【机械类文献翻译】过滤阴极真空电弧镀膜技术所制得氧化铝薄膜的结构和特性
真空镀铝薄膜概述及工艺讲解

真空镀铝薄膜概述及工艺一、概述真空蒸镀金属薄膜是在高真空(10-4mba以上)条件下,以电阻、高频或电子束加热使金属熔融气化,在薄膜基材的表面附着而形成复合薄膜的一种工艺。
被镀金属材料可以是金、银、铜、锌、铬、铝等,其中用的最多的是铝。
在塑料薄膜或纸张表面镀上一层极薄的金属铝即成为镀铝薄膜或镀铝纸。
用于包装上的真空镀铝薄膜具有以下特点:(1)和铝箔相比大大减少了铝的用量,节省了能源和材料,降低了成本。
复合用铝箔厚度多为7~9um,而镀铝薄膜的铝层厚度约为400Å(0.04um)左右,其耗铝量约为铝箔的1/200,且生产速度可高达700m/min。
(2)具有优良的耐折性和良好的韧性,很少出现针孔和裂口,无揉曲龟裂现象,对气体、水蒸汽、气味、光线等的阻隔性提高。
(3)具有极佳的金属光泽,光反射率可达97%;且可以通过涂料处理形成彩色膜,其装潢效果是铝箔所不及的。
(4)可采用屏蔽或洗脱进行部分镀铝,以获得任意图案或透明窗口,能看到包装的内容物。
(5)镀铝层导电性能好,能消除静电效应,尤其包装粉末状产品时,不会污染封口部分,保证了包装的密封性能。
(6)对印刷、复合等后加工具有良好的适应性。
由于以上特点,使镀铝薄膜成为一种性能优良、经济美观的新型复合薄膜,在许多方面已取代了铝箔复合材料。
主要用于风味食品、日用品、农产品、药品、化妆品以及香烟的包装。
黄山永新股份有限公司生产真空镀铝薄膜已有10多年的历史,主要产品有VMPET、VMCPP、VMBOPP、VMBOPA、VMPE、VMPVC以及彩虹膜、激光防伪膜、网布等。
2002年公司与英国REXAM公司进行技术合作,将其CAMPLUS技术运用在镀铝工艺中,大幅度提高了真空镀铝薄膜的铝层牢度、阻隔性能,现已大量替代铝箔应用在奶粉、药品等包装领域。
二、真空蒸镀原理将卷筒状的待镀薄膜基材装在真空蒸镀机的放卷站上,将薄膜穿过冷却辊(蒸镀辊)卷绕在收卷站上,用真空泵抽真空,使蒸镀室中的真空度达到4×10-4mba以上,加热蒸发舟使高纯度的铝丝在1300℃~1400℃的温度下融化并蒸发成气态铝。
DLC(类金刚石膜层介绍)

RF or DC power supply
Cathode
Permanent magnets
N
SS
+E
N
Ring Electrode
Negative Glow Plasma
Sputtered atoms
Work piece
Ar+ 离子轰击靶材表面。
Al 原子自靶材表面溅射并沉积到塑料基 体表面。
– 通过施加一定的偏压, 使得等离子中 的离子获得一定的能量, 层积于基体 表面,
PVD (磁控溅射)
CVD (PECVD)
FCVA
镀膜粒子 能量峰值 镀膜气压 镀膜温度
原子 ~0.1eV 5E-3 Torr ~200 ºC
原子团 ~0.2eV 1E-2 Tor >200 ºC
离子 20 to 5000eV 1E-6 Torr <80 ºC
以碳膜为例:
膜层密度 (g/cm3) 膜层硬度 (GPa) 氢含量 工作温度 (无 O2) 工作温度 (有 O2)
(2)纳峰的主要业务: 采用FCVA技术, 制备和沉积C材料, 以获得最优良的DLC (taC)薄膜.
2. DLC (Diamond Like Carbon(DLC) 类金刚石碳膜
DLC 结构
Diamond
Graphite
DLC
Diamond structure (sp3)
Graphite structure (sp2)
1. 表面处理技术介绍
常规 真空层积
化 学 气 相 层 积
物 理 气 相 层 积
FCVA (阴极过滤弧) 真空镀膜
膜层(表面原子排列)有序可控 原子排练致密,
膜层(表面原子排列)有序可控
氧化铝薄膜的制备与表征

氧化铝薄膜的制备与表征氧化铝(Al2O3)是一种重要的无机氧化物材料,它不仅在工业生产中有广泛应用,而且在科学研究领域也发挥着重要作用。
在各种氧化物中,氧化铝薄膜由于其机械强度高、绝缘性能优异、化学稳定性好等特点而备受关注。
因此,探索高质量氧化铝薄膜的制备方法和表征技术具有重要意义。
氧化铝薄膜的制备方法目前,制备氧化铝薄膜的方法主要包括物理气相沉积(PVD)、化学气相沉积(CVD)、溶胶-凝胶法(sol-gel)、电化学沉积(ECD)等。
PVD方法是将金属铝用激光、电子束等方式加热,使其蒸发并沉积在固体基底表面上后,用氧气等高能粒子轰击其表面,使其形成氧化物。
该方法获得氧化铝晶体薄膜具有良好的结晶性和致密性,但需要高成本的设备和高真空环境。
CVD方法是将有机铝化合物挥发加热,使其与空气中的氧气反应,然后在基底表面上反应成固态氧化铝。
该方法具有较高的化学成分均匀性和较高的纯度,但需要较高的反应温度,反应物有毒性,容易导致膜的致密性和结晶性不足。
溶胶-凝胶法是将金属铝盐或有机铝化合物与有机醇等混合物制备成溶胶,然后沉积在固体基底上,在高温下热处理而成。
该方法具有较低的成本、易于控制薄膜厚度和形状,但需要较长时间的热处理和加热过程,且存在较多的溶胶聚合现象。
ECD方法是将铝基底电极置于含有氧化铝材料的电解质溶液中,使其在电位差的作用下,通过氧化还原反应形成薄膜。
该方法成本低、易于操作、反应条件温和,但膜厚较小,需多次电化学循环来增加膜厚度。
因此,制备氧化铝薄膜的方法各有优缺点,需要根据实际应用需求和条件选择适合的方法。
氧化铝薄膜的表征技术对于氧化铝薄膜的表征技术,目前主要有X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、原子力显微镜(AFM)、紫外-可见吸收光谱(UV-Vis)等技术。
XRD技术可以用于确定氧化铝薄膜中晶体结构和晶粒尺寸大小,同时还可以用来分析杂质和缺陷等。
SEM技术可以用于分析氧化铝薄膜的表面形貌、粒度和分布等信息。
【机械类文献翻译】过滤阴极真空电弧镀膜技术所制得氧化铝薄膜的结构和特性

过滤阴极真空电弧镀膜技术所制得氧化铝薄膜的结构和特性摘要摘要::通过过滤阴极真空电弧镀膜技术制备氧化铝薄膜时,其内部结构、组成、形态、光学和机械性能被详尽的描述,这些都与制备时氧气的流量有关。
薄膜结构、组成、形态和性能都是很重要的,随着氧气流量的增加,薄膜的结构也由非晶体经过一系列变化到单晶体,随着O/Zr原子比率的增加和Z离子由低氧化作用的状态转化为Zr4+再一次形成非晶体。
形成这样的结构是由于其内部结构的变化而引起的,并且影响其形态和机械性能,以致这种非晶体薄膜表面有一些小簇,其光滑程度就像低硬度的多晶体薄膜。
当反射指数和系数相对接近最大值时,在发射率和光学带宽随着O/Zr比增加时,薄膜的组成来决其光学性能而非其密度。
1.1.说明说明在大气压力下由于三种不同温度有多种不同靶形态结构,单晶体时低于1170O C,四面体时为1170-2370O C,2370O C为立方体,知道2680O C时形成金属。
Zr有很高的反射指数,大光学带宽间距,和很低的光损失及在0.3-8范围内高透明度,所以被广泛的应用于光学领域。
此外,Zr具有很高的电介质,低泄露量等特点,最有可能代替做电解质的晶体管。
进而,由于Zr很低的传热性,它成为了装置中隔热层的首选。
Z其他的特性如:高硬度、高抗氧性也使其成为机械材料中的热门。
至今为止,已经有很多制备Z的方法,例如反应磁控溅射,离子辅助反应溅射,化学气相沉积等。
薄膜特性的优劣取决于制备过程及其参数。
过滤阴极真空电子弧镀膜技术,在低电压和高电流状态下工作。
通过磁性机械过滤器来防止微粒从阴极发射。
它提供了一种具有很高能量的沉积离子源,远大于相应的热蒸发和磁控溅射。
能有效去处宏观无用微粒,很明显能提高薄膜质量并拓展其应用。
固有的高能量提高薄膜的附着性和密度。
由于能力是离子辅助沉积中最重要的参数,这种制备的方法已经有了一些应用,已经应用于在高热平衡和高SP3状态下碳薄膜的制备,还合成了一些金属氧化物的薄膜。
ZnO:Al薄膜的结构、电学性质和光学性质

520 nm附近绿光发射的研究,发现其可能起源于氧空位(呦施主与锌填隙(Znf)
施主同锌空位(圪。)受主之间的复合跃迁发射。
关键词:ZnO:AI薄膜;金属导电性;负磁电阻;光学带隙;绿光发射
天津大学硕士学位论文
ABSTRACT
ZnO is a direct wide band-gap semiconductor material,which is widely used in optoelectronic devices.in this work,ZnO:AI thin films were fabricated on glass substrates by RF magnetron sputtering.The dependence of substrate temperature and 02 flow with the structural,electrical properties and optical properties were
所制备的样品均表现出很好的透光性,透射率平均在80%以上。所有样品 的光学带隙均大于未掺杂样品的光学带隙,同时发现导电能力越强的样品(基底 温度为550℃的样品和02流量为0.1 seem的样品)其光学带隙越宽,这可以用 Burstein.Moss效应来解释。并且,通过对02流量不同的样品光致发光谱中
真空阴极弧论文:真空阴极弧制备TiAlN薄膜的工艺及性能研究

真空阴极弧论文:真空阴极弧制备TiAlN薄膜的工艺及性能研究【中文摘要】真空阴极电弧离子镀作为物理气相沉积的一种方法,尤其适用于在金属表面制备各种金属膜或化合膜,本文用该方法制备了TiAlN薄膜,并对结构和性能进行分析。
TiAlN薄膜具有优良的高温耐腐蚀和抗氧化能力,,而且其具有比TiN更好的耐摩性,具有广阔的应用前景。
在本文中,我们用真空阴极弧离子镀制备了不同氮气分压和不同偏压模式下的TiAlN薄膜,使用的靶材是Ti、A1合金靶,原子比Ti(50):Al(50),基片采用不锈钢。
实验中发现膜层的结构和性能随工艺参数的变化而变化,分别用XRD、SEM、AFM对膜层的元素组成、晶体结构和表面形貌进行分析,此外还分析了不同工艺参数下膜层的纳米硬度、杨氏模量和电化学腐蚀。
【英文摘要】The cathodic vacuum arc,as one of zhe physical vapourde position, it especially can be used to prepare metallic compound coatings or metal coatings with high melting Point on metal surface.TiAIN is a very promising material for wear resistant coatings because of its excellent high temperature corrosion and oxidation resistance which results in higher hardness and were resistance, in comparison to TiN.A series of titanium-aluminium-nitride (Ti-Al-N, multi-phase) films were deposited on silicon wafer and steel substrates bycathodic vacuum arc technique in N2/Ar2 gas mixtures and different negative bias voltages, using a compoundTi(50):Al(50) target. It was found that the microstructure and mechanical properties of the composite films were strongly dependent on the deposition parameters. The chemical composition, crystalline microstructure, film deposition rate and surface morphology of the films were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscope (SEM) coupled with an energy dispersive X-ray analysis system (EDX), respectively. The hardness and Young’s modulus, wear performance and corrosion behavior of the Ti-Al-N (multi-phase) films at different N2 partial pressure were analyzed and explained on the basis of microstructure, mechanical properties and wear mechanisms.【关键词】真空阴极弧薄膜氮气分压基底偏压 TiAlN【英文关键词】cathodic vacuum arc film bias negative bias voltages TiAlN【目录】真空阴极弧制备TiAlN薄膜的工艺及性能研究摘要4-5ABSTRACT5目录6-7第一章绪论7-12 1.1 薄膜材料的特点及其分类7 1.2 物理气相沉积(PVD)7-9 1.3 等离子体及其在薄膜沉积中的作用9 1.4 离子轰击在离子镀过程中的作用9-11 1.5 本论文主要目的和内容11-12第二章真空阴极弧镀膜工作原理12-18 2.1 真空阴极弧等离子体沉积技术12-14 2.2 真空阴极弧离子镀特点14 2.3 真空阴极弧制备薄膜的应用14-15 2.4 真空阴极弧发展和优点15-16 2.5 Ti-Al-N 薄膜的特点及国内外研究现状16-18第三章实验设备及方法18-23 3.1 实验设备简介18-19 3.2 实验用材料及预处理19 3.3 实验步骤19-20 3.4 薄膜组织结构的分析20-21 3.5 薄膜的性能测试21-23第四章氮气分压对TiAlN薄膜结构和性能的影响23-30 4.1 N_2分压对TiAlN薄膜的结构及性能影响23 4.2 实验方法及步骤23-24 4.3 工艺参数24 4.4 实验结果及分析24-30第五章偏压模式对TiAlN薄膜的影响30-39 5.1 脉冲偏压大小对薄膜性能的影响30-36 5.2 脉冲偏压占空比对TiAlN薄膜性能的影响36-39结论39-41致谢41-42参考文献42-43。
机械工程英语第二版叶邦彦_汉语翻译(全本书翻译

•Types of Materials 第一单元Unit1 材料的类型Materials may be grouped in several ways. Scientists often classify materials by their state: solid, liquid, or gas. They also separate them into organic (once living) and inorganic (never living) materials.材料可以按多种方法分类。
科学家常根据状态将材料分为:固体、液体或气体。
他们也把材料分为有机材料(曾经有生命的)和无机材料(从未有生命的)。
For industrial purposes, materials are divided into engineering materials or nonengineering materials. Engineering materials are those used in manufacture and become parts of products.就工业效用而言,材料被分为工程材料和非工程材料。
那些用于加工制造并成为产品组成部分的就是工程材料。
Nonengineering materials are the chemicals, fuels, lubricants, and other materials used in the manufacturing process, which do not become part of the product.非工程材料则是化学品、燃料、润滑剂以及其它用于加工制造过程但不成为产品组成部分的材料。
Engineering materials may be further subdivided into: ①Metal ②Ceramics ③Composite ④Polymers, etc.工程材料还能进一步细分为:①金属材料②陶瓷材料③复合材料④聚合材料,等等。
磁过滤阴极真空电弧法

磁过滤阴极真空电弧法磁过滤阴极真空电弧法是一种常用的表面涂层技术,其主要原理是利用磁场和电弧等物理效应,将金属材料蒸发成粒子,然后在基材表面形成一层薄膜。
这种技术具有高效、高质、高稳定性等优点,被广泛应用于航空、航天、电子、光学等领域。
磁过滤阴极真空电弧法的工艺流程主要包括以下几个步骤:1. 清洗基材表面,去除表面杂质和氧化物等。
2. 将金属材料放置在阴极上,通过电弧加热使其蒸发成粒子。
3. 在阴极周围设置磁场,使蒸发的金属粒子在磁场作用下形成一个稳定的等离子体区域。
4. 金属粒子在等离子体区域中沉积在基材表面上,形成一层薄膜。
5. 对薄膜进行后续处理,如退火、氧化等,以提高其性能。
磁过滤阴极真空电弧法的优点主要有以下几个方面:1. 高效性:该技术可以在较短时间内形成高质量的薄膜,提高生产效率。
2. 高质量:由于金属粒子在等离子体区域中沉积,薄膜具有较高的致密性和均匀性,且表面光洁度高。
3. 高稳定性:磁过滤阴极真空电弧法可以在较低的气压下进行,减少了气体分子对薄膜的干扰,提高了薄膜的稳定性。
4. 可控性:通过调节电弧功率、磁场强度等参数,可以控制薄膜的厚度、成分和结构等性质。
磁过滤阴极真空电弧法的应用范围非常广泛,主要包括以下几个方面:1. 航空航天领域:该技术可以制备高温、高强度、高耐腐蚀性的涂层,用于航空发动机、涡轮叶片等部件的表面保护。
2. 电子领域:该技术可以制备高精度、高稳定性的薄膜,用于制造半导体器件、光电器件等。
3. 光学领域:该技术可以制备高透明度、高反射率、高抗反射性的薄膜,用于制造光学镜片、滤光片等。
总之,磁过滤阴极真空电弧法是一种高效、高质、高稳定性的表面涂层技术,具有广泛的应用前景。
随着科技的不断发展,该技术将会得到更加广泛的应用和推广。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
过滤阴极真空电弧镀膜技术所制得氧化铝薄膜的结构和特性摘要摘要::通过过滤阴极真空电弧镀膜技术制备氧化铝薄膜时,其内部结构、组成、形态、光学和机械性能被详尽的描述,这些都与制备时氧气的流量有关。
薄膜结构、组成、形态和性能都是很重要的,随着氧气流量的增加,薄膜的结构也由非晶体经过一系列变化到单晶体,随着O/Zr原子比率的增加和Z离子由低氧化作用的状态转化为Zr4+再一次形成非晶体。
形成这样的结构是由于其内部结构的变化而引起的,并且影响其形态和机械性能,以致这种非晶体薄膜表面有一些小簇,其光滑程度就像低硬度的多晶体薄膜。
当反射指数和系数相对接近最大值时,在发射率和光学带宽随着O/Zr比增加时,薄膜的组成来决其光学性能而非其密度。
1.1.说明说明在大气压力下由于三种不同温度有多种不同靶形态结构,单晶体时低于1170O C,四面体时为1170-2370O C,2370O C为立方体,知道2680O C时形成金属。
Zr有很高的反射指数,大光学带宽间距,和很低的光损失及在0.3-8范围内高透明度,所以被广泛的应用于光学领域。
此外,Zr具有很高的电介质,低泄露量等特点,最有可能代替做电解质的晶体管。
进而,由于Zr很低的传热性,它成为了装置中隔热层的首选。
Z其他的特性如:高硬度、高抗氧性也使其成为机械材料中的热门。
至今为止,已经有很多制备Z的方法,例如反应磁控溅射,离子辅助反应溅射,化学气相沉积等。
薄膜特性的优劣取决于制备过程及其参数。
过滤阴极真空电子弧镀膜技术,在低电压和高电流状态下工作。
通过磁性机械过滤器来防止微粒从阴极发射。
它提供了一种具有很高能量的沉积离子源,远大于相应的热蒸发和磁控溅射。
能有效去处宏观无用微粒,很明显能提高薄膜质量并拓展其应用。
固有的高能量提高薄膜的附着性和密度。
由于能力是离子辅助沉积中最重要的参数,这种制备的方法已经有了一些应用,已经应用于在高热平衡和高SP3状态下碳薄膜的制备,还合成了一些金属氧化物的薄膜。
然而对我们最有利的是,很少有关过滤阴极真空电子弧镀膜技术制备ZrO2薄膜的知识。
我们现在的工作是系统研究在不同O2流量与ZrO2薄膜的结构、组成、表面形态和性质之间的关系。
我们的结论表明薄膜的结构、组成特性都与O2流量有关系。
过滤阴极真空电子弧镀膜技术所制的薄膜特性与其他方法相比,更说明了该方法的优越性。
2.实验图1为制备设备。
该图已经详细反应了这个系统,各个部分都表现了出来。
该系统有一个双倍滤光器,可以使弧自身发射出微粒。
阴极Zr原子在120A电流下,阴、阳极瞬间接触点燃喷出的浆体,该浆体是从一个400mT的磁场放射出来并压缩的。
一个旋转泵和一个冷凝泵可使这个系统的压力达到4×10-6T。
O2通过一个有很多小孔的铜管进入Zr靶附近区域。
这种发射O2的方式可使O2电离到最大程度,因此增加了与浆体的接触使得Zr与O2之间发生充分的反应。
O2流量可选择10-98sccm,在制备过程中,随着O2流量的增加,靶的氧化更加充分。
O2增加使得靶材充分氧化,并且损失了冷凝粒子,使得制备的速率75nm/s降至35nm/s。
`在室温下薄膜生长在n-si和石英表面。
基片被放在制备室之中,按顺序被丙酮、酒精和未电离的水清洗。
所制得的薄膜厚度大约在200nm。
通过由CUKα做源的XRD法可得出薄膜所处阶段和晶体结构。
光谱计记录下反射率等参数,光学特性也被软件检测。
主要特征和组成分析被XPS通过ALK辐射测得到。
不可使用没有清洗过的样品溅射,以免所溅射得到的薄膜化学组成发生变化。
图13.3.结果结果3.1结构图2表明在不同O2流量ZrO2薄膜由XRD测得的结构,在10sccm时,在曲线中对应着边缘处,而系统峰值在32.4o C附近,为标准的结构。
这个高峰来自于没有完全氧化的ZrO固体。
由于类似现象可看出峰值点又是不对称的和急剧变化处。
当O2流量增加至20sccm,一个最高峰是当晶体阶段,相对弱的高峰是多晶体阶段。
氧气流量决定峰值。
我们可以检测出它是怎么影响薄膜结构的。
在35sccm时,出现了更多的弱高峰,在m(200)处峰值变得很弱,在m(-202m)变得很强。
然而当氧气的流量增加至65sccm时,薄膜由多晶体变为无定形,在弯曲处出现更宽的高峰。
结构的不同反应出02流量在薄膜结构形成中扮演了很重要的角色。
正在一定流量范围内(20-50sccm)薄膜保持在多晶体状态,而在纯单晶体阶段在不同的范围内。
3.2化学组成和化学状态通过典型的XPS光谱测量可以得到由光电离子及Zr和O转变达到高峰,在与空气接触后的抽样中经过观察C1S是主要表面组成部分。
在Zr3d和O1S处出现两个高峰。
图4中可看到常态的元素和由XPS测得的局部光谱。
频谱非常接近标准单晶体的ZrO2。
两个高峰,Zr3d5/2和Zr3d3/2时的能量分别为181.8ev和184.2ev,非常接近在中标准ZrO2,并且是对称的,在氧化状态的薄膜中只有它。
他们的强度比率和导致旋转轨道在1.5ev和2.4ev的能量间隔和其他研究是一致的。
一个不对称的高峰能分解为的529.6evLBE能量和531ev的HBE,与报告中的那些类似。
相比之下,薄膜沉积速率很低时,例如35sccm,Zr3d光谱是以某种方式不同的而O1S频率是十分类似的。
出现较低能量接近其边缘,有形式为Zr,Zr n+,(n=1,2,3)氧化物存流量的不同可转变为使得和发生充分的反应。
氧化程度的不同也被在。
可得出随着O2表明,薄膜中O和Zr的原子比率可由它们在峰值区域的灵敏度算出。
O1S的HBE是一个小片段所以高峰不能被确定。
正如预料,O/Zr比增加可导致更多氧化。
可看到在薄膜沉积速率为时,O/Zr比为1.98:1接近原子比为2:1,在65sccm及起以上,薄膜3.3表面形态五表现了在65sccm时典型的薄膜。
在薄膜表面,小簇由相同的冷凝的原子成。
这表面相当干净和光滑,RMS粗燥率小于0.1nm在1um×1um区域内。
上面提到的高能量轰击微粒使得形成干净、光滑的表面,这些微粒运动时损失粒子,或者促进原子和提供足够能量运动到生长表面相结合,再一次建议流量的边界值不影响原子的运动,与XRD测量结果一致。
流动速率XRD分析出的薄膜结构的改变有关。
有趣的是,薄膜的形态似乎也被O2在10sccm时,薄膜表面的簇会很大。
这种簇的变化可以反映出薄膜表面粗糙。
XRD分的流量有关。
换句话说,与无定型薄膜析出的薄膜结构的改变说明薄膜表面结构与O2相比较,这种多晶体薄膜在20-50sccm速率下在表面形成巨大的簇并且看起来很粗糙。
3.4机械性能薄膜的硬度是测量抵制塑性变形和确定载荷符合凹行区域的峰值。
实际上,硬度通过卸载数据所构成能量方程来表现。
薄膜的机械性能作为流量方程显示在图9,其值平均至少出现了3次,微硬度和是依赖于氧气流量。
当流量由10sccm增加到20sccm,硬度几乎维持为13.6GP,再增加流量会导致硬度急速提高。
在35。
50,硬度仍然在增加,超出50sccm后,薄膜开始变软,并且在65sccm会降至13.4GPA。
显然,硬度的改变非常接近在XRD式样中观察的。
这表明硬度是由薄膜的结构确定而非特性确定其硬度,这与KAO的报告结果不一致。
4.结论通过过滤阴极真空电弧镀膜技术制备薄膜,研究了在不同氧气流量时,薄膜的结构、组成、形态、光学性能和机械性能,最终的流量达到了98sccm。
经研究发现O2流量的增加,薄膜的结构由无的流量是薄膜结构、组成、特性的重要参数。
随着O2定型到不同氧化率的单晶体再到无定型;随着0/Zr原子比的增加,Zr原子由低氧化率到Zr。
这种与氧气流量有关的结构趋势会导致薄膜组成的改变并且决定表面形态和薄膜的机械性能。
g.q.yub.k.tay_z.w.zhaoStructure and propertiesof zirconium oxide thin filmsprepared by filtered cathodic vacuum arcSchool of Electrical and Electronic Engineering,Nanyang TechnologicalUniversity,Singapore,639798,SingapoReceived:19September2003/Accepted:17January2004Published online:1April2004•©Springer-Verlag2004ABSTRACT Zirconium oxide(ZrO2)thin films deposited atroom temperature by the filtered cathodic vacuum arc(FCVA)technique are detailed in terms of the film structure,composition, morphology,and optical and mechanical properties,which are tailored by the oxygen(O2)flow rate during deposition.The relationships between the film structure,composition,morphology, and properties are emphasized.With an increasing flow rate,the film evolves in structure from amorphous,through a pure monoclinic phase with varying preferential orientation,to amorphous again,accompanied by an increase in the O/Zr atomic ratio and a conversion of Zr ions from low oxidation states into Zr4+.Such a structural trend arises from the change in composition,and influences the film morphology and mechanical properties so that the amorphous films exhibit small clusters on the surface and smoother morphology as well as lower hardness compared with the polycrystalline films.Thefilm composition rather than the density dominates the optical properties,where the transmittance and the optical band gap increase with increasing O/Zr values,while the refractive index and extinction coefficients behave conversely with the lowest refractive index(2.16at550nm) approaching the bulk value(2.2).PACS68.55.Jk;78.66.Nk;68.37.Ps1.IntroductionZirconium oxide(ZrO2)has three temperature dependent polymorphic structures at atmospheric pressure.A monoclinic phase is stable at temperature below1170◦C,a tetragonal between1170and2370◦C,and a cubic from2370◦C to the melting point at2680◦C.ZrO2is widely used in optical fields[1–3],because of its high refractive index,large optical band gap,and low optical loss and high transparency in the0.3–8μm range.In addition,ZrO2is a promising candidate to replace silicon dioxide as the gate dielectric in transistors,due to its high dielectric constant(∼25),lowleakage current level,etc.[4–6].Furthermore,ZrO2has potentialas a thermal barrier coating in devices due to its low thermal conductivity[7,8].Other properties such as high hardness,large resistance against oxidation,also make it interesting as a mechanical material[9].To date,many efforts to prepare ZrO2have been made by various deposition techniques,for example,reactive magnetron sputtering[10–13],ion-assisted reactive sputtering or evaporation deposition[8,14–25],solgelmethods[26],chemical vapor deposition[4,17],and so on.The film properties are generally strongly dependent on the deposition process and parameters.The filtered cathodic vacuum arc technique(FCVA)[27–29],operated at low pressure,low voltage,and high current,effectively eliminates micro-sized(0.1–10μm)macroparticles from being emitting from cathode materials during arcing by means of mechanical,magnetic,or electrical filters,or a combination of these.It also provides an intense source of fully ionized deposition specieswith energies(50∼150eV)greater than counterparts produced in thermal evaporation or magnetron sputtering[30,31].The removal of detrimental macro-particles undoubtedly improves the resulting film quality and extends the application of the deposition technique.The inherent high-energy could increase the film adhesion and the packing density.The full ionization of the deposition species allows tailoring of the film properties with substrate bias,since kinetic energy is one of the most important parameters as in ion beam assisted deposition(IBAD)[8].This technique has been demonstrated in the preparation of a diamond-like carbon film with high thermal stability and a high sp3[32],to fill trenches[33,34],as well as the synthesisof certain metal oxide films[35,36].However,to the best of our knowledge,little work has been reported on ZrO2synthesis by the(FCVA)technique.In the present work,we systematically investigate the structural,chemical composition,optical,and mechanicalproperties of ZrO2films deposited at different oxygen(O2)flow rates by FCVA.The emphasis is placed on the relationships between structure,composition,surface morphology,and properties of the films.Our results disclose that the structural and compositional properties of the films are considerably influenced by the O2flow rate.The variation in compositioninduces structural transformation from amorphous through a pure monoclinic phase to amorphous again,and determines the optical properties,whereas the change in structure controls the mechanical properties and affects the surface morphology.The properties of the films are also crosscomparedwith those of films prepared by other methods to highlight the FCVA features.2ExperimentalA schematic diagram of the FCVA deposition system is shown in Fig.1.The details regarding the main principles of the system have been described elsewhere[37].Briefly,the system incorporates an off-plane double bendfilter,which effectively removesmacro-particles originating from the arc itself.A Zr cathode(99.98%pure)operated at120A dc current is ignited through instant contact between cathode and anode to obtain the plasma,which is steered out by a toroidal magnetic field fixed at40mT to condense on a substrate.The base pressure of the system, evacuated by a rotary pump and a cryo-pump,can reach4×10−6Torr.O2gas(99.99%pure)is led into the region near the Zr target through a copper tube on which many tiny holes are distributed.This way of introducing O2is expected to maximize O2ionization due to its relatively increased collision with the plasma,possibly promoting a chemical reaction between O2and Zr. The O2flow rate chosen here is varied from10to98sccm corresponding to1×10−4to4.6×10−4Torr.During deposition,the deposition rate decreases from75to35nm/min with an increasing O2flow rate as a result of increased.oxidization of the target,and collision-induced loss of condensing particles.The films are grown on n-Si(100)and quartz substrates at room temperature.All the substratesare sequentially cleaned in acetone,alcohol,and de-ionizedwater prior to being loaded into the deposition chamber.All the films being investigated are generally around200nm thick.The film phase and crystal structure are identified by Xray diffraction(XRD)with a Cu Kαsource at1.54Å.Transmittance and reflectance are recorded from200to1100nm with a spectrometer.Optical constants are obtained by fitting optical spectra with Scout software[38]. Core level spectra and compositional analysis areand compositional analysis are carried out by X-ray photoelectronspectroscopy(XPS)with monochromatic Al Kαradiation(1486.6eV).No sputter cleaning of the samples is performed to avoid changes in chemical compositions induced by preferential sputtering.The spectrum obtained iscorrected by an adventitious C1s peak at284.6eV.Surface morphology is measured by atomic force microscopy(AFM)in tapping mode(Dimension3000scanning probe microscope from Digital Instruments).The mechanical properties on a nano-scale are obtained by a nanoindentation techniqueapparatus(Hysitron Inc.)attached to the above AFM equipment.Nanoindentations were made using a Berkovich diamond indenter and the maximum loads applied were500μN.The indenter was loaded at100μN/s,held at peak load for5s and then finally unloaded at100μN/s.3Results3.1StructureFigure2shows theXRDpatterns for ZrO2films deposited at differentO2flowrates.At10 sccm,a broad but symmetric peak centered at around32.4◦is observed in curve(a),indicative of an amorphous structure.The peak is believed to come from an oxygen-deficient Zr-O solidsolution[40].Wong et al.[13]also reported a similar phenomenon,where,however,the peak was unsymmetric and sharp.As the O2flow rate increases to20sccm(Fig.2b)),one peak at33.7◦assigned to(200) planes of monoclinic phase(denoted as m(200))is predominant,accompanied by the appearanceof other weak peaks also from the monoclinic phase.This rapid occurring of diffraction peaks shows that so much oxygen is incorporated that sufficient ZrO2crystallite forms which can be detected.The easy combination between Zr and O is possiblyrelated to charged and therefore active emitted species,as well as further stimulated by energeticZr particles bombarding the surface as in IBAD.At35sccm,in addition to more weak peaks,them(200)peak becomes weaker while the m(-202) peak gets stronger.When the O2flow rate goes up to50sccm,the dominant peak is changed tom(-111)while many more monoclinic peaks are produced.3.2Chemical compositions and chemical statesIt was concluded from a typical XPS survey spectrum(not shown)that besides the peaks contributed by photoelectrons and Auger transitions of Zr and O,C1s is observed as well,which is mainly from surface contamination after exposure of the sample to air.The two strong peaks at 185.9and533.2eV are identified as Zr3d and O1s,respectively.Fig.4presents the normalizedZr3d(a)and O1s(b)XPS local spectra for the film prepared at50sccm.The spectra closely resemble those observed in standard monoclinic ZrO2[42].Two peaks,Zr3d5/2and Zr3d3/2 observed at binding energies of181.8and184.2eV,very near to the values of Zr4+in ZrO2[42], are symmetrical,denoting that only one oxidation state of Zr exists in the film.Their intensityratio(I3d5/2/I3d3/2)and energy interval(∆3d5/2–3d3/2)resulting from spin-orbit splitting are1.5 and2.4eV,in agreementwith other studies[20,42].An asymmetric O1s peak can be decomposed into two components peaked at a low binding energy(LBE)of529.6eV and high binding energy(HBE)of531.6eV, quite comparable with reported ones[14,43].It has been accepted that the LBE peak is assignedto the oxygenin zirconia[14,20,43]while the HBE is attributed to oxygen present in the hydroxide and/or adsorbed oxygen or carbonates or higher-valent oxides[14,42,44,45].Matsuoka et al.[20]ascribed it to oxygen possibly bound to Zr.In contrast,for the film deposited at the low flow rate, i.e.,35sccm,the Zr3d spectrum is somehow different whereas the O1s spectrum is very similar.A shoulder of the Zr3d5/2clearly appears at the lower binding energy side(Fig.4c),indicating that other oxidation states of Zr(Zrn+,n=1,2,3)occur.This shoulder is attributed to Zr suboxides[14,20].It can be concluded from this discrepancy that with increasingflow rate,Zrn+(n≤3)will convert into Zr4+due to a full reactionbetween Oand Zr in the films.This consistent variation in the oxidation state of Zr ions with the film composition was also reported in[20].The atomic ratio of Oto Zr(O/Zr)in the films can be calculated with their respective peak areas cali-brated by their sensitivity factors(0.66,2.1,0.66 forO1s and Zr3d).For the calculation,theO1s HBE peak is not includeddue to its small fraction.As expected,theO/Zr ratio increases with more addition of oxygen(not shown).Note that for the film deposited at50sccm,the O/Zr ratio obtained is approximately1.98: 1,near to the ideal stoichiometric ratio of2:1.At65sccm and above,the films areover-stoichiometric(∼2.2:1).3.3Surface morphologyFigure5a presents a typical top-view AFM image of the film at65sccm.On the film surface, the clusters composed of many condensing adatoms are uniformly distributed.The surface is quite clear and smooth,with its rootmean-square(RMS)roughness less than0.1nmover the area of1μm×1μm.This clearness and smoothness is associated with the above-mentioned high energy of bombarding particles,which possibly removes loose particles(so-called“self-sputtering”)or promotes bonding between adatoms andoffers the adatoms enough lateral mobility on the growing surface[39,46],again suggesting that the flow rate range selected does not greatly affect the adatoms mobility,in accordance with the XRD results.Interestingly,the film morphology seems to be affected by the O2flow rate as well. At10sccm,the clusters distributed on the film surface are similar in size to that forthe film at65sccm.However,in the range of20to50sccm,larger clusters are present on the surface.This change in cluster size is also reflected in the curve of roughness versus the O2flow rate(Fig.5b)the O2flowrate(Fig.5b),where the roughness is larger for a20–50sccm flow rate range.The flowrate-dependent surface morphology could be correlated with the film structural change as drawn from XRD analysis.In other words,compared with the amorphous films,the polycrystalline films formed in a20–50sccm flowexhibit larger clusters on the surface and look relatively rougher.3.4Mechanical propertiesThe film hardness is a measure of resistance to plastic deformation and defined as the peak load divided by the corresponding indentation area.Practically,the hardness is obtained by fitting the unloading data with a power law equation[39].The mechanical properties of the films as a function of flow rate are displ ayed in Fig.9,where the v alues are averaged at least three times. Both the microhardness and Young’s modulus are apparently dependent upon the O2flow rate. When flow rate increases from10to20sccm,the hardness almost stays at about13.6GPa.Further increasing the flow rate leads to an abrupt increase in hardness.At35and50sccm,the increase is pronounced.However,beyond50 sccm,the film starts to become soft and at65sccm drops to13.4GPa in hardness.Clearly,thechange in hardness is very similar to the structural variation observed in the XRD patterns.This signifies that the film structure rather than the composition determines the film hardness,which is not in agreement with the result reported by Kao[19].4ConclusionsThe structure,composition,morphology,optical,and mechanical properties of ZrO2films deposited by the filtered cathodic vacuum arc(FCVA)technique have been investigated at varyingO2flowrates,up to98sccm.TheO2flow rate is found to be an important parameter in controlling the film structure,composition,and properties.With increasing O2flow rate,ZrO2 film evolves in structure from amorphous,through to a pure monoclinic phase with varying preferential orientation,to amorphous again,concurrent with an increase in the O/Zr atomic ratio, and a conversion of Zr ions from lowoxidation states into Zr4+.Such a trend in the structure with the O2flow rate is a result of a change in the film composition,and determines the surface morphology and the mechanical properties of the film.The film composition instead of the film density,dominates the optical properties,where transmittance and optical band gap increase with increasing O/Zrvalue,whereas the refractive index and extinction coefficients behave inversely.。