因式分解法解一元二次方程专项讲解

合集下载

因式分解法解一元二次方程的步骤

因式分解法解一元二次方程的步骤

因式分解法解一元二次方程的步骤因式分解法是解一元二次方程的一种常用方法。

它的基本思路是将二次方程转化成两个一次方程相乘的形式,然后通过求解这两个一次方程得到方程的解。

下面我们来详细介绍因式分解法的步骤。

步骤1:确定一元二次方程的形式首先,我们要确定一元二次方程的形式,即确认方程为a*x^2 +b*x + c = 0,其中a、b和c是实数,且a ≠ 0。

确保方程满足这个条件后,我们才能使用因式分解法进行求解。

步骤2:计算二次项系数a将已知的一元二次方程写成标准形式,我们可以直接从方程中读取二次项系数a的值。

这一步很重要,因为我们后续的计算都会用到a 的值。

步骤3:计算常数项c同理,我们从方程中读取常数项c的值。

这一步同样很关键,因为我们在解方程时,需要用到常数项的值。

步骤4:根据二次项系数a和常数项c的符号确定因式的形式根据二次项系数a的符号,一元二次方程的因式形式分为两种情况:当a > 0时,我们可以使用“差平方”的形式进行因式分解;当a < 0时,我们可以使用“和平方”的形式进行因式分解。

步骤5:根据因式的形式进行因式分解对于“差平方”的形式,我们可以将一元二次方程写成(a*x +m)*(a*x - n) = 0的形式,其中m和n是实数,且m ≠ n。

将原方程的右侧展开并整理,得到二次项、一次项和常数项的关系式,然后通过求解m和n的值,可以得到方程的解。

对于“和平方”的形式,我们可以将一元二次方程写成(a*x +m)*(a*x + n) = 0的形式,其中m和n是实数,且m ≠ -n。

也是通过展开右侧等式并整理得到二次项、一次项和常数项的关系式,然后求解m和n的值,得到方程的解。

步骤6:求解方程通过步骤5的因式分解,我们得到了一元二次方程的两个一次因式,接下来,我们可以将每个因式设置为零,分别求解得到方程的解。

步骤7:检验解的有效性最后,我们还需要检验求得的解是否满足原方程。

将解代入原方程中,如果方程两侧相等,那么我们的解就是有效的,否则需要重新检查求解过程。

(公开课)因式分解法解一元二次方程

(公开课)因式分解法解一元二次方程

(2)移项,得 x 2 xx 2 0,
因式分解,得
4 x1 0,x2 5
x 2 0, 或1 x 0. x1 2,x2 1
x 21 x 0.
练习1:用因式分解法解方程:
(1)3x( x 2) 5( x 2)
1 . 方程右边不为零的化为 零 。 2 . 将方程左边分解成两个一次因式 的 乘积。 3 . 至少 有一个 一次因式为零,得到 两个一元一次方程。 4 . 两个 一元一次方程的解 就是原方 程的解。
动动脑 小组活动 请写出分别以下列两数为 两根的一元二次方程: ⑴以2,5为两根的一元二次方程是:
解方程
(1) (x+1)(x+2)=2
(2) (2a-3)2=(a-2)(3a-4)
(3)
2
2
2 y =3y
(4) (4x-3)2=(x+3)2
x 3 x(3 2 x) x(3x 1) (5) 3 2 3
十字相乘法分解因式 :
a a1a2 x (a1c2 a2c1 ) x c1c2 1 a2
ቤተ መጻሕፍቲ ባይዱ
课堂小结
• 配方法和公式法是解一元二次方程重要 方法,要作为一种基本技能来掌握。而 某些方程可以用直接开平方法和分解因 式法简便快捷地求解。
•谢 •指
谢 导
各位亲
作业:课本P46 第6、9、10、 12、13、14写①号本
拓展练习
1、已知m是关于x的方程 mx2-2x+m=0的一个根,试 确定m的值。 2、已知(2x+y)2+4(2x+y)=-4, 求代数式2x+y的值。
(2)3x(2x+1)=4x+2

一般的一元二次方程的解法(直接开平方法,因式分解法)知识讲解

一般的一元二次方程的解法(直接开平方法,因式分解法)知识讲解

一般的一元二次方程的解法(直接开平方法,因式分解法)知识讲解1.直接开方法解一元二次方程:(1)直接开方法解一元二次方程:利用平方根的定义直接开平方求一元二次方程的解的方法称为直接开平方法.(2)直接开平方法的理论依据:平方根的定义.(3)能用直接开平方法解一元二次方程的类型有两类:要点诠释:用直接开平方法解一元二次方程的理论依据是平方根的定义,应用时应把方程化成左边是含未知数的完全平方式,右边是非负数的形式,就可以直接开平方求这个方程的根.2.因式分解法解一元二次方程(1)用因式分解法解一元二次方程的步骤①将方程右边化为0;②将方程左边分解为两个一次式的积;③令这两个一次式分别为0,得到两个一元一次方程;④解这两个一元一次方程,它们的解就是原方程的解.(2)常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、用直接开平方法解一元二次方程【总结升华】应当注意,如果把x+m看作一个整体,那么形如(x+m)2=n(n≥0)的方程就可看作形如x2=k的方程,也就是可用直接开平方法求解的方程;这就是说,一个方程如果可以变形为这个形式,就可用直接开平方法求出这个方程的根.所以,(x+m)2=n可成为任何一元二次方程变形的目标.举一反三:类型二、因式分解法解一元二次方程【总结升华】若把各项展开,整理为一元二次方程的一般形式,过程太烦琐.观察题目结构,可将x+1看作m,将(2-x)看作n,则原方程左端恰好为完全平方式,于是此方程利用分解因式法可解.举一反三:【变式】方程(x-1)(x+2)=2(x+2)的根是________.【答案】将(x+2)看作一个整体,右边的2(x+2)移到方程的左边也可用提取公因式法因式分解.即(x-1)(x+2)-2(x+2)=0,(x+2)[(x-1)-2]=0.∴ (x+2)(x-3)=0,∴ x+2=0或x-3=0.∴ x1=-2 x2=3.【总结升华】如果把视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x、y 的值,然后计算,但实际上如果把看成一个整体,那么原方程便可化简求解。

一元二次方程的解法因式分解法知识点总结

一元二次方程的解法因式分解法知识点总结

一元二次方程的解法--公式法,因式分解法—知识讲解(基础)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选择.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+=.①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a -±-=.②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a =-.③当240b ac ∆=-<时,右端是负数.因此,方程没有实根.要点二、因式分解法解一元二次方程 1.用因式分解法解一元二次方程的步骤 (1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程; (4)解这两个一元一次方程,它们的解就是原方程的解. 2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等. 要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式. 【典型例题】类型一、公式法解一元二次方程1.用公式法解下列方程.(1)x 2+3x+1=0;(2)2241x x =-; (3)2x 2+3x-1=0.【答案与解析】(1)a=1,b=3,c=1∴x==.∴x 1=,x 2=.(2)原方程化为一般形式,得22410x x -+=.∵2a =,4b =-,1c =,∴224(4)42180b ac -=--⨯⨯=>.∴42221222x ±==±⨯,即1212x =+,2212x =-.(3)∵a=2,b=3,c=﹣1∴b 2﹣4ac=17>0∴x=∴x 1=,x 2=.【总结升华】用公式法解一元二次方程的关键是对a 、b 、c 的确定.用这种方法解一元二次方程的步骤是:(1)把方程化为一元二次方程的一般形式;(2)确定a ,b ,c 的值并计算24b ac -的值;(3)若24b ac -是非负数,用公式法求解. 举一反三:【变式】用公式法解方程:(2014•武汉模拟)x 2﹣3x ﹣2=0.【答案】解:∵a=1,b=﹣3,c=﹣2;∴b 2﹣4ac=(﹣3)2﹣4×1×(﹣2)=9+8=17;∴x==, ∴x 1=,x 2=.2.用公式法解下列方程: (1)(2014•武汉模拟)2x 2+x=2;(2)(2014秋•开县期末)3x 2﹣6x ﹣2=0 ;(3)(2015•黄陂区校级模拟)x 2﹣3x ﹣7=0.【思路点拨】针对具体的试题具体分析,不是一般式的先化成一般式,再写出a,b,c 的值,代入求值即可.【答案与解析】解:(1)∵2x 2+x ﹣2=0,∴a=2,b=1,c=﹣2,∴x===,∴x 1=,x 2=.(2)∵a=3,b=﹣6,c=﹣2,∴b 2﹣4ac=36+24=60>0,∴x=, ∴x 1=,x 2=(3)∵a=1,b=﹣3,b=﹣7.∴b 2﹣4ac=9+28=37.x==,解得 x 1=,x 2=.【总结升华】首先把每个方程化成一般形式,确定出a 、b 、c 的值,在240b ac -≥的前提下,代入求根公式可求出方程的根. 举一反三:【变式】用公式法解下列方程: 2221x x +=; 【答案】解:移项,得22210x x +-=.∵ 2a =,2b =,1c =-,224242(1)120b ac -=-⨯⨯-=>,∴ 21213222x -±-±==⨯, ∴ 1132x --=,2132x -+=.类型二、因式分解法解一元二次方程3.用因式分解法解下列方程:(1)3(x+2)2=2(x+2); (2)(2x+3)2-25=0; (3)x (2x+1)=8x ﹣3.【思路点拨】 用因式分解法解方程,一定要注意第1小题,等号的两边都含有(x+2)这一项,切不可在方程的两边同除以(x+2),化简成3(x+2)=2,因为你不知道(x-2)是否等于零.第2小题,运用平方差公式可以,用直接开方也可以.第3小题化成一般式之后,再运用分解因式法解方程. 【答案与解析】(1)移项.得3(x+2)2-2(x+2)=0,(x+2)(3x+6-2)=0.∴ x+2=0或3x+4=0,∴ x 1=-2,243x =-. (2)(2x+3-5)(2x+3+5)=0,∴ 2x-2=0或2x+8=0, ∴ x 1=1,x 2=-4.(3)去括号,得:2x 2+x=8x ﹣3,移项,得:2x 2+x ﹣8x+3=0合并同类项,得:2x 2﹣7x+3=0, ∴(2x ﹣1)(x ﹣3)=0, ∴2x﹣1=0或 x ﹣3=0,∴,x 2=3.【总结升华】(1)中方程求解时,不能两边同时除以(x+2),否则要漏解.用因式分解法解一元二次方程必须将方程右边化为零,左边用多项式因式分解的方法进行因式分解.因式分解的方法有提公因式法、公式法、二次三项式法及分组分解法.(2)可用平方差公式分解.4.解下列一元二次方程: (1)(2x+1)2+4(2x+1)+4=0; (2)(31)(1)(41)(1)x x x x --=+-.【答案与解析】(1)(2x+1)2+4(2x+1)+4=0,(2x+1+2)2=0.即2(23)0x +=, ∴ 1232x x ==-. (2)移项,得(3x-1)(x-1)-(4x+1)(x-1)=0,即(x-1)(x+2)=0,所以11x =,22x =-.【总结升华】解一元二次方程时,一定要先从整体上分析,选择适当的解法.如 (1)可以用完全平方公式.用含未知数的整式去除方程两边时,很可能导致方程丢根,(2)容易丢掉x =1这个根. 举一反三:【变式】(1)(x+8)2-5(x+8)+6=0 (2)3(21)42x x x +=+【答案】(1)(x+8-2)(x+8-3)=0(x+6)(x+5)=0 X 1=-6,x 2=-5. (2)3x(2x+1)-2(2x+1)=0(2x+1)(3x-2)=01212,23x x =-=.5.探究下表中的奥秘,并完成填空:一元二次方程 两个根 二次三项式因式分解 x 2﹣2x+1=0 x 1=1,x 2=1 x 2﹣2x+1=(x ﹣1)(x ﹣1) x 2﹣3x+2=0 x 1=1,x 2=2 x 2﹣3x+2=(x ﹣1)(x ﹣2) 3x 2+x ﹣2=0 x 1=,x 2=﹣1 3x 2+x ﹣2=3(x ﹣)(x+1) 2x 2+5x+2=0x 1=﹣,x 2=﹣2 2x 2+5x+2=2(x+)(x+2)4x 2+13x+3=0 x 1= ,x 2= 4x 2+13x+3=4(x+ )(x+ )将你发现的结论一般化,并写出来.【思路点拨】利用因式分解法,分别求出表中方程的解,总结规律,得出结论. 【答案与解析】填空:﹣,﹣3;4x 2+13x+3=4(x+)(x+3).发现的一般结论为:若一元二次方程 ax 2+bx+c=0的两个根为x 1、x 2,则 ax 2+bx+c=a (x ﹣x 1)(x ﹣x 2).【总结升华】考查学生综合分析能力,要根据求解的过程,得出一般的结论,解一元二次方程——因式分解法.一元二次方程的解法--公式法,因式分解法—巩固练习(基础)【巩固练习】 一、选择题 1.(2014•泗县校级模拟)下列方程适合用因式方程解法解的是( ) A .x 2﹣3x+2=0 B .2x 2=x+4 C .(x ﹣1)(x+2)=72 D .x 2﹣11x ﹣10=02.方程(1)2x x -=的解是( )A .1x =-B .2x =-C .11x =-,22x =D .11x =,22x =-3.一元二次方程2340x x +-=的解是( ) A .11x =;24x =- B .11x =-;24x = C .11x =-;24x =- D .11x =;24x =4.方程x 2-5x-6=0的两根为( )A .6和1B .6和-1C .2和3D .-2和3 5.方程(x-5)(x-6)=x-5的解是 ( )A .x =5B .x =5或x =6C .x =7D .x =5或x =7 6.已知210x x --=,则3222012x x -++的值为 ( )A . 2011B .2012C . 2013D .2014 二、填空题7.(2015•厦门)方程x 2+x =0的解是___ _____; 8.方程(x-1)(x+2)(x-3)=0的根是_____ ___.9.请写一个两根分别是1和2的一元二次方程___ _____.10.若方程x 2-m =0的根为整数,则m 的值可以是_____ ___.(只填符合条件的一个即可) 11.已知实数x 、y 满足2222()(1)2x y x y ++-=,则22x y +=________.12.已知y =(x-5)(x+2).(1)当x 为 值时,y 的值为0; (2)当x 为 值时,y 的值为5.三、解答题 13.(2014秋•宝坻区校级期末)解方程 (1)2(x ﹣3)2=8(直接开平方法)(2)4x 2﹣6x ﹣3=0(运用公式法)(3)(2x ﹣3)2=5(2x ﹣3)(运用分解因式法) (4)(x+8)(x+1)=﹣12(运用适当的方法)14.用因式分解法解方程(1)x 2-6x-16=0.(2)(2x+1)2+3(2x+1)+2=0.15(2)请观察上表,结合24b ac -的符号,归纳出一元二次方程的根的情况. (3)利用上面的结论解答下题.当m 取什么值时,关于x 的一元二次方程(m-2)x 2+(2m+1)x+m-2=0, ①有两个不相等的实数根; ②有两个相等的实数根; ③没有实数根.【答案与解析】 一、选择题 1.【答案】C ;【解析】解:根据分析可知A 、B 、D 适用公式法.而C 可化简为x 2+x ﹣72=0,即(x+9)(x ﹣8)=0, 所以C 适合用因式分解法来解题.故选C .2.【答案】C ;【解析】整理得x 2-x-2=0,∴ (x-2)(x+1)=0.3.【答案】A ;【解析】可分解为(x-1)(x+4)=04.【答案】B ;【解析】要设法找到两个数a ,b ,使它们的和a+b =-5,积ab =-6,∴ (x+1)(x-6)=0,∴ x+1=0或x-6=0. ∴ x 1=-1,x 2=6. 5.【答案】D ;【解析】此方程左右两边含有相同的因式(x-5),应移项后用因式分解法求解.即(x-5)(x-6)-(x-5)0.∴ (x-5)(x-6-1)=0,∴ 15x =,27x =6.【答案】C ;【解析】由已知得x 2-x =1,∴ 322222012()20122012120122013x x x x x x x x 2-++=--++=-++=+=.二、填空题 7.【答案】x 1=0,x 2=-1.【解析】可提公因式x ,得x(x+1)=0.∴ x =0或x+1=0,∴ x 1=0,x 2=-1. 8.【答案】x 1=1,x 2=-2,x 3=3.【解析】由x-1=0或x+2=0或x-3=0求解. 9.【答案】2320x x -+=;【解析】逆用因式分解解方程的方法,两根为1、2的方程就是(x-1)(x-2)=0,然后整理可得答案. 10.【答案】4;【解析】 m 应是一个整数的平方,此题可填的数字很多. 11.【答案】2;【解析】由(x 2+y 2)2-(x 2+y 2)-2=0得(x 2+y 2+1)(x 2+y 2-2)=0又由x ,y 为实数,∴ x 2+y 2>0,∴ x 2+y 2=2. 12.【答案】 (1) x =5或x =-2;(2) 3692x +=或3692x -=. 【解析】(1)当y =0时(x-5)(x+2)=0,∴ x-5=0或x+2=0,∴ x =5或x =-2.(2)当y =5时(x-5)(x+2)=5,∴ 23150x x --=,3941(15)369212x ±-⨯⨯-±==⨯,∴ 3692x +=或3692x -=. 三、解答题13.【解析】解:(1)(x ﹣3)2=4x ﹣3=2或x ﹣3=﹣2, 解得,x 1=1或x 2=5; (2)a=4,b=﹣6,c=﹣3,b 2﹣4ac=(﹣6)2﹣4×4×(﹣3)=84,x==,,;(3)移项得,(2x ﹣3)2﹣5(2x ﹣3)=0,因式分解得,(2x ﹣3)(2x ﹣3﹣5)=0,,x 2=4;(4)化简得,x 2+9x+20=0,(x+4)(x+5)=0,解得,x 1=﹣4,x 2=﹣5.14.【解析】(1)(x-8)(x+2)=0,∴ x-8=0或x+2=0,∴ 18x =,22x =-.(2)设y =2x+1,则原方程化为y2+3y+2=0,∴ (y+1)(y+2)=0,∴ y+1=0或y+2=0, ∴ y =-1或y =-2.当1y =-时,211x +=-,1x =-;当2y =-时,212x +=-,32x =-. ∴ 原方程的解为11x =-,232x =-.15.【解析】(2)①当240b ac ->时,方程有两个不相等的实数根; ②当240b ac -=时,方程有两个相等的实数根;③当240b ac -<时,方程没有实数根. (3)242015b ac m -=-,①当原方程有两个不相等的实数根时,2420150b ac m -=->,即34m >且m ≠2; ②当原方程有两个相等的实数根时,b 2 -4ac =20m -15=0,即34m =; ③当原方程没有实数根时, 2420150b ac m -=-<,即34m <.一元二次方程的解法--公式法,因式分解法—知识讲解(提高)【学习目标】1.理解一元二次方程求根公式的推导过程,了解公式法的概念,能熟练应用公式法解一元二次方程;2.正确理解因式分解法的实质,熟练运用因式分解法解一元二次方程;3.通过求根公式的推导,培养学生数学推理的严密性及严谨性,渗透分类的思想.【要点梳理】要点一、公式法解一元二次方程 1.一元二次方程的求根公式一元二次方程,当时,.2.一元二次方程根的判别式一元二次方程根的判别式:. ①当时,原方程有两个不等的实数根;②当时,原方程有两个相等的实数根;③当时,原方程没有实数根.3.用公式法解一元二次方程的步骤 用公式法解关于x 的一元二次方程的步骤:①把一元二次方程化为一般形式; ②确定a 、b 、c 的值(要注意符号); ③求出的值;④若,则利用公式求出原方程的解;若,则原方程无实根.要点诠释:(1)虽然所有的一元二次方程都可以用公式法来求解,但它往往并非最简单的,一定要注意方法的选用.(2)一元二次方程20 (0)ax bx c a ++=≠,用配方法将其变形为:2224()24b b ac x a a -+= ①当240b ac ∆=->时,右端是正数.因此,方程有两个不相等的实根:21,242b b acx a--=②当240b ac ∆=-=时,右端是零.因此,方程有两个相等的实根:1,22b x a=-③当240b ac ∆=-<时,右端是负数.因此,方程没有实根. 要点二、因式分解法解一元二次方程1.用因式分解法解一元二次方程的步骤(1)将方程右边化为0;(2)将方程左边分解为两个一次式的积;(3)令这两个一次式分别为0,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.常用的因式分解法提取公因式法,公式法(平方差公式、完全平方公式),十字相乘法等.要点诠释:(1)能用分解因式法来解一元二次方程的结构特点:方程的一边是0,另一边可以分解成两个一次因式的积;(2)用分解因式法解一元二次方程的理论依据:两个因式的积为0,那么这两个因式中至少有一个等于0;(3)用分解因式法解一元二次方程的注意点:①必须将方程的右边化为0;②方程两边不能同时除以含有未知数的代数式.【典型例题】类型一、公式法解一元二次方程1.解关于x 的方程2()(42)50m n x m n x n m ++-+-=.【答案与解析】(1)当m+n =0且m ≠0,n ≠0时,原方程可化为(42)50m m x m m +--=.∵ m ≠0,解得x =1.(2)当m+n ≠0时,∵ a m n =+,42b m n =-,5c n m =-,∴ 2224(42)4()(5)360b ac m n m n n m m -=--+-=≥,∴ 2243624|6|2()2()n m m n m m x m n m n -±-±==++, ∴ 11x =,25n m x m n-=+. 【总结升华】解关于字母系数的方程时,应该对各种可能出现的情况进行讨论.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用公式法解含有字母系数的一元二次方程---例2练习】【变式】解关于x 的方程2223(1)x mx mx x m ++=+≠;【答案】原方程可化为2(1)(3)20,m x m x -+-+= ∵1,3,2,a m b m c =-=-=∴ 2224(3)8(1)(1)0b ac m m m -=---=+≥,∴ 23(1)3(1),2(1)2(1)m m m m x m m -±+-±+==-- ∴ 122, 1.1x x m==- 2. 用公式法解下列方程: (m-7)(m+3)+(m-1)(m+5)=4m ;【答案与解析】方程整理为224214540m m m m m --++--=,∴ 22130m m --=,∴ a =1,b =-2,c =-13,∴ 224(2)41(13)56b ac -=--⨯⨯-=,∴ 24(2)56221b b ac m a -±---±==⨯22141142±==±, ∴ 1114m =+,2114m =-.【总结升华】先将原方程化为一般式,再按照公式法的步骤去解.举一反三:【高清ID 号:388515关联的位置名称(播放点名称):用因式分解法解含字母系数的一元二次方程---例5(3)】【变式】用公式法解下列方程:【答案】∵21,3,2,a b m c m ==-= ∴22224(3)4120b ac m m m -=--⨯⨯=≥ ∴23322m m m m x ±±== ∴122,.x m x m ==类型二、因式分解法解一元二次方程3.(2015•东西湖区校级模拟)解方程:x 2﹣1=2(x+1).【答案与解析】解:∵x 2﹣1=2(x+1),∴(x+1)(x ﹣1)=2(x+1),∴(x+1)(x ﹣3)=0,∴x 1=﹣1,x 2=3.【总结升华】本题主要考查了因式分解法解一元二次方程的知识,左边先平方差公式分解,然后提取公因式(x+1),注意不要两边同除(x+1),这样会漏解.举一反三:【变式】解方程(2015·茂名校级一模)(1)x 2-2x-3=0; (2)(x-1)2+2x(x-1)=0.【答案】解:(1)分解因式得:(x-3)(x+1)=0∴x-3=0,x+1=0∴x 1=3,x 2=-1.(2)分解因式得:(x-1)(x-1+2x )=0∴x-1=0,3x-1=0∴x 1=1,x 2=13.4.如果2222()(2)3x y x y ++-=,请你求出22x y +的值.【答案与解析】设22x y z +=,∴ z(z-2)=3.整理得:2230z z --=,∴ (z-3)(z+1)=0.∴ z 1=3,z 2=-1.∵ 220z x y =+>,∴ z =-1(不合题意,舍去)∴ z =3.即22x y +的值为3.【总结升华】如果把22x y +视为一个整体,则已知条件可以转化成一个一元二次方程的形式,用因式分解法可以解这个一元二次方程.此题看似求x 、y 的值,然后计算22x y +,但实际上如果把22x y +看成一个整体,那么原方程便可化简求解。

解一元二次方程(直接开方法配方法公式法因式分解法)

解一元二次方程(直接开方法配方法公式法因式分解法)

解一元二次方程(直接开方法、配方法、公式法、因式分解法)一元二次方程知识讲解只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.一般地,任何一个关于x的一元二次方程,?经过整理,?都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.【例题讲解】例1.将方程(8-2x)(5-2x)=18化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.分析:一元二次方程的一般形式是ax2+bx+c=0(a≠0).因此,方程(8-2x)(5-2x)=18必须运用整式运算进行整理,包括去括号、移项等.解:去括号,得: 40-16x-10x+4x2=18 移项,得:4x2-26x+22=0其中二次项系数为4,一次项系数为-26,常数项为22.小试牛刀1. 将方程(x+1)2+(x-2)(x+2)=?1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.2求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.10一元二次方程的解叫做一元二次方程的根解一元二次方程:直接开方法配方法公式法因式分解法【例题讲解】例1:解方程:x+4x+4=1 解:由已知,得:(x+2)2=1 直接开平方,得:x+2=±1 即x+2=1,x+2=-1所以,方程的两根x1=-1,x2=-3例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.解:设每年人均住房面积增长率为x,则:10(1+x)2=14.4 (1+x)2=1.44直接开平方,得1+x=±1.2 即1+x=1.2,1+x=-1.2所以,方程的两根是x1=0.2=20%,x2=-2.2因为增长率应为正的,因此,x2=-2.2应舍去.即,每年人均住房面积增长率应为20%.例题共同特点:把一个一元二次方程“降次”,转化为两个一元一次方程.?我们把这种思想称为“降次转化思想”直接开方法:由应用直接开平方法解形如x2=p(p≥0),那么x=±p转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±p,达到降次转化之目的.【小试牛刀】1. 求出下列方程的根吗?102(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=02.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?例题讲解例1. 解下列方程(1)x2+6x+5=0 (2)2x2+6x-2=0 (3)(1+x)2+2(1+x)-4=0 解:(1)移项,得:x2+6x=-5 配方:x+6x+3=-5+3(x+3)=4 由此可得:x+3=±2,即x1=-1,x2=-5 (2)移项,得:2x2+6x=-2二次项系数化为1,得:x2+3x=-1 配方x2+3x+(由此可得x+32335)=-1+()2(x+)2= 2224222355353=±,即x1=-,x2=-- 222222 (3)去括号,整理得:x2+4x-1=0 移项,得x2+4x=1配方,得(x+2)2=5 ,x+2=±5,即x1=5-2,x2=-5-2从以上例题可以看出,通过配成完全平方形式来解一元二次方程的方法,叫配方法.可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.配方法:总结用配方法解一元二次方程的步骤10(1)移项;(2)化二次项系数为1;(3)方程两边都加上一次项系数的一半的平方;(4)原方程变形为(x+m)2=n的形式;(5)如果右边是非负数,就可以直接开平方求出方程的解,如果右边是负数,则一元二次方程无解.【小试牛刀】用配方法解以下方程(1)3x2-5x=2.(2)x2+8x=9(3)x2+12x-15=0 (4)【课堂引入】例1. 用配方法解下列方程(1)6x2-7x+1=0 (2)4x2-3x=52例2.某数学兴趣小组对关于x的方程(m+1)xm212x-x-4=0 4?2+(m-2)x-1=0提出了下列问题.若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.解:存在.根据题意,得:m2+1=2 ,即m2=1 m=±1 当m=1时,m+1=1+1=2≠010当m=-1时,m+1=-1+1=0(不合题意,舍去)∴当m=1时,方程为2x2-1-x=0 a=2,b=-1,c=-1b2-4ac=(-1)2-4×2×(-1)=1+8=9 x=1?(?1)?91?3 即 x1=1,x2=- ?22?241. 2 因此,该方程是一元二次方程时,m=1,两根x1=1,x2=-公式法:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b-4ac≥0时,?b?b2?4ac?将a、b、c代入式子x=就得到方程的根.2a (2)这个式子叫做一元二次方程的求根公式.(3)利用求根公式解一元二次方程的方法叫公式法.(4)由求根公式可知,一元二次方程最多有两个实数根.小试牛刀1.用公式法解下列方程.(1)2x2-4x-1=0 (2)5x+2=3x2 (3)(x-2)(3x-5)=0 (4)4x2-3x+1=0 因式分解法因式分解法其解法的关键是将一元二次方程分解降次为一元一次方程.其理论根据是:若A・B=0A=0或B=0.【例题精讲】例1:用因式分解法解下列方程:10感谢您的阅读,祝您生活愉快。

一元二次方程的解法--公式法因式分解法—知识讲解

一元二次方程的解法--公式法因式分解法—知识讲解

一元二次方程的解法--公式法因式分解法—知识讲解一、公式法公式法是求解一元二次方程最常用的方法之一,通过使用二次方程的根公式来求解方程的解。

根公式:对于一般的一元二次方程ax^2 + bx + c = 0,它的解可表示为:x = (-b ± √(b^2 - 4ac)) / 2a解释:在方程中,±表示求两个解,即一个解为加号后面的部分,另一个解为减号后面的部分。

√表示开平方根;在根号下的部分称为判别式,用来判断方程有几个解和解的性质。

二、因式分解法因式分解法是通过将一元二次方程表示为两个一次因式的乘积形式来求解方程的解。

步骤:1. 将一元二次方程形式化为ax^2 + bx + c = 0的形式。

2.对方程进行因式分解,将方程表示为(x+m)(x+n)=0的形式,其中m和n是常数。

3.列出等式(x+m)(x+n)=0的两个等式,即x+m=0和x+n=0,并解这两个等式,求得方程的解。

举例:假设有一元二次方程x^2+5x+6=0,现在我们使用公式法和因式分解法来求解方程的解。

1.公式法:根据公式法,我们有:x = (-b ± √(b^2 - 4ac)) / 2a带入方程的系数a=1、b=5和c=6,我们可以计算出判别式d = b^2 - 4ac = 5^2 - 4(1)(6) = 25 - 24 = 1根据判别式的值,我们可以得出以下结论:a)当判别式d>0时,方程有两个不相等的实数解;b)当判别式d=0时,方程有两个相等的实数解;c)当判别式d<0时,方程没有实数解,有两个共轭虚数解。

带入计算得:x=(-5±√(1))/2(1)=(-5±1)/2所以,方程的解为x=-3或x=-22.因式分解法:将方程x^2+5x+6=0因式分解为(x+2)(x+3)=0的形式。

分别令x+2=0和x+3=0,求解得到:x=-2或x=-3所以,方程的解为x=-2或x=-3通过比较可以发现,公式法和因式分解法得到的解是相同的。

第三节 因式分解法解一元二次方程讲义

第三节 因式分解法解一元二次方程讲义

第三节 因式分解法解一元二次方程知识点1 因式分解法解一元二次方程在方程右边为0的前提下,对左边灵活选用合适的方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积,再令两个一次因式分别为0,从而实现降次,得到两个一元一次方程,最后解这两个一元一次方程,它们的解就都能是原方程的解.这种解法叫做因式分解法. 配方法要先配方,再降次;公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程. 解一元二次方程的基本思路:化二元为一元,即降次.例1.解方程:2(x 3)3x(x 3)-=-例2.一元二次方程x 2=3x 的解是例3.若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一个符合题意的一元二次方程 .例4.已知实数x 满足22110x x x x +++=,那么1x x+的值是知识点2 根与系数的关系若12,x x 是一元二次方程20ax bx c ++=(a ≠0)的两个实数根,那么12x x +=a b -,12x x =a c . 求根公式是在一般形式下推导得到,根与系数的关系由求根公式得到.例1.已知一元二次方程22310x x --=的两根为12,x x ,则=+2111x x ___________. 例2.已知一元二次方程022=+-m x x .(1)若方程有两个实数根,求m 的范围;(2)若方程的两个实数根为x 1,x 2,且3321=+x x ,求m 的值.例3.设1x 、2x 是方程2320x x +-=的两个根,则1212x x x x +-⋅= . 例4.孔明同学在解一元二次方程x 2-3x +c =0时,正确解得x 1=1,x 2=2,则c 的值为 . 例5.已知方程0422=-+mx x 两根的绝对值相等,则m = .(必做)例6.已知关于x 的方程222(43)20x m x m --+-=,根据下列条件,分别求出m 的值:①两根互为相反数;②两根互为倒数;③有一根为零;④有一根为1.例7.关于x 的一元二次方程01321=+++x x m )(有实数根,则m 的取值范围是 .例8.已知关于x 的方程222(1)0x m x m -++=.(1)当m 取什么值时,原方程没有实数根;(2)对m 选取一个合适的非零整数,使方程有两个不相等的实数根,并求出这两个实数根.例9.三角形的两边长分别为2和6,第三边是方程2x 10x+21=0-的解,则第三边的长为( )(A )7 (B )3 (C )7或3 (D )无法确定例10.已知关于x 的一元二次方程26(41)0x x m -++=有实数根.(1)求m 的取值范围.(2)若该方程的两个实数根为1x 、2x ,且124x x -=,求m 的值.例11.已知关于x 的一元二次方程0122=-+-m mx x 的两个实数根的平方和为23,则m 的值为 .。

《用因式分解法求解一元二次方程》教案

《用因式分解法求解一元二次方程》教案

(用因式分解法求解一元二次方程)教案(用因式分解法求解一元二次方程)教案一、教学目标(知识与技能)掌握应用因式分解的方法,会正确求一元二次方程的解。

(过程与方法)通过利用因式分解法将一元二次方程转化成两个一元一次方程的过程,体会“等价转化〞“降次〞的数学思想方法。

(感情态度价值观)通过探讨一元二次方程的解法,体会“降次〞化归的思想,逐渐养成主动探究的精神与积极参与的意识。

二、教学重难点(教学重点)运用因式分解法求解一元二次方程。

(教学难点)发觉与理解分解因式的方法。

三、教学过程(一)导入新课复习回忆:和学生一起回忆平方差、完全平方公式,以及因式分解的常用方法。

(二)探究新知问题1:一个数的平方与这个数的3倍有可能相等吗如果相等,这个数是几你是怎样求出来的学生小组商量,探究后,展示三种做法。

问题:小颖用的什么法——公式法小明的解法对吗为什么——违背了等式的性质,x可能是零。

小亮的解法对吗其依据是什么——两个数相乘,如果积等于零,那么这两个数中至少有一个为零。

问题2:学生探讨哪种方法对,哪种方法错;错的原因在哪你会用哪种方法简便]师引导学生得出结论:如果a·b=0,那么a=0或b=0(如果两个因式的积为零,则至少有一个因式为零,反之,如果两个因式有一个等于零,它们的积也就等于零。

)“或〞有以下三层含义①a=0且b≠0 ②a≠0且b=0 ③a=0且b=0问题3:(1)什么样的一元二次方程可以用因式分解法来解(2)用因式分解法解一元二次方程,其关键是什么(3)用因式分解法解一元二次方程的理论依据是什么(4)用因式分解法解一元二方程,必需要先化成一般形式吗因式分解法:当一元二次方程的一边是0,而另一边易于分解成两个一次因式的乘积时,我们就可以用分解因式的方法求解。

这种用分解因式解一元二次方程的方法称为因式分解法。

老师提示:1.用分解因式法的条件是:方程左边易于分解,而右边等于零;2.关键是熟练掌握因式分解的知识;3.理论依旧是“如果两个因式的积等于零,那么至少有一个因式等于零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

的周 长 为
第 3页
习题 8.解 下列方程 :
(1)3豸 ←一勾=2@一 苈);
(2)豸 2+3=2← +1);
(3) 劳2-4豸 +4=l3-2石 )2;
(4) 2· 2-4苈 =-2.
习题 9.解 下列方程 : (1) 艿2-2△ -3=0;
(2) 豸2-5刀 +4=0.
习 题 10.解 方 程 :(2艿 十1)2十 ×⒉ +D+1=0.
第 4页
·。·jr2+3>0
∴←十lJ← -ll=0
。·。J+1=0或 丌一1=0
··.历1=-1,艿 2=1。
用十 字相乘法分解 因式解方程
对 于 一元 二 次方程 锚 2+Djr+c=00≠ Ol,当 Δ=D2-4曰 c≥ 0且 Δ的值 为完全 平方 数 时,
可 以用十 字 相乘 法 分解 因式解 方 程 .
.· .艿 -1=0或 石+2012=0
∴艿1=1,厉 2=-2012
∵D是该方程 的较小根
∴卜9O12
r。 夕~3=1(_⒛ 1砂 =⒛ 13.
=1 .· .臼 习题 1,方 程 男2=2另 的根 是
习 题 2.方程 豸← 一力 +艿 一2=0的 根 是
习题 3.方 程 豸2-4豸 +4=0的 解 是
,
习题 4。 方程 ← +力(豸 -3l=· +2的 解 是
习题 5.如 果 △2一 石一1=← +1)° ,尹阝么 苈的值 为
(A)1
(D) -1
【】
习题 6.方 程 《石一力 =另 的根 是
.
习题 7.己 知等腰三角形的腰和底 的长分别是一元二次方程 y2-6刃 +8=0的 根,则 该三角形
2-4)=0
02-1X卜
←+I)0-1X冫 +2X石 -力 =0
。·,苈 +1=0或 jr-1=0或 艿+2〓 0或 豸一2=0
.· .豸1=-1,刀 2=1,另 3=-2,另 4=2.
例6.解方程:02十 3y~4← 2+3l=0. 鼯←2十 3XⅡ 2+3-0=0
2-1)=0 02+jX卜
02十 3X冫 +1XⅡ -D=0
¨冯 丌2 2·
例 4.角轧右程 :/+另 =3万 +3.
解:苋 2+刀 -l3J十 3J=0
豸(豸 +1)-30+1)=0 ←+1llJ-3)=0
第 1页
.· 。△+1=0或 苈一3=0 ∴ jrl=-1,△ 2=3,
因式分解法解高次方程
例5。 解方程:02-1丫 -302-1)〓 0. 解:G2-1》 2-1-3l=0
因式分解法解一元二次方程
困式分解法解-元 二次方程 的-般 步骤
因式分解法解一元二次方程 的一股步骤是:
(1)移 项 把方程 的右边化为 0;
(2)化积 将方程 的左边分解为两个一次因式的乘积;
(3)转化 令每个 因式等于 0,得到两个 一元一次方程 ;
(4)求解 解这两个一元一次方程,得 到一元二次方程 的两个解, 例 1.用 因式分解法解方程:艿 2=3x.
式.
傩 (2豸 +1llJ+3)=0
r。 2jf+1=o彐它万+3=0
∴冯^:扩 J·
例 9.设 方 程 @01hy~⒛ 14× ⒛ 12艿 -1=0的 较 大 根 为 夕,方程 艿2+⒛ 11艿 一⒛ 12=0的 较
小根 为 D,求 曰-b的 值 。
解:@01h)2— ⒛14× ⒛12苋 一1=0

2-3艿
:石
=0
刀(刃 -3)=0
。·。艿=0或 丌一3=0
∴ 冯 =0,艿 2=3·
例 2.用 因 式 分 解 法 解 方 程 :臼 一1)2-2《 丌-1)=0,
解:← -1沦 一1-2丌)=0
←-1r豸 一1)=o ←丬沦+1)=0
.·.万 -1=0或 石+1=0
∴几 =1豸2=-1. 例 3. 解 方 程 :3艿 2-12△ =-12. 解 :3艿 2-12γ +12=0 3← 2-4· +4)=0 3(· -2)2=0
例 7。 解方 程 :艿 2-5艿 +6=0。
分析:Δ =← Sl2-4× 6=25-24=1,其 结果为完全平方数,可 以使用十字相乘法分解因式. 解:← -纷⒍-3J=0
。·。jr-2〓 0或 石一3=0
∴ 冯 =2,石 2=3·
第 2页

8.
2+7苋
解 方 程 :2艿
+3=0。
分析:Δ =72-4× 2× 3=49-24=25,其 结果为完全平方数 ,可 以使用十字相乘法分解 因
0013·)2-0013+ll× @013-1》 -1=0 20132劳 2— 20132艿 +艿 -1=0
0 20132豸 ←-ll+← -ll=0
0-ll00132豸 +ll〓
∴丌一1=0或 ⒛ 132苋 +1=0
∴H杨 一另⒊
∵ 曰是 该方程 的较大 根
艿2十 2011刀 一2012=0
←-1)← +2010=0
相关文档
最新文档