙;④裂缝孔隙;⑤溶蚀粒间孔隙;⑥溶蚀粒内孔隙;⑦溶蚀填隙物内孔隙;⑧溶蚀裂缝孔隙..3成因及孔隙几何形态分类①粒间孔隙;②微孔隙;③溶蚀孔隙;④裂缝..4按孔隙直径大小分类①超毛细管孔隙;②毛细管孔隙;⑧微毛细管孔隙..5按孔隙对流体的渗流情况分类①有效孔隙;②无效孔隙..2喉道类型:①孔隙缩小型喉道..②颈型喉道..③片状喉道..④弯片状喉道..⑤管束状喉道..2、简述碳酸盐岩储层的孔隙与喉道类型..一孔隙类型1按形态分类:孔、缝、洞..2按主控因素分类1受组构控制的原生孔隙:①粒间孔隙;②遮蔽孔隙;③粒内孔隙;④生物骨架孔隙;⑤生物钻孔孔隙及生物潜穴孔隙;⑥鸟眼孔隙;⑦收缩孔隙;⑧晶间孔隙..2溶解作用形成的次生孔隙:①粒内溶孔和溶模孔隙;②粒间溶孔;③其他溶孔和溶洞;④角砾孔隙..3碳酸盐岩的裂缝①构造缝;②成岩缝;③沉积-构造缝;④压溶缝;⑤溶蚀缝..3按成因或形成时间分类:①原生孔隙;②次生孔隙..4按孔径大小分类按孔径大小可将碳酸盐岩储集空间分为七种类型..溶洞的孔径大于2mm;溶孔的孔径大小为1.0-2.0mm;粗孔的孔径大小05-1.0mm;中孔的孔径大小为025-0.5mm..细孔的孔径大小01-0.25mm;很细孔的孔径大小为0.01-0.1mm:极细孔的孔径小于0.01mm..二喉道类型①构造裂缝型;②晶间隙型;③孔隙缩小型;④管状喉道;⑤解理缝型..三、论述题试述毛管压力曲线的作用并分析下列毛管压力曲线所代表的含义a.未分选;b.分选好、细歪度;c.分选好、粗歪度;d.分选差、细歪度第六章储层非均质性一、名词解释1、储层非均质性:油气储集层由于在形成过程中受沉积环境、成岩作用及构造作用的影响;在空间分布及内部各种属性上都存在不均匀的变化;这种变化就称为储层非均质性..2、层内非均质性:包括粒度韵律性、层理构造序列、渗透率差异程度及高渗段位置、层内不连续薄泥质夹层的分布频率和大小、全层规模的水平/垂直渗透率比值等..3、层间非均质性:包括层系的旋回性、砂层间渗透率的非均质程度、隔层分布、特殊类型层的分布、层组和小层的划分..4、平面非均质性:包括砂体成因单元连通程度、平面孔隙度、渗透率的变化及非均质程度以及渗透率方向性..二、简答题1、请指出储层非均质性的影响因素..影响储层非均质性的因素有:1沉积构造的影响;包括储层垂向上的粒序性;生物潜穴及生物扰动;不同类型层理等对非均质性的影响..2层内不连续薄夹层对储层非均质性的影响;3储层的孔喉形状、大小、分布;以及孔隙类型;粘土基质等;是储层微观非均质性的主要影响因素..2、如何表征层内非均质性1渗透率的差异程度——影响流体的波及程度与水窜2高渗透率的位置——决定注采方式与射孔部位3垂直渗透率与水平渗透率的壁纸——控制着水洗的效果4层内不连续薄泥夹层的分布频率、密度和范围——影响开采方式与油气水界面的分布三、论述题1、论述裘怿楠1992关于储层非均质性的分类及其主要研究内容..。

沉积学复习

沉积学复习

杂基:杂基是碎屑岩中与粗碎屑一起沉积下来的细粒填隙组分,其粒级一般以泥为主,可包括一些细粉砂。

或:分布于碎屑颗粒之间,以悬移载荷方式与颗粒同时沉积粒级一般小于0.03mm的细小机械成因碎屑沉积物。

原杂基:代表原始沉积状态的杂基。

正杂基:原杂基经过明显重结晶后则转变为正杂基。

胶结物:是沉积岩中以化学沉淀方式形成于粒间孔隙中的自生矿物。

或:碎屑岩在沉积、成岩阶段,以化学沉淀方式从胶体或真溶液中沉淀出来,充填在碎屑颗粒之间的各种自生矿物。

自生矿物:沉淀和成岩阶段以化学或生物化学方式形成的沉积矿产。

沉积构造:指沉积物沉积时,或沉积之后,由于物理作用、化学作用及生物作用形成的各种构造。

原生构造:在沉积物沉积过程中及沉积物固结成岩之前形成的构造。

次生构造:固结成岩之后形成的构造。

胶结类型:碎屑岩中碎屑颗粒和填隙物间的关系。

孔隙:岩石中未被固体物质充填的部分,是碎屑岩重要的结构组分之一。

次生孔隙:是岩石中的矿物组分被溶解以及岩石组分破裂和收缩形成的孔隙。

碎屑岩构造:指岩石各组成部分的空间分布和排列方式。

成熟度:碎屑颗粒在风化、搬运、沉积等作用改造下接近终极产物的程度。

结构成熟度:是指碎屑物质经风化、搬运和沉积作用的改造,使之接近终极结构特征的程度。

结构成熟度愈高,表示碎屑物质分选性愈好,杂基含量越少。

成分成熟度:是指碎屑物质经风化、搬运和沉积作用的改造,使之接近终极成分特征的程度。

同生变形构造:也称变形构造,是沉积物沉积的同时或在沉积物固结成岩之前还处于富含孔隙水的塑性状态下发生的变形所形成的构造。

滑塌构造:已沉积的未固结沉积物在重力作用下发生运动和位移所产生的各种同生变形构造的总称。

流动成因构造:沉积物在搬运和沉积时,由于介质(如水、空气)的流动在沉积物内部或表面形成的构造,属于机械成因构造。

层理:是沉积物成层沉积时岩石性质沿垂向变化而产生的层状构造,可通过矿物成分、颜色、粒度、形状或填集方式的突变或渐变而显现出来。

碎屑岩各论1

碎屑岩各论1

各端元组分包括的内容: 各端元组分包括的内容: Q:石英; : F:各种长石; :各种长石; R:岩屑,主要是火山岩、浅变质岩和细粒沉 岩屑,主要是火山岩、 积岩岩屑; 积岩岩屑; M:杂基。 :杂基。
Q 石英砂岩 90 长石石英砂岩 75 岩屑石英砂岩
岩 长 石 砂 岩 屑 长 石 砂 岩
长 石 岩 屑 砂 岩 岩 屑 砂 岩
二、砾岩和角砾岩主要成因类型
砾岩和角砾岩的成因类型很多, 砾岩和角砾岩的成因类型很多 , 常见的 有 滨岸砾岩滨岸砾岩-近岸角砾岩 河成砾岩 冰川砾岩、 冰川砾岩、角砾岩 岩溶角砾岩 盐溶角砾岩

滨岸砾岩1. 滨岸砾岩-近岸角砾岩
滨岸砾岩主要形成于滨海地区, 滨岸砾岩主要形成于滨海地区 , 其次是 滨湖地区,它是由河流携带的砾石或沿岸岩 滨湖地区, 石崩塌下来的碎块经波浪和海流反复改造而 砾石成分单纯,多由石英岩质砾岩构成, 成。砾石成分单纯,多由石英岩质砾岩构成, 砾石的磨圆度高,分选性好。有时可见海相 砾石的磨圆度高, 分选性好。 化石。岩层厚度不大,可见交错层理, 化石。岩层厚度不大,可见交错层理,常与 石英砂岩共生,砾石长轴可顺岸排列。 石英砂岩共生,砾石长轴可顺岸排列。
从具体标志来说,应当选择砂岩中的石英、长石、 从具体标志来说,应当选择砂岩中的石英、长石、 岩屑和粘土基质四种组分作为分类依据。 岩屑和粘土基质四种组分作为分类依据。因为这些变 量容易鉴别,又有成因意义, 量容易鉴别,又有成因意义,它们彼此间的数量关系 可以反映砂岩的成因特征。 可以反映砂岩的成因特征。
岩溶角砾岩
中碎屑岩—砂岩 中碎屑岩 砂岩

主要由砂粒(粒径为2 mm)和填隙物组成的 主要由砂粒(粒径为2~0.1mm)和填隙物组成的 陆源碎屑岩,称砂岩。 陆源碎屑岩,称砂岩。砂岩在沉积岩中的分布仅次 于粘土岩而居第二位,约占沉积岩的1 左右。 于粘土岩而居第二位 , 约占沉积岩的 1 / 5 左右 。 它 是最主要的储集油气和水的岩石之一。因此, 是最主要的储集油气和水的岩石之一。因此,研究 砂岩不仅有理论意义,而且有很重要的实际意义。 砂岩不仅有理论意义,而且有很重要的实际意义。

碎屑岩成岩阶段划分及依据

碎屑岩成岩阶段划分及依据

中成岩阶段B期 中成岩阶段 期 a) 古温度范围为>140℃~175℃; b) 有机质处于高成熟阶段,镜质体反射率(Ro)在 >1.3%~2.0%,最大热解峰温(Tmax)>460℃~490℃,孢 粉颜色为棕黑色,热变指数(TAI)为>3.7~4.0; c) 泥岩中有伊利石及伊利石/蒙皂石(I/S)混层粘土矿物, 蒙皂石层<15%,属超点阵或称卡尔克博格有序混层(有序 度R≥3),称超点阵有序混层带; 晚成岩阶段 a) 古温度范围>175℃~200℃; b) 有机质处于过成熟阶段,镜质体反射率(Ro) >2.0%~4.0%,最大热解峰温(Tmax)>490℃,孢粉颜色 为黑色,热变指数(TAI)>4.0;
浅层成岩阶段划分: 同生成岩阶段 早成岩阶段 中成岩阶段 晚成岩阶段 表生成岩阶段 A,B两期 A,B两期
主要依据: (1)古温度 —— 流体包裹体均一温度:代表形成时储集层 的温度,是目前恢复古地温较为准确的指标。 ——自生矿物形成温度; 利用以下公式计算地下温度
பைடு நூலகம்
H:深度 Th: 深度H处的温度 ho: 恒温带深度 m取 20m a0:恒温带温度 取15℃ a:地热梯度
早成岩阶段A期 早成岩阶段 期 (1) 古温度范围为古常温~65℃; (2) 有机质未成熟,其镜质体反射率(Ro)<0.35%,最大 热解峰温(Tmax)<430 oC, 孢粉颜色为淡黄色,热变指数(TAI)<2.0; 早成岩阶段B期 早成岩阶段 期 a) 古温度范围为>65℃~85℃; b) 有机质半成熟,镜质体反射率(Ro)为0.35%~0.5%, 最大热解峰温(Tmax)430oC~435℃,孢粉颜色为深黄色, 热变指数(TAI)2.0~2.5; 中成岩阶段A期 中成岩阶段 期 a) 古温度范围为>85℃~140℃; b) 有机质低成熟—成熟,镜质体反射率(Ro)>0.5%~1.3%, 最大热解峰温(Tmax)>435 ℃~460℃,孢粉颜色为桔黄一 棕色,热变指数(TAI)>2.5~3.7; c) 泥岩中的伊利石/蒙皂石(I/S)混层粘土矿物,蒙皂石层占 <50%~15%,其中<50%~35%属部分有序混层(R=0/R=1),

碎屑岩储层类型划分依据及现行分类方案综述

碎屑岩储层类型划分依据及现行分类方案综述
泥 ( )岩 等 。在 现 今 技 术 条 件 下 ,若 碎 屑 岩 中 的 孔 隙 、 吼 页
道 具有 赋存 经济 价值 的石 油、天然气 能力,则称之 为碎 屑岩 储 层,这里要强调是在现 今技术条件下 ,是因为有些碎屑岩 中赋存 有流体,但需要工艺技 术的发展才可 以实现其 工业 价 值 , 么这类碎 屑岩在 现阶段不是储 层, 那 但在可 以成 为储层 。 为有效高速 地开发油 田,必须进行精细的油藏研 究工作,而 油藏研究的核心是储层研究 ( 近年来 ,A G年会 已把储层 AP
同步压裂技术等技术 的发展 ,泥页 岩中的页岩气也得到足够
的重视 ,泥岩也成 为了储层 。
4 2 从 成 分 方 面 划 分 .
还可 以从组成砂岩 的物 质成分方面对砂岩进行分类 , 如 14 9 8年克里宁( r.ieP 1 K ynn。. 首先提 山了砂 岩成分的三角 图 D. 分类 ,在这个分类 中,克 里宁选择 了具有成因意义 的组分作 为划分秒岩类型 的基本端元 。刘宝瑁院士则推荐使用原成都
【 】Wo nR a d SMo , 0 , l miea n sn s n s o t l o 1  ̄e … n . md 0 3 a n r s i a d t e : nr s n 2 C y l o C o
f r t n dsr u o n v lt n n o ma i ,iti f n a d e ou i ,iR.H. o d n a d S. r d e s, o bi o W r e Mo a , d . n Cly c me t i a d so e : n en t n l s c ain o e i n o o it a e n s n s ・ tn s I tr ai a o it fS d me t lg ss n o As o

油气储层中碎屑岩成岩作用的研究

油气储层中碎屑岩成岩作用的研究

学 术 论 坛231科技资讯 SCIENCE & TECHNOLOGY INFORMATIONDOI:10.16661/ki.1672-3791.2017.31.231油气储层中碎屑岩成岩作用的研究郝海彦(延安职业技术学院 陕西延安 716000)摘 要:油气资源是人们生活中常用的资源。

近年来,伴随油气资源开采不断深入发展,碎屑岩成岩作用在相关理论研究方面取得了丰硕成果,并在实践考察中获得了宝贵的第一现场研究资料。

本文通过对岩石成岩过程的描述,来进一步的对岩石成岩作用对于油气储层产生的利弊影响,将碎屑岩成岩作用按常规划分为建设性成岩作用与破坏性成岩作用两类。

关键词:油气储层 碎屑岩 成岩作用中图分类号:TE112.21 文献标识码:A 文章编号:1672-3791(2017)11(a)-0231-02众所周知,岩石的形成需要非常长的时间,是一个极为漫长的地质活动与形成的过程。

岩石在实现埋藏之前,需要诸多因素的参与,包括岩石组成与组构、沉积物的沉积速度、成岩当中的温度条件、压力大小以及水介质等物理化学条件、埋藏水的动力阶梯以及各种岩石在成岩过程中对于沉积组成部分的改造、成岩本身所含有矿物质的形成跟溶蚀等等诸多成岩因素,远比岩石成岩的沉积过程要复杂的多[1]。

所以,使得相关专家学者对于碎屑岩成岩作用的深入研究就显得十分的困难,对于那些深埋在地层中的原生空隙相对而言发育还不够完整的碎岩石储层仍需要进一步的对其发展进行预测;由胶结作用这种岩石成岩过程中所造成的致密层,也就是人们通常所说的钙质层的发现跟预测依旧是油气储层中碎屑岩成岩作用的研究的一个世界难点。

1 碎屑岩石成岩作用研究现状岩石成岩的过程是一个极为复杂而漫长的物理运动与化学变化的过程,其受到的影响因素也是非常多变的。

岩石成岩过程的复杂性主要体现在岩石构成成分的复杂性,岩石流体的来源十分广泛,成岩过程中的温度与压力等诸多成岩的条件也是非常多变的。

储层地质学(中国石油大学)-4成岩作用

储层地质学(中国石油大学)-4成岩作用

和次生孔隙的形成。
1、有机酸的形成 在烃源岩生成液态烃之前,干洛根分子就释放出其外围羧 基和酚基,形成一元羧酸和二元羧酸两类水溶性有机酸。 二元羧酸阴离子浓度幅度下降的主要原因是热脱羧作用, 温度高时,二元羧酸就会脱羧转变为一元羧酸和(或)CO2。
2、羧酸和酚基在碳酸盐和铝硅酸盐溶蚀和次生孔隙形成中的
缚石类胶结物:呈粒状、板状、纤维状、针状等。 赤铁矿胶结物:常受含氧孔隙水的分解。 黄铁矿胶结物:形成于强还原环境。在同生成岩阶段的黄铁矿
在电镜下显示为草莓状,由八面体黄铁矿微晶集合而成。在砂
岩油藏中,黄铁矿常富集于油水边界部位。
4、交代作用 (1)概念 一种矿物代替另一种矿物的作用。
(2)类型
储层地质学——成岩作用 及其对储层孔隙发育的影响
(1)成岩作用:是沉积物沉积之后转变沉积岩直至变质作用 之前,或因构造运动重新抬升到地表遭受风化之前所发生的
物理、化学和生物的作用,以及这些作用所引起的沉积物或
沉积岩的结构、构造和成分的变化。 (2)影响因素:较多,但以孔隙水的性质及运动最为重要。 (3)主要类型:压实、压溶、交代、矿物的多形转化、重结 晶等作用。
2、压溶作用 产生:缝合线、微缝合线、未缝合线的缝。 若缝合线中没有不溶残余和自生矿物充填,可作为储集
空间储渗油气。
3、胶结作用 (1)碳酸盐矿物胶结物 古代的:主要为方解石和白云石; 现代的:方解石、文石、镁方解石和白云石。
三种结晶形态:泥晶、纤维晶、较粗的粒状晶体。
影响胶结物晶体形态的因素是镁离子、硫酸根离子、铁离 子的选择性毒害效应,结果使镁方解石成长为数微米宽的纤 维状或泥晶状陡斜菱面体。
4、交代作用 (1)白云石化作用 雾心亮边构造:在 污浊白云石的外缘形成

岩石学-沉积岩第五章-碎屑岩-1

岩石学-沉积岩第五章-碎屑岩-1

孔 隙
碎 屑 颗 粒
基 质
胶结物
第二节
1.碎屑本身的结构
(1)粒度
陆源碎屑岩的结构
碎屑颗粒的大小称为粒度。粒度是以颗粒直径来度量的。
粗砾 >64mm 64-4mm 4-2mm 0.5-2mm 0.5-0.25mm 0.25-0.05mm 0.05-0.005mm <0.005mm

中砾 细砾 粗砂
3)常见的砾岩类型
.石英岩砾岩:砾石以石英岩、燧石岩、 脉石英等为主,中-细砾级,分选、磨圆较好, 颗粒支撑。常见胶结物为石英、方解石、赤铁 矿等。
.火山岩砾岩:砾石主要为火山岩或火山 凝灰岩,单成分或复成分,多中砾级,中等分 选磨圆,常含砂基或混基,砂基成分与砾石成 分相近,但有较多石英、长石单晶。胶结物通 常为泥质、钙质或铁质。
嵌在一个光性一致的大晶体内。方解石、石膏、硬
石膏、重晶石、沸石等胶结物易形成这种结构。
1). 胶结类型 碎屑和填隙物之间的关系称胶结类型, 胶结类型划分为以下几种:
基底式胶结 接触式胶结 孔隙式胶结
镶嵌式胶结
基底式胶结(Basal cement-ation)
填隙物含量较多,碎
粒分选、磨圆度好,颗粒支撑;基质极少,胶结物
主要为硅质、海绿石。以孔隙式和镶嵌式胶结类型
为主。硅质胶结物为主时,常形成石英自生加大结
构。
.石英砂岩的古环境意义
纯净的石英砂岩具有高成分成熟度和结
构成熟度,通常代表砂粒经过成河流长时间 搬运之后,又在滨岸浪的作用下,反复冲洗 的结果。石英砂岩多形成于滨—浅海砂质海 岸沉积环境。
A, 微晶结构,
作用阶段。
B, 镶嵌粒状结构, C, 栉壳状结构, D, 加大边结构,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
地 层 室
3 术语和定义 3.1 成岩阶段 碎屑岩成岩阶段指碎屑沉积物沉积后经各种成 岩作用改造直至变质作用之前所经历的不同地质历 史演化阶段。 同生成岩阶段 (syndiagenetic stage)
成岩阶段
早成岩阶段 (early diagenetic stage) 中岩阶段 (middle diagenetic stage)
6 各成岩阶段的标志 6.2酸性水介质(含煤地层)碎屑岩成岩阶段的主要标志 6.2.2.1 中成岩阶段A期 a)其古温度指标、有机质成熟度指标、泥岩中I/S混层 演化指标与淡水-半咸水中成岩阶段A期相同; b)在富含石英和长石的砂岩中,自生矿物组合以石英加 大和自生高岭石发育为特点,可见长石加大、自生钠长石、 方解石、菱铁矿、浊沸石、硬石膏、伊利石、绿泥石、伊 利石/蒙皂石 (I/S )混层粘土矿物以及石英颗粒裂缝愈合 和高岭石向绿泥石转化等现象; c)在中成岩阶段A期后期,水介质开始由酸性向碱性转 变,出现含铁方解石、铁白云石等晚期碳酸盐的胶结、交 代作用; d)颗粒间主要呈线状接触,少量凹凸接触; e)除部分碳酸盐溶解外,以长石和火山岩屑颗粒溶解为 地 主,形成粒内溶孔、铸模孔等次生孔隙,岩石具有孔径大 层 室 喉道窄的特征,另外还可见裂缝。
6 各成岩阶段的标志 6.1淡水—半咸水水介质碎屑岩成岩阶段的主要标志 6.1.1.2 早成岩阶段B期
a)古温度范围为大于65℃~85℃; b)有机质半成熟,镜质体反射率Ro为0.35%~0.5%,最大热 解峰温Tmax为430℃一435℃,孢粉颜色为深黄色,热变指数 TAI为2.0~2.5; c) 岩石由半固结到固结,孔隙类型以原生孔隙为主,并可 见少量次生孔隙; d)泥岩中蒙皂石明显向伊利石/蒙皂石(I/S)混层粘土矿 物转化。蒙皂石层占70%—50%; e)砂岩中可见I级石英次生加大,加大边窄或有自形晶面, 扫描电子显微镜下可见石英小雏晶,呈零星或相连成不完整 晶面,书页状自生高岭石较普遍; f)在有的砂岩基质中有云雾状隧石; g)可见一些矿物交代和转化现象。
6 各成岩阶段的标志 6.2酸性水介质(含煤地层)碎屑岩成岩阶段的主要标志
6.2.2.2 中成岩阶段B期
a)其古温度指标、有机质成熟度指标、泥岩中伊 利石/蒙皂石 (I/S )混层演化指标与淡水-半咸水中成 岩阶段B期相同; b)砂岩中的自生矿物以铁方解石、铁白云石发育 为特征,石英加大可达III级,可见长石加大以及榍石、 硬石膏、重晶石等; c)砂岩中高岭石、伊利石/蒙皂石 (I/S )混层粘 土矿物含量下降,伊利石、绿泥石成为主要粘土矿物 类型; d)孔隙类型以裂缝为主,少量溶孔; e)颗粒间呈线一凹凸状接触或缝合状接触。
地 层 室
6 各成岩阶段的标志 6.2酸性水介质(含煤地层)碎屑岩成岩阶段的主要标志 6.2.3 晚成岩阶段 a)其古温度指标、有机质成熟度指标、泥岩中 I/S混层演化指标与淡水-半咸水晚成岩阶段相同; b)砂岩中自生矿物为铁白云石、石英加大 (可达 IV级)、少量榍石等,粘土矿物有绿泥石、伊利石、 黑云母挤压变形,有的被菱铁矿交代或伊利石化; c)孔隙类型以裂缝为主,少量长石岩屑溶孔; d)颗粒间呈线一缝合状接触,有的可见石英颗 粒压裂及愈合现象。
地 层 室
6 各成岩阶段的标志 6.1淡水—半咸水水介质碎屑岩成岩阶段的主要标志 6.1.3 晚成岩阶段
a)古温度范围>175℃~200℃; b)有机质处于过成熟阶段,镜质体反射率Ro>2.0%~ 4.0%,最大热解峰温Tmax>490℃,孢粉颜色为黑色,热 变指数TAI>~4.0; c)岩石已极致密,颗粒呈缝合接触及有缝合线出现; d)砂岩中可见晚期碳酸盐类矿物以及钠长石、榍石等 自生矿物,石英加大属IV级,颗粒间呈缝合状接触,自 形晶面消失; e)砂岩和泥岩中代表性粘土矿物为伊利石和绿泥石, 并有绢云母、黑云母,混层已基本消失。
4成岩阶段划分的依据
a)自生矿物分布、形成顺序;
b)粘土矿物组合、伊利石/蒙皂石 (I/S)混层粘土矿物
的转化以及伊利石结晶度; c)岩石的结构、构造特点及孔隙类型; d)有机质成熟度; e)古温度:
—流体包裹体均一温度; 地 层 室
—自生矿物形成温度; —伊利石/蒙皂石 (I/S) 混层粘土矿物的演化
地 层 室
6 各成岩阶段的标志 6.3碱性水介质(盐湖盆地)碎屑岩成岩阶段的主要标志 6.3.2.1 中成岩阶段A期 a)其古温度指标、有机质成熟度指标与淡水-半咸 水中成岩阶段A期相同; b)颗粒间以点-线接触为主,局部出现凹凸接触; c)(含)铁碳酸盐类胶结物大量出现,常呈自形粉 晶—细晶,硬石膏和钙芒硝呈孔隙式胶结,石英次生 加大属II级,自形晶面发育,扫描电子显微镜下颗粒 表面被较完整的自形晶包裹或有自生石英晶体出现, 部分长石钠长石化,方沸石逐渐减少直至消失; d)泥岩中粘土矿物以伊利石一绿泥石 (I-C)组合和 伊利石一绿泥石一伊利石/蒙皂石混层((I-C-I/S)组合为 主,偶见高岭石,伊利石/蒙皂石(I/S )混层均为有序 混层(蒙皂石层<20%); e)长石等碎屑颗粒及碳酸盐常被溶解。次生孔隙 发育。本期末溶蚀缝开始出现。
晚成岩阶段 (late diagenetic stage)
表生成岩阶段 (epidiagenetic stage)
地 层 室
3 术语和定义
3.2 同生成岩阶段
沉积物沉积后尚未完全脱离上覆水体时发生的 变化与作用的时期称同生成岩阶段。
3.3表生成岩阶段
处于某一成岩阶段弱固结或固结的碎屑岩,因 构造抬升而暴露或接近地表,受到大气淡水的溶蚀, 发生变化与作用的阶段。
地 层 室
6 各成岩阶段的标志 6.1淡水—半咸水水介质碎屑岩成岩阶段的主要标志
6.1.2.1中成岩阶段A期
a)古温度范围为>85℃~140℃; b)有机质低成熟一成熟,镜质体反射率Ro>0.5%~1.3%,最大热解 峰温Tmax>435℃~460℃,孢粉颜色为桔黄—棕色,热变指数 TAI=2.5~3.7; c)泥岩中的伊利石/蒙皂石 (I/S)混层粘土矿物,蒙皂石层占 <50%~15%; d)砂岩中可见晚期含铁碳酸盐类胶结物,铁白云石常呈粉晶—细 晶,可见其它自生矿物如钠长石、浊沸石、片沸石、方沸石等; e)石英次生加大属II级,自形晶面发育,有的见石英小晶体,在 扫描电子显微镜下,多数石英颗粒表面被较完整的自形晶面包裹; f)砂岩中粘土矿物,可见自生高岭石、伊利石/蒙皂石 (I/S)混 层粘土矿物、呈丝发状自生伊利石、叶片状或绒球状自生绿泥石等, 蒙皂石基本上消失; g)长石、岩屑等碎屑颗粒及碳酸盐胶结物常被溶解,孔隙类型除 地 层 部分保留的原生孔隙外,以次生孔隙为主。

6 各成岩阶段的标志 6.1淡水—半咸水水介质碎屑岩成岩阶段的主要标志 6.1.2.2 中成岩阶段B期 a)古温度范围为>140℃~175℃; b)有机质处于高成熟阶段,镜质体反射率Ro>1.3%~ 2.0%,最大热解峰温Tmax>460℃~490℃,孢粉颜色为 棕黑色,热变指数TAI=3.7~4.0; c)泥岩中伊利石/蒙皂石 (I/S)混层粘土矿物,蒙皂石比 例小于15%; d)砂岩中石英次生加大为III级,多呈镶嵌状,高岭石 明显减少或缺失,有的可见含铁碳酸盐类矿物、浊沸石 和钠长石化; e)扫描电子显微镜下,颗粒间石英自形晶体相互连接, 岩石致密,有裂缝发育。
5 同生成岩阶段的主要标志
a)岩石 (沉积物)疏松,原生孔隙发育; b)海绿石主要形成于本阶段; c)鲕绿泥石的形成; d)同生结核的形成; e)沿层理分布的微晶及斑块状泥晶菱铁矿; f)分布于粒间及粒表的泥晶碳酸盐,有时呈纤维状及微
地 层 室
粒状方解石; g)有时有新月形及重力胶结; h)在碱性水介质 (盐湖盆地)中析出的自生矿物有粉末 状和草莓状黄铁矿、他形粒状方沸石、基底式胶结或 斑块状胶结的石膏、钙芒硝,可见石英等硅酸盐矿物 的溶蚀现象等。
地 层 室
6 各成岩阶段的标志 6.3碱性水介质(盐湖盆地)碎屑岩成岩阶段的主要标志
地 层 室
6 各成岩阶段的标志 6.3碱性水介质(盐湖盆地)碎屑岩成岩阶段的主要标志 6.3.1.1 早成岩阶段A期 a)其古温度指标、有机质成熟度指标与淡水-半咸 水早成岩阶段A期相同; b)颗粒间以点接触为主; c)原生孔隙发育; d)自生矿物有粒状方沸石、泥晶碳酸盐,无石英 次生加大,古温度低于42℃时石膏及钙芒硝析出并 呈基底式胶结碎屑颗粒,古温度高于42℃时石膏向 硬石膏转化或硬石膏和钙芒硝析出,本期末泥晶含 铁方解石和含铁自云石析出; e)泥岩中粘土矿物以伊利石一绿泥石(I—C)组 合和伊利石一绿泥石一伊利石/蒙皂石混层(I-C-I/S)组 合为主,伊利石/蒙皂石 (I/S )混层主要为有序混层; 地 f)可见石英、长石溶蚀现象。 层 室
6 各成岩阶段的标志 6.3碱性水介质(盐湖盆地)碎屑岩成岩阶段的主要标志 6.3.1.2早成岩阶段B期 a)其古温度指标、有机质成熟度指标与淡水-半 咸水早成岩阶段B期相同; b)颗粒间点接触为主,部分线接触; c)次生孔隙较发育,形成原生孔隙、次生孔隙 共存的局面; d)自生矿物有亮晶方解石、白云石、含铁方解 石、含铁白云石和泥晶铁白云石、孔隙式胶结的硬 石膏相钙芒硝,石英次生加大属I级; e)泥岩中粘土矿物以伊利石一绿泥石 (I—C)组 合和伊利石—绿泥石一伊利石/蒙皂石混层(I-CI/S )组合为主,少见高岭石或蒙皂石,伊利石/蒙 皂石(I/S )混层为有序混层 (蒙皂石层占20%~25%); f)可见长石、碳酸盐和方沸石溶蚀。
中华人民共和国石油天然气行业标准
SY/T 5477-2003
代替SY/T 5477-92
碎屑岩成岩阶段划分
The division of diagenetic stages in clastic rocks
地 层 室
碳酸盐成岩阶段划分
1 范围
相关文档
最新文档