铝合金体系强度计算
7085铝合金三维中心斜裂纹应力强度因子的数值计算

7085铝合金三维中心斜裂纹应力强度因子的数值计算宋彦琦;刘小珍;王卓;王石磊【摘要】To explore stress intensity factor of fatigue crack propagation on 7085-T7485 aluminum alloy,the fi-nite element model of aluminum alloy with three-dimensional center oblique crack was established by ANSYS.The stress intensity factor of the crack is calculated by the displacement extrapolation method and the interaction integral method.The results were compared with the theoretical results, and analysis the influence of length and angle of center crack on stress intensity factor.The results show that the two methods are both close to theoretical results in a certain range,but with the length and angle's increase of crack,the interaction integral is more precision.There-fore,the stress intensity factor of crack propagation is calculated by the interaction integral method.The results are significance to study the three-dimensional fatigue crack propagation mechanism of aluminum alloy.%为研究7085-T7485铝合金疲劳裂纹扩展的应力强度因子,用ANSYS软件建立了含三维中心斜裂纹铝合金的有限元模型.利用位移外推法和相互作用积分法计算了裂纹的应力强度因子;并将两种方法计算得到的结果与解析解对比,分析了中心斜裂纹的长度和倾斜角度对应力强度因子的影响.结果表明,在一定的范围内,两种方法与解析解都比较接近;但随着裂纹长度和角度的增加,相互作用积分凸显出更高的精度.因此,采用相互作用积分法对裂纹扩展的应力强度因子进行了计算,研究结果对铝合金三维复合型疲劳裂纹扩展机制研究有一定的指导意义.【期刊名称】《科学技术与工程》【年(卷),期】2017(017)028【总页数】5页(P251-255)【关键词】7085-T7452铝合金;应力强度因子;ANSYS模拟;位移外推法;相互作用积分法【作者】宋彦琦;刘小珍;王卓;王石磊【作者单位】中国矿业大学(北京)力学与建筑工程学院,北京100083;中国矿业大学(北京)力学与建筑工程学院,北京100083;中国矿业大学(北京)力学与建筑工程学院,北京100083;中国矿业大学(北京)力学与建筑工程学院,北京100083【正文语种】中文【中图分类】TU512.4航空航天需要采用高性能大型整体高强铝合金锻件实现轻量化和高可靠性[1,2],新型7085-T7452高强铝合金锻件具有高强度、高淬透性、高损伤容限及耐腐蚀性;并已成功应用于波音787飞机和空客A380飞机的翼梁、翼肋等重要承力构件。
铝合金抗拉强度和硬度换算表

铝合金抗拉强度和硬度换算表
铝合金是一种常见的金属材料,具有良好的力学性能。
其中,抗拉强度和硬度是两个重要的指标,用于评估铝合金的性能。
下面是铝合金抗拉强度和硬度的换算表。
抗拉强度和硬度是两个不同的概念,但它们之间存在一定的关系。
抗拉强度是指材料在受到拉力作用下抵抗断裂的能力,通常用MPa (兆帕)表示;而硬度是指材料在受到外力作用下抵抗变形的能力,常用硬度计来测量。
铝合金的抗拉强度和硬度之间的关系是复杂的,取决于铝合金的成分、热处理状态以及其他因素。
一般来说,随着铝合金中其他金属元素的含量增加,抗拉强度和硬度都会提高。
例如,添加一定量的镁、硅和锌等元素可以显著提高铝合金的强度和硬度。
下表列出了一些常见铝合金的抗拉强度和硬度数据:
铝合金型号抗拉强度(MPa)硬度(HB)
6061 276 95
6063 241 80
7075 572 150
2024 483 120
需要注意的是,这些数值仅供参考,实际的抗拉强度和硬度可能会因不同的生产工艺和材料状态而有所差异。
铝合金的抗拉强度和硬度对于不同的应用有着不同的要求。
例如,在航空航天领域,要求铝合金具有较高的抗拉强度和硬度,以确保飞机的结构安全可靠;而在汽车制造领域,要求铝合金具有一定的抗拉强度和硬度,同时又要保持较轻的重量,以提高汽车的燃油经济性。
铝合金的抗拉强度和硬度是评估其性能的重要指标。
通过合理的合金设计和热处理工艺,可以调整铝合金的抗拉强度和硬度,以满足不同领域的需求。
.梁、楼板处铝合金模板抗弯强度以及挠度校核

铝合金模板安全专项施工方案- 1 -.梁、楼板处铝合金模板抗弯强度以及挠度校核(1)结合本项目结构施工图,以及广亚铝模板特点,选出梁尺寸200mm*1000 m m ,跨度为1200mm 最不利情况进行梁底处铝合金模板抗弯强度以及挠度校核 梁截面(b*h )为200*1000mm ,跨度为1200mm 。
模板及支架的强度验算时按简支受力计算,计算简图如下:S=1.2(NG1k + NG2k )+0.9*1.4∑NQK P=1.2*(24*0. 2 +1.1*1)+0.9*1.4*(1+2) =10.86KN/m2梁底板处铝合金模板最大支撑间距为跨度1200,跨中弯矩M 为: M=1*ql2/8=2.17*0.82/8=0.173K.m其中,q 为恒荷载均布线荷载标准值;对于200mm 标准板均布线荷载q=10.86*0.2=2.17KN/m. 最大弯曲应力:f= M/W=0.173*106/12571=13.81 N/mm2 <[f]=200N/mm2, 模板及支架的强度满足设计要求。
铝合金模板挠度应满足: v=5qgL4/384EIx<= [v]其中,为恒荷载均布线荷载标准值;[v]为允许挠度。
由规范可知[v]=L/250=1200/250=4.8mm计算得v=5qgL4/384EIx=5*2.17*8004/(384*70000*609925) =0.27m m<4.8mm ,满足要求。
抗剪强度计算T=3Q/2bh<[T]由于是简支梁均布加载,故面板抗剪强度必定满足设计要求! (2)楼板处铝合金模板抗弯强度以及挠度校核针对广亚铝模板的特点,以及本项目的需要,这里主要校核:规格为P400,长度为1100 mm这种最不利的情况,楼板厚度取120m m。
楼板模板规格为P400,长度为1100mm。
模板及支架的强度验算时按简支受力计算,计算简图如下:S=1.2(NG1k + NG2k)+0.9*1.4∑NQKP=1.2*(24*0. 12 +1.1*0.12)+0.9*1.4*(1+2)=7.39KN/m2楼板处铝合金模板最大支撑间距为跨度1100,跨中弯矩M为:M=1*ql2/8=2.96*1.1^2/8=0.447 KN.m其中,q为恒荷载均布线荷载标准值;对于400mm标准板均布线荷载q=7.39*0.4=2.96 KN/m最大弯曲应力:f= M/W= 0.447*10^6/24786 =18.03 N/mm2 <[f]=200N/mm2,模板及支架的强度满足设计要求。
铝合金抗弯曲强度计算公式

铝合金抗弯曲强度计算公式引言。
铝合金是一种常见的金属材料,具有较高的强度和轻量化的特点,因此在工程领域得到广泛应用。
在使用铝合金进行结构设计和制造时,了解其抗弯曲强度是非常重要的。
本文将介绍铝合金抗弯曲强度的计算公式及其相关知识。
铝合金抗弯曲强度计算公式。
铝合金的抗弯曲强度是指在外力作用下,材料发生弯曲变形时所能承受的最大应力。
通常情况下,可以使用以下公式来计算铝合金的抗弯曲强度:σ = Mc/I。
其中,σ为材料的应力,单位为Pa;M为施加在材料上的弯矩,单位为N·m;c为截面的最大距离,单位为m;I为截面的惯性矩,单位为m^4。
在实际工程中,可以通过上述公式来计算铝合金的抗弯曲强度,并根据计算结果来进行结构设计和材料选择。
影响铝合金抗弯曲强度的因素。
铝合金的抗弯曲强度受多种因素影响,主要包括材料的性能和外部环境的影响。
1. 材料的性能。
铝合金的抗弯曲强度与其材料的性能密切相关,主要包括材料的强度、韧性、塑性等。
通常情况下,强度越高、韧性越好的铝合金具有较高的抗弯曲强度。
2. 外部环境。
外部环境的影响也会对铝合金的抗弯曲强度产生影响,例如温度、湿度等因素都会对材料的性能产生影响。
在设计和使用铝合金结构时,需要考虑外部环境的影响因素,以确保结构的安全性。
铝合金抗弯曲强度的应用。
铝合金的抗弯曲强度在工程领域具有广泛的应用,主要包括以下几个方面:1. 结构设计。
在进行结构设计时,需要对材料的抗弯曲强度进行计算和评估,以确保结构在外部载荷作用下能够正常工作,并具有足够的安全性。
2. 材料选择。
在选择材料时,抗弯曲强度是一个重要的考量因素。
通常情况下,需要选择抗弯曲强度较高的铝合金材料,以确保结构的安全性和稳定性。
3. 工程施工。
在工程施工过程中,需要对铝合金材料的抗弯曲强度进行评估和监控,以确保结构的施工质量和安全性。
结语。
铝合金的抗弯曲强度是一个重要的材料性能指标,对于工程设计和制造具有重要意义。
有关断热铝型材的强度计算

技术单文件编号共8页第1页有关断热铝型材的强度计算断热铝型材是一种符合节能潮流的节能建材,当它用于建筑幕墙和铝合金外窗之时,除了要考虑其保温隔热性能之外,还要充分考虑到其结构的安全性和可靠性。
因此建议断热铝材用于建筑幕墙和铝门窗的结构件时,应进行强度设计计算,铝材应计算弯曲最大拉应力,隔热塑料应计算最大弯曲拉应力和最大弯曲剪应力。
铝材和隔热塑料的分离面还应计算最大拉应力和最大剪应力。
断热铝型材从力学角度看:是两种不同材料复合而成的组合梁,有关复合梁的计算详见下列步骤:(摘自技术单J25-9832)1.确定中性轴的位置:中性轴到组合框截面底边的距离为Y=(EsAsYs+EaAaYa)/(EaAa+EsAs)Ys——钢内框形心到组合框截面底边的距离;Ya——钢外框形心到组合框截面底边的距离;Es——钢材的弹性模量,210000N/mm2;Ea——铝材的弹性模量,70000N/mm2;Aa——铝框的截面面积;As——钢框的截面面积。
2.钢框、铝框关于中性轴的惯性距:Is=I O s+As(Ys-Y)2 Ia=I O a+Aa(Ya-Y)2I O s——钢框对自身形心轴的惯性矩;I O a——铝框对自身形心轴的惯性矩。
3.挠度计算(简支梁):f=5qL4/384(EaIa+EsIs)q——简支梁的均布荷载标准值; L——简支梁的跨度。
4.强度计算(简支梁)钢框强度校核MEsYs/r(EsIs+EaIa)+NEs/(EaAa+EsAs)≤fs铝框强度校核MEaYa/r(EsIs+EaIa)+NEa/(EaAa+EsAs)≤faM——简支梁的弯矩设计值;N——竖框所受的拉力设计值;r——塑性发展系数,取;Ya——铝框外边缘到中性轴的距离;Ys——钢框外边缘到中性轴的距离;fa、fs——分别为铝材和钢材的强度设计值。
的取值方法见附页。
5.在进行断热条强度计算时,f断热条上述公式的等效参数计算已编制到《远大标准化软件》其“计算等效参数”部分。
铝合金板件螺栓连接承压强度试验与计算方法_王元清

屋盖采用铝合金单层网壳, 铝合金材料牌号为 6061 [2 ] - T6 , 网壳的铝合金节点采用螺栓连接 ; 在2001
收稿日期: 2010 - 11 - 12 基金项 目: 高 等 学 校 博 士 学 科 点 专 项 科 研 基 金 资 助 项 目 ( 20090002110046 ) 作者简介: 王元清( 1963 - ) , 男, 教授, 博导. 研究方向: 钢结构; mail: wang - yq@ tsinghua. edu. cn 铝合金结构. E-
铝合金板件螺栓连接的承压破坏形态有 2 种: [9 ] 螺栓从端部拉脱和螺栓孔塑性变形被拉长 。 其 承压承载力需要同时考虑强度准则和变形准则 , 考 [10 ] Kim 等 提出当螺栓孔变形 虑到正常使用的要求, 达到孔径的 30% 时, 认为螺栓连接不再适合继续承 EC9 也采用了这一限值规定。 载而达到了极限状态, 作者通过进行铝合金板件螺栓连接节点的承压 试验研究, 分析螺栓直径和端距对节点承压承载力 的影响。利用有限元分析手段对试验过程进行数值 模拟及参数分析, 探索铝合金板件承压强度的计算 方法。
研 究, 提出了设计建议公式 。 中国于2007 年颁布的
204
[7 ]
四川大学学报( 工程科学版)
第 43 卷
铝合金结构设计规范 给出了铝合金板件螺栓连 其中构件的承压强度直接按照 接的相关设计公式, 欧洲规范 ( EC9 ) 取值, 而目前国内铝合金板件螺 栓连接的承压性能仍然需要进一步研究 。
铝合金材料最初在航空等领域取得了成功的应 用, 由于其自重轻、 耐腐蚀性和耐久性好等特点而被 引入了建筑结构领域。当前铝合金结构在中国已经 取得了成功的应用, 主要结构形式包括铝合金网壳、
[1 ] 网架, 铝 合 金 桁 架 等, 展 现 了 良 好 的 应 用 前 景。 中国现代五项赛事中心游泳击剑馆位于成都市 , 其
铝合金模板早拆体系受力计算书

陕西天利成建筑科技有限公司铝模板早拆体系开启----建筑低碳环保新时代陕西天利成建筑科技有限公司2016年10月陕西天利成建筑科技有限公司铝合金模板早拆体系受力计算书1.1.1 早拆体系包含楼面、梁底早拆体系,由早拆头、快拆锁条、单支顶、销钉、销片组成(如图1.1.1);本规程早拆支撑间距不应大于1300mm×1300mm。
(a)梁底早拆 (b) 楼面早拆图1.1.1早拆体系组成示意图1.2.1条文说明:目前各种铝合金模板系统的早拆体系组成部分基本相同,仅细部尺寸有所差异;部分企业的可调钢支顶采用单根钢管,下部安装可调螺杆;大部分企业的可调钢支顶采用两根直径不同的钢管上下套装,以满足支撑长度的可调性。
当具体工程与本规范给出的构造有差异时,应根据具体情况进行调整。
1.2.2本规程早拆体系适用于楼板厚不小于100mm,混凝土等级不低于C20的混凝土现浇楼面梁板结构,对预应力混凝土结构应经过专项研究后,方可使用。
1.2.2条文说明:建筑工程楼板施工采用模板早拆经济且安全可靠。
本规程模板早拆的适用范围为楼板和梁的早拆的施工。
混凝土楼板厚度增大,自重荷载随之增大,楼板抗弯刚度也随之增大;但抗弯刚度增加远大于荷载的增加。
在相同跨度的情况下,楼板越厚,楼板抗弯能力越强。
根据多年早拆施工实践,对板厚为100mm以上的楼板实施早拆是安全可靠的。
对板厚小于100mm的楼板应进行专门的分析和论证方可采用。
1.2.3冬期施工采用模板早拆技术所浇筑的混凝土,宜采用综合蓄热法,确保混凝土结构不受冻,强度不受影响。
(核查冬季施工规范)1.2.3条文说明:1.2.2-1.2.5 北京市地方标准《模板早拆施工技术规程》DB11/694-2009。
1.2.4早拆体系设计必须保证足够的强度、刚度和稳定性,满足施工过程中承受浇筑混凝土的自重荷载和施工荷载,确保安全。
早拆装置及连接、支撑的承载力可参考工程经验或通过试验确定。
标准模板的早拆体系承载力见附录F。
铝件配件计算公式是什么

铝件配件计算公式是什么铝件配件计算公式是指在设计和制造铝件配件时所使用的各种计算公式。
铝件配件是指由铝材料制成的各种零部件和配件,广泛应用于汽车、航空航天、建筑等领域。
在设计和制造铝件配件时,需要进行各种计算,以确保其质量、性能和安全性。
下面将介绍一些常见的铝件配件计算公式。
1. 强度计算公式。
在设计铝件配件时,需要计算其强度,以确保其在使用过程中不会发生破裂或变形。
强度计算公式通常包括拉伸强度、屈服强度、抗压强度等。
其中,拉伸强度计算公式为:σ = F/A。
其中,σ为拉伸强度,F为受力,A为受力面积。
2. 疲劳寿命计算公式。
铝件配件在使用过程中会受到交变载荷的作用,容易发生疲劳破坏。
因此,需要计算其疲劳寿命,以确保其在设计使用寿命内不会发生疲劳破坏。
疲劳寿命计算公式通常包括受力应力、材料疲劳极限等。
其中,受力应力计算公式为:σa = (σmax + σmin)/2。
其中,σa为受力应力,σmax为最大应力,σmin为最小应力。
3. 刚度计算公式。
铝件配件在使用过程中需要承受一定的变形,因此需要计算其刚度,以确保其在使用过程中不会发生过大的变形。
刚度计算公式通常包括弹性模量、截面惯性矩等。
其中,弹性模量计算公式为:E = σ/ε。
其中,E为弹性模量,σ为应力,ε为应变。
4. 热膨胀计算公式。
铝件配件在使用过程中会受到温度的影响,容易发生热膨胀。
因此,需要计算其热膨胀,以确保其在使用过程中不会发生过大的变形。
热膨胀计算公式通常包括线膨胀系数、温度变化量等。
其中,线膨胀系数计算公式为:ΔL = αLΔT。
其中,ΔL为长度变化量,αL为线膨胀系数,ΔT为温度变化量。
以上是一些常见的铝件配件计算公式,设计和制造铝件配件时需要根据具体情况选择合适的计算公式,并进行合理的计算和分析。
通过科学的计算和分析,可以确保铝件配件的质量、性能和安全性,满足使用要求。
同时,也可以为铝件配件的设计和制造提供科学依据,提高工作效率和质量水平。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铝合金模板体系强度计算一.楼面模板的强度计算:楼面模板形式如图所示,计算时两端按简支考虑,其计算跨度C取1.2米.A..荷载计算:按均布线荷载和集中荷载两种作用效应考虑,并按两种结果取其大值.1.铝模板自重标准值: 230N/m22.150mm厚新浇混凝土自重标准值: 24000×0.15=3600 N/m23.钢筋自重标准值: 1100×0.15=165 N/m24.施工活载标准值: 2500 N/m25.跨中集中荷载: 2500 N均布线荷载设计值为:q1=0.9×[1.2×(230+3600+165)+1.4×2500] ×0.4=3308 N/m模板自重线荷载设计值: q2=0.9×0.4×1.2×230=92 N/m跨中集中荷载设计值: P=0.9×1.4×2500 =3150 NB. 强度验算:施工荷载为均布线荷载:M1=q1l2/8=3308×1.22/8=596 Nm施工荷载为集中荷载:M2=q1l2/8+Pl/4=92×1.22/8+3150×1.2/4=962 Nm由于M2>M1,故采用M2验算强度.通过Solidworks软件求得:I XX=833964.23 mm4, e x=58.92 mmW XX=I XX/e x=833964.23/58.92=14154.2 mm3则: σ=M2/W XX=962000/14154.2=68 MPa<[σ]=180 MPa强度满足要求.C. 挠度计算:验算挠度时仅考虑永久荷载标准值,故其作用的线荷载设计值为:q=0.4×(230+3600+165)=1590 N/m=1.59 N/mm实际挠度值为:f=5ql4/(384EI XX)=5×1.59×12004/(384×1.83×105×833964.23)=0.35 mm<400/300=1.3 mm挠度满足要求.D. 面板厚度验算面板小方格按四面固定计算,由于L Y/L X=370/400=0.94,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.055, 最大挠度系数: K f=0.0014取1mm宽的板条为计算单元,荷载为:q=0.9×[1.2×(230+3600+165)+1.4×2500] =6775.2 N/m2=0.06775 N/mm2M X= K MX ql Y2=0.055×0.06775×3702=524 NmmW X=ab2/6=1×52/6=4.17 mm3则: σ=M X/W X=524/4.17=125.7 MPa<[σ]=180 MPa强度满足要求.E. 面板挠度计算:f max=K f ql Y4/B0B0=Eh3/[12(1-γ2)]= 183000×53/[12×(1-0.342)]=2155416 Nmmf max=0.0014×0.06775×3704/2155416=0.83 mm<[f]= l Y/300=370/300=1.23 mm挠度满足要求.二.剪力墙墙面模板的强度计算:A..荷载计算:按大模板计算,取F=50 KN/m2计算取F=60 KN/m2倾倒混凝土时对垂直面模板产生的水平荷载标准值取: 6 KN/m2计算取: 1.4×6=8.4 KN/m2荷载合计: P=68.4 KN/m2=0.0684 KN/mm2B. 面板厚度验算面板小方格按三面固定,一面铰接计算,由于L Y/L X=370/400=0.94,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.0629, 最大挠度系数: K f=0.00182取1mm宽的板条为计算单元,荷载为:M X= K MX ql Y2=0.0629×0.0684×3702=589 NmmW X=ab2/6=1×52/6=4.17 mm3则: σ=M X/W X=589/4.17=141.3 MPa<[σ]=180 MPa强度满足要求.C. 面板挠度计算:f max=K f ql Y4/B0B0=Eh3/[12(1-γ2)]= 183000×53/[12×(1-0.342)]=2155416 Nmmf max=0.00182×0.06775×3704/2155416=1.1 mm<[f]= l Y/300=370/300=1.23 mm挠度满足要求.D. 对拉螺栓计算:作用于模板的混凝土侧压力:F s=P=0.0684 KN/mm2N=abF s, a=0.9 b=0.9N=0.9×0.9×0.0684=55400 N采用M24的穿墙螺栓,f t b=170 N/mm2 A=353 mm2A f t b=350×170=60010 N >55400 N对拉螺栓满足要求.E. 背楞的计算:选用100×50×3方管,两个一组,共三组,间距最大: 850mm线荷载: q=0.0684×850=58.14N/mm,M X=q1l2/8=58.14×0.92/8=5886675 NmmW X=22420×2=44840 mm3σ=M X/W X=5886675/44840=131.3 MPa<[σ]=205 MPa强度满足要求.三.梁模板的强度计算:(一).梁底面模板形式如图所示,因中间强度最弱,故计算之.计算时两端按简支考虑,其计算跨度C取1.2米.A.荷载计算:按均布线荷载和集中荷载两种作用效应考虑,并按两种结果取其大值.1铝模板自重标准值: 230N/m22. 750mm厚新浇混凝土自重标准值: 24000×0.75=18000 N/m23.钢筋自重标准值: 1100×0.75=825 N/m24.施工活载标准值: 2500 N/m25.跨中集中荷载: 2500 N均布线荷载设计值为:q1=0.9×[1.2×(230+1800+825)+1.4×2500] ×0.35=8298 N/m 模板自重线荷载设计值: q2=0.9×0.35×1.2×230=79.4 N/m跨中集中荷载设计值: P=0.9×1.4×2500 =3150 NB. 强度验算:施工荷载为均布线荷载:M1=q1l2/8=8298×1.22/8=1494000 Nmm施工荷载为集中荷载:M2=q1l2/8+Pl/4=79.4×1.22/8+3150×1.2/4=959000 Nmm由于M2<M1,故采用M1验算强度.通过Solidworks软件求得:I XX=813098.96 mm4, e x=58.42 mmW XX=I XX/e x=813098.96/58.42=14014.15 mm3则: σ=M1/W XX=1494000/14014.15=106.7 MPa<[σ]=180 MPa强度满足要求.C. 挠度计算:验算挠度时仅考虑永久荷载标准值,故其作用的线荷载设计值为: q=0.4×(230+18000+825)=6662.25 N/m=6.66 N/mm实际挠度值为:f=5ql4/(384EI XX)=5×6.66×12004/(384×1.83×105×813098.72)=1.2 mm<400/300=1.3 mm挠度满足要求.D. 面板厚度验算面板小方格按四面固定计算,由于L Y/L X=170/200=0.85,查表双向板在均布荷载作用下的内力及变形系数,得最大弯矩系数: K MX=-0.0626, 最大挠度系数: K f=0.00168取1mm宽的板条为计算单元,荷载为:q=0.9×[1.2×(230+18000+825)+1.4×2500]=23729 N/m2=0.23729 N/mm2M X= K MX ql Y2=0.0626×0.23729×1702=429.3 NmmW X=ab2/6=1×52/6=4.17 mm3则: σ=M X/W X=429.3/4.17=103 MPa<[σ]=180 MPa强度满足要求.E. 面板挠度计算:f max=K f ql Y4/B0B0=Eh3/[12(1-γ2)]= 183000×53/[12×(1-0.342)]=2155416 Nmmf max=0.00168×0.23729×1704/2155416=0.16mm<[f]= l Y/300=170/300=0.57 mm挠度满足要求.(二). 梁侧面模板相当于剪力墙墙面模板,其强度和挠度均满足要求.四. 顶撑的强度验算:1. 楼面顶撑的计算;A. 荷载: q=230+3600+165+2500=6495 N/m2则单个顶撑受轴向压力:(0.6+0.2+0.6)×(0.2+0.125+0.2) ×6495=4770 NB.顶撑采用φ48×3钢管,A=423mm2, 计算长度:l=3250-1500-100=1650mm,顶撑为中心受压杆件, i=15.9,λ=μl/i=1×1650/15.9=104,查表: Ψ=0.58σ=N/ΨA=4770/0.58×423=19.5 MPa<[σ]=205 MPa楼面顶撑强度满足要求.2. 梁顶撑的计算;A. 荷载: q=230+18000+825+2500=21555 N/m2则单个顶撑受轴向压力: (0.175+0.125)×(1.2+0.2) ×21555=9054 N C.顶撑采用φ48×3钢管,A=423mm2, 计算长度:l=3250-1500-100-600=1050mm,顶撑为中心受压杆件, i=15.9,λ=μl/i=1×1050/15.9=66,查表: ψ=0.88σ=N/ΨA=9054/0.88×423=25.5 MPa<[σ]=205 MPa梁顶撑强度满足要求.田志强。