2017-2018学年高二5月月考数学(理)试题含答案

合集下载

贵州省高二下学期第一次月考数学试题(解析版)

贵州省高二下学期第一次月考数学试题(解析版)

一、单选题1.设集合,集合N 为函数的定义域,则( ){}|12M x x =-≤≤()lg 1y x =-M N ⋂=A . B . C . D . ()12,[]12,[)12,(]12,【答案】D【分析】根据对数的真数为正数化简集合,进而由集合的交运算即可求解. (1,)N =+∞【详解】由,所以, 101x x ->⇒>(1,)N =+∞又,所以, {}|12M x x =-≤≤(]1,2M N = 故选:D2.若,则( ) 43z i =-zz =A .1 B .-1C .D .4355i +4355i -【答案】C【分析】根据共轭复数与模长的求解计算即可.【详解】因为,故. 43z i =-4355z i z==+故选:C.3.已知椭圆中,长轴长为10 )22221(0)x y a b a b +=>>A .B .10C .D .【答案】A【分析】根据椭圆长轴和离心率的概念即可求解.【详解】,所以;又因为 210a = 5a =c e a ==得c =2c =故选:A.4.设是直线,,是两个不同的平面,下列命题中正确的是( ) l αβA .若,,则 //l α//l β//αβB .若,,则 αβ⊥l α⊥l β⊥C .若,,则 αβ⊥//l αl β⊥D .若,,则 //l αl β⊥αβ⊥【答案】D【解析】由线面平行的性质和面面平行的判定可判断选项A ;由面面垂直的性质定理和线面平行的性质可判断选项B ;由面面垂直的性质定理和线面位置关系可判断选项C ;由线面平行的性质和面面垂直的判定定理可判断选项D ;【详解】对于选项A :若,,则或与相交,故选项A 不正确; //l α//l β//αβαβ对于选项B :若,,则或,故选项B 不正确;αβ⊥l α⊥//l βl β⊂对于选项C :若,,则或或与相交,故选项C 不正确;αβ⊥//l α//l βl β⊂l β对于选项D :若,由线面平行的性质定理可得过的平面,设,则,所以//l αl γm γα= //m l ,再由面面垂直的判定定理可得,故选项D 正确;m β⊥αβ⊥故选:D5.已知{}是等差数列,且,则=( ) n a 466,4a a ==10a A .2 B .0C .D .2-4-【答案】B【分析】根据等差数列基本量的计算即可求解.【详解】设等差数列的首项为,公差为,由,即,解得. {}n a 1a d 4664a a =⎧⎨=⎩113654a d a d +=⎧⎨+=⎩191a d =⎧⎨=-⎩所以,所以. 1(1)9(1)10n a a n d n n =+-=--=-+1010100a =-+=故选:B6.已知点P (x ,y )是曲线上的一动点,则点P (x ,y )到直线的距离的最小值为2y x =240x y --=( ) ABCD .35【答案】C【分析】当曲线在点P 处的切线与已知直线平行时点P 到该直线的距离最小,结合导数的几何意义和点到直线的距离公式计算即可求解.【详解】当曲线在点P 处的切线与直线平行时,点P 到该直线的距离最小,240x y --=,2y x '=由直线的斜率,则, 240x y --=2k =22x =得,有,所以, 1x =21y x ==(1,1)P ∴到直线距离. (1,1)P 240x y --=d ==故选:C.7.如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,则该函数是( )A .B .C .D .22sin 1xy x =+321x xy x -=+22cos 1x xy x =+3231x xy x -+=+【答案】D【分析】利用赋值法,结合图形和排除法即可判断ABC ;利用导数和零点的存在性定理研究函数的单调性,结合图形即可判断D. 【详解】A :设,由得, ()22sin 1x f x x =+π3π2<<sin 30>则,结合图形,不符合题意,故A 错误; ()2sin 33010f =>B :设,则,结合图形,不符合题意,故B 错误;()321x xg x x -=+()10g =C :设,当时,,,22cos ()1x x h x x =+π0,2x ⎡⎤∈⎢⎥⎣⎦cos [0,1]x ∈212x x +≥所以,即, 222cos 20111x x xx x ≤≤≤++0()1h x ≤≤当且仅当时等号成立,结合图形,不符合题意,故C 错误;1x =D :设,则, 323()1x xu x x -+=+(0)x >422263()(1)x x u x x --+'=+(0)x >设,则,42()63v x x x =--+(0)x >3()4120v x x x '=--<所以函数在上单调递减,且, ()v x (0,)+∞(0)30,(1)40v v =>=-<故存在,使得,0(0,1)x ∈0()0v x =所以当时,即,当时,即,0(0,)x x ∈()0v x >()0u x '>0(,)x x ∈+∞()0v x <()0u x '<所以函数在上单调递增,在上单调递减,结合图形,符合题意,故D 正确. ()u x 0(0,)x 0(,)x +∞故选:D.8.已知△ABC 的三个内角分别为A ,B ,C ,且满足,则的最大值为222sin 2sin 3sin C A B =-tan B ( ) ABCD .54【答案】B【分析】利用正弦定理及余弦定理表示,结合基本不等式求得的取值范围,从而求得cos B cos B 的取值范围,即得.tan B 【详解】依题意,222sin 2sin 3sin C A B =-由余弦定理得,, 22223c a b =-2222133b ac =-所以 222222222222114143333cos 2226a c a c a ca cb ac B ac ac ac ac+-+++-+====⋅,当且仅当时等号成立, 1263≥=2a c =即为锐角,,, B 2cos 13B ≤<22419cos 1,19cos 4B B ≤<<≤,222222sin 1cos 15tan 10,cos cos cos 4B B B B B B -⎛⎤===-∈ ⎥⎝⎦所以. tan B 故选:B.二、多选题9.下列说法正确的是( ) A .直线在y 轴上的截距为2 24y x +=B .直线必过定点(2,0) ()20R ax y a a --=∈C .直线的倾斜角为10x +=2π3D .过点且垂直于直线的直线方程为 ()2,3-230x y -+=210x y ++=【答案】BD【分析】根据直线的截距式方程即可判断A ,根据直线恒过定点的求法即可判断B ,根据直线斜率的定义即可判断C ,根据垂直直线斜率之积为-1,结合直线的点斜式方程即可判断D. 【详解】A :直线在轴上的截距为,所以A 不正确; 24y x +=y 2-B :由,得,20ax y a --=(2)0x a y --=令,解得:,所以该直线恒过定点,故B 正确;200x y -=⎧⎨=⎩20x y =⎧⎨=⎩(2,0)C :设直线的倾斜角为,,斜率为 10x +=α(]0,απ∈由,故C 错误;tan α=56πα=D :由直线,得该直线的斜率为,230x y -+=12所以过点且垂直于直线的直线斜率为, (2,3)-230x y -+=2故其方程为,即,故D 正确. 32(2)y x -=-+210x y ++=故选:BD.10.斜率为1的直线l 经过抛物线的焦点F ,且与抛物线相交于两点则下24y x =()()1122,,,A x y B x y 列结论正确的有( ) A .B .抛物线的准线方程为 (1,0)F 1y =-C .D .3OA OB ⋅=-10AB =【答案】AC【分析】由抛物线的性质判断AB ;联立直线l 和抛物线方程,利用韦达定理,以及数量积公式、抛物线的定义判断CD.【详解】由抛物线知,焦点,准线方程为,所以A 正确,B 不正确.24y x =(1,0)F =1x -由,消去得:,所以, 214y x y x=-⎧⎨=⎩y 2610x x -+=126x x +=121=x x 所以,所以C 正确; 121212121212(1)(1)2()13OA OB x x y y x x x x x x x x ⋅=+=+--=-++=- 所以,所以D 不正确. 12||28AB x x =++=故选:AC11.已知函数,其图像相邻两条对称轴之间的距离为,且函数()()cos (0,2f x x πωϕωϕ=+><π2是奇函数,则下列判断正确的是( )π3f x ⎛⎫- ⎪⎝⎭A .函数f (x )的最小正周期为B .函数f (x )的图像关于点(,0)对称 ππ6C .函数f (x )在上单调递增D .函数f (x )的图像关于直线对称 3ππ4⎡⎤⎢⎥⎣⎦,7π12=-x 【答案】ABD【分析】利用函数图像相邻两条对称轴之间的距离为和函数是偶函数,求出π2π()3f x -,从而可判断选项A 正确;再利用余弦函数的图像与性质,可以判断出选项()cos(2π)6=+f x x BCD 的正误.【详解】因为函数图像相邻两条对称轴之间的距离为,则,π2π22T =πT ∴=又,2π,0T ωω=>2ω∴=又函数是偶函数,因为, π()3f x -ππ2π()cos(2())cos(2)333f x x x ϕϕ-=-+=-+所以,即, 2πππ(Z)32k k ϕ-+=+∈7ππ(Z)6k k ϕ=+∈又,,则.π2ϕ<π6ϕ∴=()cos(2π)6=+f x x 函数最小正周期,故选项A 正确; πT =函数图像对称点的横坐标为:,即, ππ2π(Z)62x k k +=+∈ππ(Z)62k x k =+∈令时,,故选项B 正确; 0k =π6x =又由:,得到 ππ2π22π(Z)6k x k k -+≤+≤∈7ππππ(Z)1212k x k k -+≤≤-+∈所以函数的单调增区间为:, ()cos(2π)6=+f x x 7πππ,π(Z)1212k k k ⎡⎤-+-+∈⎢⎥⎣⎦令时,得到一个增区间为: 1k =-5π11π,1212⎡⎤⎢⎥⎣⎦故选项C 错误;函数图像的对称所在直线方程为;, πππ2π,(Z)6122k x k x k +==-+∈令时,,故选项D 正确. 1k =-7π12=-x 故选:ABD12.将全体正整数按照以下排列的规律排成一个三角形数阵,下列结论正确的是( )A .第8行最右边的数为38B .第10行从右向左第个5数为51C .第10行所有数的和为505D .第64行从左向右第7个数为2023 【答案】BCD【分析】根据三角数阵可知第行共有个数,且第行的最后一个数字是:,即为n n n 123n ++++ .结合等差数列前n 项求和公式计算,依次判断选项即可. (1)2n n +【详解】由三角形数阵可知, ①第行共有个数;n n ②第行的最后一个数字是:,即为. n 123n ++++ (1)2n n +A :因为,故A 错误; 1234567836+++++++=B :因为,1234567891055+++++++++=所以第行中的个数字依次为.故B 正确; 101046,47,48,49,50,51,52,53,54,55C :由,故C 正确;()5545104655464748495051525354555052S S ⨯+-=+++++++++==D :由,知第行最后的一个数为;()6316312346320162⨯++++++== 632016所以第行中的数字从左到右依次为642017,2018,2019,2020,2021,2022,2023,2024,,第7个数为2023,故D 正确. L 故选:BCD.三、填空题13.已知函数的最小正周期为,则___________. ()()sin 0f x x ωω=>πω=【答案】2【分析】利用正弦型函数的周期公式可求得的值.ω【详解】因为函数的最小正周期为,则. ()()sin 0f x x ωω=>π2π2πω==故答案为:.214.已知直线和圆相交于、两点,则弦长:210l x y --=22:210C x y y +--=A B AB =__________.【详解】由圆方可知其圆心坐标为,半径∴C (0,1)r =d. AB ===点睛:本题主要考查了直线与圆相交求截得弦长问题,属于基础题;求直线被圆所截得的弦长时,根据圆的性质通常考虑由弦心距,弦长的一般作为直角边,圆的半径作为斜边,利用勾股定理来解决问题,通常还会用到点到直线的距离公式.15.已知双曲线,若过右焦点F 且倾斜角为的直线与双曲线的右支有两个22221(0,0)x y a b a b-=>>30 交点,则此双曲线离心率的取值范围是___________.【答案】【分析】根据题意可知双曲线的渐近线方程的斜率需小于直线的斜率,得,结合b y x a =b <.b =【详解】由题意知,双曲线的渐近线方程为, by x a=±要使直线与双曲线的右支有两个交点, 需使双曲线的渐近线方程的斜率小于直线的斜率, by x a=即,即,由tan 30b a ︒<=b <b =,整理得,所以 <2234c a <c e a =<因为双曲线中,所以双曲线的离心率的范围是, 1e >故答案为:. 16.已知三棱锥的所有顶点都在球O 的球面上,SC 是球O 的直径若平面平面S ABC -.SCA ⊥SCB ,,,三棱锥的体积为9,则球O 的表面积为______. SA AC =SB BC =S ABC -【答案】36π【详解】三棱锥S−ABC 的所有顶点都在球O 的球面上,SC 是球O 的直径,若平面SCA ⊥平面SCB ,SA=AC ,SB=BC ,三棱锥S−ABC 的体积为9, 可知三角形SBC 与三角形SAC 都是等腰直角三角形,设球的半径为r , 可得 ,解得r=3. 112932r r r ⨯⨯⨯⨯=球O 的表面积为: .2436r ππ=点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.四、解答题17.已知数列{a n }的前n 项和为S n ,且满足,. 13a =123n n S a ++=(1)求数列{a n }的通项公式;(2)若等差数列{b n }的前n 项和为T n ,且,,求数列的前n 项和Q n .11T a =33T a =11{}n n b b +【答案】(1)(2)3nn a =9(21)nn +【分析】(1)根据数列的通项与的关系,化简求得,得到数列是首项为n a n S 13()n n a a n N ++=∈{}n a 3、公比为3的等比数列,即求解通项公式; (2)由(1)可得,得到,利用裂项法,3(21)n b n =-()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭即可求解.【详解】(1)当时,得, 1n =29a =由,得,123n n S a ++=123(2)n n S a n -+=≥两式相减得,又,∴,112()n n n n S S a a -+-=-1n n n S S a --=13(2)n n a a n +=≥又,∴,显然, 213a a =13()n n a a n N ++=∈10,3n n na a a +≠=即数列是首项为3、公比为3的等比数列,∴;{}n a 1333n nn a -=⨯=(2)设数列的公差为,则有,{}n b d 13b =由得,解得,∴,33T a =13327b d +=6d =3(1)63(21)n b n n =+-⨯=-又, ()()11111192n 12n 1182n 12n 1n n b b +⎛⎫==- ⎪-+-+⎝⎭∴==. n 111111Q 1183352n 12n 1⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111182n 1⎛⎫- ⎪+⎝⎭()n 92n 1+【点睛】本题主要考查等比数列的定义及通项公式、以及“裂项法”求和的应用,此类题目是数列问题中的常见题型,解答中确定通项公式是基础,准确计算求和是关键,易错点是在“裂项法”之后求和时,弄错项数导致错解,能较好的考查逻辑思维能力及基本计算能力等.18.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,满足.222sin sin sin sin sin A B C B C --=(1)求角A ;(2)若,求△ABC 周长的取值范围. 6a =【答案】(1) 2π3A =(2)(12,6+【分析】(1)根据正弦定理边角互化,可得,由余弦定理即可求解,222a b c bc --=(2)根据正弦定理得,由内角和关系以及和差角公式可得b B=1sin 2c B B ⎫=-⎪⎪⎭,进而由三角函数的性质即可求解.【详解】(1)由正弦定理可得:,222a b c bc --=,, 2221cos 22c b a A bc +-∴==-()0,πA ∈ 2π3A ∴=(2)因为,,所以,故πA B C ++=2π3A =π3B C +=ππ(0)33C BB =-<<由正弦定理得: 62πsin sin sin sin3a bc A B C====所以,b B=π1sin 32c C B B B ⎫⎛⎫==-=-⎪ ⎪⎪⎝⎭⎭所以周长 ABCA 1π6sin 623a b cB B B B ⎫⎛⎫=++=++-=++⎪ ⎪⎪⎝⎭⎭因为,则π03B <<ππ2π<333B <+πsin 13B ⎛⎫<+≤ ⎪⎝⎭故π12663B ⎛⎫<++≤+ ⎪⎝⎭求周长的取值范围为.ABC A (12,6+19.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下: 旧设备9.810.3 10.0 10.29.99.810.0 10.1 10.29.7新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.x y 21s 22s(1)求,,,;x y 21s 22s(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高). 【答案】(1);(2)新设备生产产品的该项指标的均值较旧设221210,10.3,0.036,0.04x y s s ====备有显著提高.【分析】(1)根据平均数和方差的计算方法,计算出平均数和方差.(2)根据题目所给判断依据,结合(1)的结论进行判断. 【详解】(1), 9.810.31010.29.99.81010.110.29.71010x +++++++++==, 10.110.410.11010.110.310.610.510.410.510.310y +++++++++==, 22222222210.20.300.20.10.200.10.20.30.03610s +++++++++==. 222222222220.20.10.20.30.200.30.20.10.20.0410s +++++++++==(2)依题意,, 0.320.15y x -==⨯===,所以新设备生产产品的该项指标的均值较旧设备有显著提高. y x -≥20.设函数,其中.22()3ln 1f x a x ax x =+-+0a >(1)讨论的单调性;()f x (2)若的图象与轴没有公共点,求a 的取值范围.()y f x =x 【答案】(1)的减区间为,增区间为;(2). ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭1a e >【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)根据及(1)的单调性性可得,从而可求a 的取值范围.()10f >()min 0f x >【详解】(1)函数的定义域为,()0,∞+又, ()23(1)()ax ax f x x+-'=因为,故,0,0a x >>230ax +>当时,;当时,; 10x a<<()0f x '<1x a >()0f x '>所以的减区间为,增区间为. ()f x 10,a ⎛⎫ ⎪⎝⎭1,+a ⎛⎫∞ ⎪⎝⎭(2)因为且的图与轴没有公共点,()2110f a a =++>()y f x =x 所以的图象在轴的上方,()y f x =x 由(1)中函数的单调性可得, ()min 1133ln 33ln f x f a a a ⎛⎫==-=+ ⎪⎝⎭故即. 33ln 0a +>1a e>【点睛】方法点睛:不等式的恒成立问题,往往可转化为函数的最值的符号来讨论,也可以参变分离后转化不含参数的函数的最值问题,转化中注意等价转化. 21.如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥体积最大时,求面MAB 与面MCD 所成二面角的正切值.M ABC -【答案】(1)证明见解析;(2)2.【分析】(1)证得平面,结合面面垂直的判定定理即可证出结论;DM ⊥BMC (2)当在的中点位置时体积最大,建立空间直角坐标系,利用空间向量的夹角坐标公式即M A AB 可求出结果.【详解】(1)由题设知,平面平面,交线为.CMD ⊥ABCD CD 因为,平面,BC CD ⊥BC ⊂ABCD 所以平面,平面,BC ⊥CMD DM ⊂CMD 故,因为是上异于,的点,且为直径, BC DM ⊥M A CDC D DC 所以,又,平面,DM CM ⊥BC CM C =I ,BC CM ⊂BMC 所以平面,而平面,DM ⊥BMC DM ⊂AMD故平面平面;AMD ⊥BMC (2)以D 为坐标原点,的方向为轴正方向,的方向为轴正方向,建立如图所示的空间DA x DC y 直角坐标系.D xyz -当三棱锥M −ABC 体积最大时,M 为的中点.CD 由题设得,()()()()()0,0,0,2,0,0,2,2,0,0,2,0,0,1,1D A B C M()()()2,1,1,0,2,0,2,0,0AM AB DA =-==设是平面MAB 的法向量,则(),,n x y z = 即,可取, 00n AM n AB ⎧⋅=⎪⎨⋅=⎪⎩ 2020x y z y -++=⎧⎨=⎩()1,0,2n = 又是平面的一个法向量,因此 DAMCD, cos ,n DA n DA n DA ⋅=== []0π,,n DA ∈ 得, sin ,n DA = tan ,2n DA = 所以面与面所成二面角的正切值是.MAB MCD 222.已知椭圆的左,右焦点分别为、,离心率为,直线l 经过点2222:1(0)x y C a b a b+=>>1F 2F 122F 且与椭圆C 交于不同两点A ,B ,当A 是椭圆C 上顶点时,l 与圆相切.223x y +=(1)求椭圆C 的标准方程;(2)求的取值范围.11F A F B ⋅ 【答案】(1) 2211612x y +=(2)[]12.7-【分析】(1)根据题意列出方程组,解之即可;22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩(2)当直线的斜率不存在时,易得;当直线的斜率存在时,设直线方程为l 117F A F B ⋅= l ,,,联立椭圆方程,利用韦达定理和平面向量数量积的坐标表示可得(2)y k x =-11(,)A x y 22(,)B x y ,令得,结合不等式的性质计算即可求解. 11F A F B ⋅= 22283634k k -+2343t k =+≥11577F A F B t ⋅=- 【详解】(1)当A 为椭圆的上顶点时,直线l 与圆相切, 则圆心到直线l ,a =有,得,1122bc a =bc =则,解得22212bc c e a c a b⎧=⎪⎪==⎨⎪⎪=-⎩4,a b ==所以椭圆的标准方程是; C 2211612x y +=(2)由(1)知,则椭圆的左焦点,当直线的斜率不存在时,2c =1(2,0)F -l 易求得,,则;(2,3)A (2,3)B -11443(3)7F A F B ⋅=⨯+⨯-= 当直线的斜率存在时,设直线方程为,,. l (2)y k x =-11(,)A x y 22(,)B x y 由,消得,, ()22211612y k x x y ⎧=-⎪⎨+=⎪⎩y 2222(34)1616480k x k x k +-+-=, 21221634k x x k ∴+=+2122164834k x x k-=+ 21112121212(2)(2)(2)(2)(2)(2)F A F B x x y y x x k x x ⋅=+++=+++--2221212(1)2(1)()4(1)k x x k x x k =++-+++, 2222222221648162836(1)2(1)4(1)343434k k k k k k k k k --=+⨯+-⨯++=+++令,则, 2343t k =+≥2112283675757734k t F A F B k t t--⋅===-+ ,,, 3t ≥ 1103t <≤571277t -≤-<综上可知,的取值范围是. 11F A F B ⋅ []12,7-。

洛社高中2013-2014学年高二5月月考数学(理)试题

洛社高中2013-2014学年高二5月月考数学(理)试题

16. (本题满分 14 分) 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度). 设该 蓄水池的底面半径为 r 米,高为 h 米,体积为 V 立方米.假设建造成本仅与表面 积有关,侧面的建造成本为 100 元/平方米,底面的建造成本为 160 元/平方米, 该蓄水池的总建造成本为 12000 元( 为圆周率). (1)将 V 表示成 r 的函数 V (r ) ,并求该函数的定义域; (2)讨论函数 V (r ) 的单调性,并确定 r 和 h 为何值时该蓄水池的体积最大.
.
11. 记定义在 R 上的函数 y f ( x) 的导函数为 f ( x) . 如果存在 x0 [a, b] ,使得
f (b) f (a) f ( x0 )(b a) 成立,则称 x0 为函数 y f ( x) 的“中值点”.那么函数 f ( x) x 3 2 x 2 在区间 [2,2] 上的“中值点”为
„„„12 分
所以复数 z 对应的点在以 (3,3) 为圆心, 2 为半径的圆上
z 表示圆上的点到原点的距离,所以 z min 3 2 2 2 2
5
z 的最小值为 2 2 .
„„„14 分
16. (本题满分 14 分) 某村庄拟修建一个无盖的圆柱形蓄水池(不计厚度). 设该 蓄水池的底面半径为 r 米,高为 h 米,体积为 V 立方米.假设建造成本仅与表面 积有关,侧面的建造成本为 100 元/平方米,底面的建造成本为 160 元/平方米, 该蓄水池的总建造成本为 12000 元( 为圆周率). (1)将 V 表示成 r 的函数 V (r ) ,并求该函数的定义域; (2)讨论函数 V (r ) 的单调性,并确定 r 和 h 为何值时该蓄水池的体积最大. 解析:(1)因为蓄水池侧面的总成本为 100 2rh 200rh 元, 2 底面的总成本为 160r 元,所以蓄水池的总成本为 (200 rh 160 r 2 ) 元. „2 分 rh 160r 2 12000 , 又据题意 200 „„„„„„„„„3 分 2 300 4r 2 3 所以 h ,从而 V (r ) r h (300 r 4r ) . „„„5 分 5 5r 300 4r 2 0 可得 r 5 3 ,故函数 V (r ) 的定义域为 (0,5 3) .„6 因为 r 0 ,由 h 5r

湖北省武汉中学2022-2023学年高二5月月考数学试题

湖北省武汉中学2022-2023学年高二5月月考数学试题

武汉中学2023—2024学年度五月月考高二数学试卷考试时间:2023年5月29日14:30——16:30 试卷满分:150分一、单选题(本大题共8小题,每小题5分,共40分。

在每小题列出的选项中,选出符合题目的一项)1.将甲、乙、丙、丁四名同学随机分配到三个会议中心担任志愿者,每个会议中心至少有一名同学,且每名同学只去一个会议中心,则甲和乙没有被分配到同一会议中心的概率为()A.16B.13C.56D.11122. 设110,022a b<<<<,随机变量ξ的分布3. 已知变量xx,yy=cc·ee kkkk拟合,设zz=ll ll yy,其变换后得到一组数据如下:xx16171819zz50344131由上表可得线性回归方程zz�=−4xx+aa�,则cc=( )A. −4B. ee−4C. 109D. ee1094. 我国中医药选出的“三药三方”对治疗新冠肺炎均有显著效果,功不可没.三药”分别为金花清感颗粒、连花清瘟胶囊、血必清注射液;“三方”分别为清肺排毒汤、化湿败毒方、宜肺败毒方.若某医生从“三药三方”中随机选出两种,事件AA表示选出的两种中至少有一药,事件BB表示选出的两种中有一方,则(|)()P B A=1 53103534式中任取2项,则取到的项都是有理项的概率为()6. 数列{}n a 的前n 项和为n S ,对一切正整数n ,点(),n n S 在函数2()2f x x x =+的图象上,n b n ∗=∈N且)1n ≥,则数列{}n b的前n 项和n T =( )A−B1− CD7. 现有3道四选一的单选题,学生李明对其中的2道题有思路,1道题完全没有思路.有思路的题答对的概率为0.8,没有思路的题只好任意猜一个答案,猜对答案的概率为0.25,若每题答对得5分,不答或答错得0分,则李明这3道题得分的期望为( )A. 9310B. 374C. 394D.211208. 若1aa=ππ1ππππ=√31√3cc=ee (其中e 为自然对数的底数),则aa ,bb ,cc 的大小关系是( ) <bb <aaB. bb <cc <aaC. cc <aa <bbD. aa <cc <bb二、多选题(本大题共4小题,每小题5分,共20分。

四川省成都外国语2018 2019高二数学5月月考试题理含解析

四川省成都外国语2018 2019高二数学5月月考试题理含解析

(含解析)5月月考试题理四川省成都外国语2018-2019学年高二数学在每小题给出的四个选项中,只有一项是符.5分,满分60分一.选择题(共12小题,每小题.) 合题目要求的,请把正确答案集中填写在答题卷上?????)B(CA,0,2,3B?1?1?xx?A?1( ),已知集合1.,则U??????0,20,1,2,3?1D.A. C.B.??1,0,1,2,3?????A 【答案】【解析】【分析】AC A. 先化简集合,再和集合,求出求交集,即可得出结果B U0x?x?1xx?1?2??A或x【详解】因为,??2?x0?CA?x,所以U????0,2)B?1,0,2,3?(CB?A.又,所以U A故选. 【点睛】本题主要考查集合的混合运算,熟记概念即可,属于基础题型i?1?z2i??z( ) 2.设,则i1?D. 5C. 4A. 2B. 3B 【答案】【解析】【分析】z z.,进而可得到利用复数的除法运算求出????ii1??12ii1?i???3z?3i?z B. ,故【详解】,选,则????2?1ii?11?i【点睛】本题考查了复数的四则运算,考查了复数的模,属于基础题。

- 1 -m?b)?(a?b2)a?(5,m)b?(2,?( ) 3.已知向量,若,,则?1?2 D. B. 1C. 2A.B 【答案】【解析】【分析】b?(a?b)2)??(2,a?(5,m)b. ,再由由,即可得出结果,,表示出b?a2)??(5,m)b?(2,a2)a?b?(3,m?,所以【详解】因为,,b(a?b)?0?b)?b?(a又,所以,02)?2(m?3?2?1m?. ,解得即B故选. 【点睛】本题主要向量数量积的坐标运算,熟记运算法则即可,属于基础题型 ??n4Sa?a??72aS( ) 项和为设等差数列4.,若,,则的前4n910n D. 28C. 24B. 23A. 20D 【答案】【解析】【分析】a,ada,d.将已知条件转化为的值的形式,列方程组,解方程组求得的值,进而求得1011a?a?3d?4?14a??8,d?4?,得,于由数列是等差数列故故,解详【解】1S?9a?36d?72?91a?a?9d??8?36?28故选D..110nd,a项和【点睛】本小题主要考查利用基本元的思想求等差数列的基本量通项公式和前.、1nnS,,,a,da5,利用等差数列的通项公式或前基本元的思想是在等差数列中有个基本量nn1a,d,进而求得数列其它项和公式,结合已知条件列出方程组,通过解方程组即可求得数列1的一些量的值.- 2 -5.为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取了容量为200的调查样本,其中城镇户籍与农村户籍各100人;男性120人,女性80人,绘制不同群体中倾向选择生育二胎与倾向选择不生育二胎的人数比例图,如图所示,其中阴影部分表示倾向选择生育二胎的对应比例,则下列叙述中错误的是( )A. 是否倾向选择生育二胎与户籍有关B. 是否倾向选择生育二胎与性别有关C. 倾向选择生育二胎的人群中,男性人数与女性人数相同D. 倾向选择不生育二胎的人群中,农村户籍人数少于城镇户籍人数【答案】C【解析】【分析】由题意,通过阅读理解、识图,将数据进行比对,通过计算可得出C选项错误.【详解】由比例图可知,是否倾向选择生育二胎与户籍、性别有关,倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数,0.8?120?960.6?80?48人,男倾向选择生育二胎的人员中,男性人数为人,女性人数为性人数与女性人数不相同,故C错误,故选:C.【点睛】本题主要考查了条形图的实际应用,其中解答中认真审题,正确理解条形图所表达的含义是解答的关键,着重考查了阅读理解能力、识图能力,属于基础题.22xy y1?m1??轴上的双曲线”的”是“方程表示焦点在6.“( )m?1m?5A. 充分不必要条件 B. 必要不充分条件D. 充要条件既不充分也不必要条件 C.B 【答案】【解析】【分析】- 3 -22xy y1??轴上的双曲线的m的范围即可解答表示焦点在解得方程.5?m?1m0?m?1?22xy y1???解得【详解】,1<m<5, 表示焦点在轴上的双曲线?0?m?55m?m?1?B.故选:2x.前是加号【点睛】本题考查双曲线的方程,是基础题,易错点是不注意5?m 1π?????cos2?cos?( )已知,则7.??52??232377?? A.B. C.D. 25252525C 【答案】【解析】【分析】αsin由已知根据三角函数诱导公式,求得,再由余弦二倍角,即可求解.1π2311??2??αcos??2?1?2sin1α?αsinα?cos2?,又由,得【详解】由.??的5225255??.C故选:【点睛】本题主要考查了本题考查三角函数的化简求值,其中解答中熟记三角函数的诱导公式及余弦二倍角公式的应用是解答的关键,着重考查了推理与计算能力,属于基础题.11c a b0.7c?log( ) ,的大小关系是已知,则,,,8.????ln3a?ln2?b332c?a?b b?c?a B. A. c??ba ac??b D. C.B 【答案】【解析】【分析】 0,1结合进行的大小比较,即可。

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A版数学高二弧度制精选试卷练习(含答案)2

人教A 版数学高二弧度制精选试卷练习(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知扇形的周长是5cm ,面积是322cm ,则扇形的中心角的弧度数是( ) A .3B .43C .433或 D .2【来源】江西省九江第一中学2016-2017学年高一下学期期中考试数学(文)试题 【答案】C2.已知扇形的周长为8cm ,圆心角为2,则扇形的面积为( ) A .1B .2C .4D .5【来源】四川省双流中学2017-2018学年高一1月月考数学试题 【答案】C3.《掷铁饼者》 取材于希腊的现实生活中的体育竞技活动,刻画的是一名强健的男子在掷铁饼过程中最具有表现力的瞬间.现在把掷铁饼者张开的双臂近似看成一张拉满弦的“弓”,掷铁饼者的手臂长约为4π米,肩宽约为8π米,“弓”所在圆的半径约为1.25米,你估测一下掷铁饼者双手之间的距离约为( )1.732≈≈)A .1.012米B .1.768米C .2.043米D .2.945米【来源】安徽省五校(怀远一中、蒙城一中、淮南一中、颍上一中、淮南一中、涡阳一中)2019-2020学年高三联考数学(理)试题 【答案】B4.已知扇形的周长为4,圆心角所对的弧长为2,则这个扇形的面积是( ) A .2B .1C .sin 2D .sin1【来源】福建省泉州市南安侨光中学2019-2020学年高一上学期第二次阶段考试数学试题 【答案】B5.已知α是第三象限角,且cos cos22αα=-,则2α是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角【来源】2012人教A 版高中数学必修四1.2任意角的三角函数练习题 【答案】B6.如图,2弧度的圆心角所对的弦长为2,这个圆心角所对应的扇形面积是( )A .1sin1B .21sin 1C .21cos 1D .tan1【来源】广西河池市高级中学2017-2018学年高一下学期第二次月考数学试题 【答案】B7.半径为10cm ,面积为2100cm 的扇形中,弧所对的圆心角为( ) A .2 radB .2︒C .2π radD .10 rad【来源】第一章滚动习题(一) 【答案】A8.若一扇形的圆心角为72︒,半径为20cm ,则扇形的面积为( ). A .240πcmB .280πcmC .240cmD .280cm【来源】陕西省西安市长安区第一中学2016-2017学年高一下学期第一次月考数学试题 【答案】D9.如图,把八个等圆按相邻两两外切摆放,其圆心连线构成一个正八边形,设正八边形内侧八个扇形(无阴影部分)面积之和为1S ,正八边形外侧八个扇形(阴影部分)面积之和为2S ,则12S S =( )A .34B .35C .23D .1【来源】广西省南宁市马山县金伦中学、武鸣县华侨中学等四校2017-2018学年高一10月月考数学试题. 【答案】B10.在-360°到0°内与角1250°终边相同的角是( ) . A .170° B .190° C .-190°D .-170°【来源】2012人教A 版高中数学必修四1.1任意角和弧度制练习题(一)(带解析) 【答案】C11.下列各角中,终边相同的角是 ( ) A .23π和240o B .5π-和314oC .79π-和299π D .3和3o【来源】新疆伊西哈拉镇中学2018-2019学年高一上学期第二次月考数学试题 【答案】C12.已知2弧度的圆心角所对的弧长为2,则这个圆心角所对的弦长是( ) A .sin 2B .2sin 2C .sin1D .2sin1【来源】广东省东莞市2018-2019学年高一第二学期期末教学质量检查数学试题 【答案】D13,弧长是半径的3π倍,则扇形的面积等于( ) A .223cm πB .26cm πC .243cm πD .23cm π【来源】河北省隆华存瑞中学(存瑞部)2018-2019学年高一上学期第二次数学试题 【答案】D14.如图所示,用两种方案将一块顶角为120︒,腰长为2的等腰三角形钢板OAB 裁剪成扇形,设方案一、二扇形的面积分别为12S , S ,周长分别为12,l l ,则( )A .12S S =,12l l >B .12S S =,12l l <C .12S S >,12l l =D .12S S <,12l l =【来源】浙江省省丽水市2018-2019学年高一下学期期末数学试题 【答案】A15.已知sin sin αβ>,那么下列命题成立的是( ) A .若,αβ是第一象限角,则cos cos αβ> B .若,αβ是第二象限角,则tan tan αβ> C .若,αβ是第三象限角,则cos cos αβ> D .若,αβ是第四象限角,则tan tan αβ>【来源】正定中学2010高三下学期第一次考试(数学文) 【答案】D16.半径为1cm ,中心角为150°的角所对的弧长为( )cm . A .23B .23π C .56D .56π 【来源】宁夏石嘴山市第三中学2018-2019学年高一5月月考数学试题 【答案】D 17.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D18.扇形的中心角为120o )A .πB .45πC D 2【来源】辽宁省大连市第八中学2016-2017学年高一下学期期中考试数学试题【答案】A19.若扇形的周长为8,圆心角为2rad ,则该扇形的面积为( ) A .2B .4C .8D .16【来源】河南省洛阳市2018-2019学年高一下学期期中考试数学试卷 【答案】B20.-300° 化为弧度是( ) A .-43πB .-53πC .-54πD .-76π【来源】2014-2015学年山东省宁阳四中高一下学期期中学分认定考试数学试卷(带解析) 【答案】B21.一个扇形的面积为3π,弧长为2π,则这个扇形的圆心角为( ) A .3π B .4π C .6π D .23π 【来源】湖北省荆门市2017-2018学年高一(上)期末数学试题 【答案】D22.《九章算术》是中国古代第一部数学专著,成于公元一世纪左右,系统总结了战国、秦、汉时期的数学成就.其中《方田》一章中记载了计算弧田(弧田就是由圆弧和其所对弦所围成弓形)的面积所用的经验公式:弧田面积=12(弦×矢+矢×矢),公式中“弦”指圆弧所对弦长,“矢”等于半径长与圆心到弦的距离之差.按照上述经验公式计算所得弧田面积与其实际面积之间存在误差.现有圆心角为23π,弦长为的弧田.其实际面积与按照上述经验公式计算出弧田的面积之间的误差为( )平方米.(其中3π≈,1.73≈)A .15B .16C .17D .18【来源】湖北省2018届高三5月冲刺数学(理)试题 【答案】B23.下列各式不正确的是( ) A .-210°=76π-B .405°=49πC .335°=2312πD .705°=4712π【来源】河南信阳市息县第一高级中学、第二高级中学、息县高中2018-2019学年高一下学期期中联考数学(文)试题 【答案】C24.下列函数中,最小正周期为π2的是( )A .y =sin (2x −π3)B .y =tan (2x −π3)C .y =cos (2x +π6) D .y =tan (4x +π6)【来源】20102011年山西省汾阳中学高一3月月考数学试卷 【答案】B25.已知扇形的周长为12cm ,圆心角为4rad ,则此扇形的弧长为 ( ) A .4cmB .6cmC .8cmD .10cm【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(理)试卷 【答案】C二、填空题26.已知扇形的圆心角18πα=,扇形的面积为π,则该扇形的弧长的值是______.【来源】上海市黄浦区2018-2019学年高一下学期期末数学试题 【答案】3π 27.若一个圆锥的侧面展开图是面积为2π的半圆面,则该圆锥的底面半径为_______ . 【来源】上海市浦东新区川沙中学2018-2019学年高二下学期期末数学试题 【答案】128.一个扇形的弧长与面积的数值都是5,则这个扇形中心角的弧度数为__________. 【来源】河南省灵宝市实验高中2017-2018学年高一下学期第一次月考考数学试题 【答案】5229.已知圆锥的侧面展开图是一个扇形,若此扇形的圆心角为65π、面积为15π,则该圆锥的体积为________.【来源】上海市杨浦区2019-2020学年高三上学期期中质量调研数学试题 【答案】12π30.圆O 的半径为1,P 为圆周上一点,现将如图放置的边长为1的正方形(实线所示 ,正方形的顶点A 和点P 重合)沿着圆周顺时针滚动,经过若干次滚动,点A 第一次回到点P 的位置,则点A 走过的路径的长度为 .【来源】2015届山东省日照市高三3月模拟考试理科数学试卷(带解析)31.已知扇形的圆心角为1弧度,扇形半径为2,则此扇形的面积为______. 【来源】上海市复兴高级中学2018-2019学年高一下学期3月份质量检测数学试题 【答案】232.一个球夹在120°的二面角内,且与二面角的两个面都相切,两切点在球面上的最短距离为π,则这个球的半径为_______ .【来源】上海市七宝中学2017-2018学年高二下学期期中数学试题 【答案】333.用半径为,面积为cm 2的扇形铁皮制作一个无盖的圆锥形容器(衔接部分忽略不计), 则该容器盛满水时的体积是 .【来源】2012届江苏省泗阳中学高三上学期第一次调研考试数学试卷(实验班) 【答案】31000cm 3π34.《九章算术》是体现我国古代数学成就的杰出著作,其中(方田)章给出的计算弧田面积的经验公式为:弧田面积12=(弦⨯矢+矢2),弧田(如图阴影部分)由圆弧及其所对的弦围成,公式中“弦”指圆弧所对弦的长,“矢”等于半径长与圆心到弦的距离之差,现有弧长为43π米,半径等于2米的弧田,则弧所对的弦AB 的长是_____米,按照上述经验公式计算得到的弧田面积是___________平方米.【来源】山东省济南市2018-2019学年高一下学期期末学习质量评估数学试题【答案】1235.设扇形的半径长为2cm ,面积为24cm ,则扇形的圆心角的弧度数是 【来源】2013-2014学年山东济南商河弘德中学高一下学期第二次月考数学试卷(带解析) 【答案】236.已知一个圆锥的展开图如图所示,其中扇形的圆心角为120o ,弧长为2π,底面圆的半径为1,则该圆锥的体积为__________.【来源】2018年春高考数学(文)二轮专题复习训练:专题三 立体几何【答案】337.现用一半径为10cm ,面积为280cm π的扇形铁皮制作一个无盖的圆锥形容器(假定衔接部分及铁皮厚度忽略不计,且无损耗),则该容器的容积为__________3cm . 【来源】江苏省苏州市2018届高三调研测试(三)数学试题 【答案】128π38.已知扇形的周长为6,圆心角为1,则扇形的半径为___;扇形的面积为____. 【来源】浙江省宁波市镇海区镇海中学2018-2019学年高一上学期期中数学试题 【答案】2 2 39.给出下列命题:①第二象限角大于第一象限角;②三角形的内角是第一象限角或第二象限角;③不论用角度制还是用弧度制度量一个角,它们与扇形所在半径的大小无关; ④若sin sin αβ=,则α与β的终边相同;⑤若cos 0θ<,则θ是第二或第三象限的角. 其中正确的命题是______.(填序号)【来源】江苏省南通市启东中学2018-2019学年高二5月月考数学(文)试题 【答案】③40.设扇形的周长为4cm ,面积为21cm ,则扇形的圆心角的弧度数是________. 【来源】广东省中山市第一中学2016-2017学年高一下学期第一次段考(3月)数学(理)试题 【答案】2三、解答题41.已知扇形AOB 的周长为8.(1)若这个扇形的面积为3,求其圆心角的大小.(2)求该扇形的面积取得最大时,圆心角的大小和弦长AB .【来源】2015-2016学年四川省雅安市天全中学高一11月月考数学试卷(带解析) 【答案】(1)或;(2);.42.已知一扇形的中心角是120︒,所在圆的半径是10cm ,求: (1)扇形的弧长; (2)该弧所在的弓形的面积【来源】福建省福州市平潭县新世纪学校2019-2020学年高一上学期第二次月考数学试题【答案】(1)203π;(2)1003π-43.某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB 、CD 所在圆的半径分别为()f x 、R 米,圆心角为θ(弧度).(1)若3πθ=,13r =,26=r ,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?【来源】江苏省泰州市泰州中学2019~2020学年高一上学期期中数学试题 【答案】(1)292m π(2)当线段AD 的长为5米时,花坛的面积最大44.已知一个扇形的周长为30厘米,求扇形面积S 的最大值,并求此时扇形的半径和圆心角的弧度数.【来源】上海市华东师范大学第二附属中学2018-2019学年高一上学期期末数学试题 【答案】()2rad α= 152r =45.如图所示为圆柱形大型储油罐固定在U 型槽上的横截面图,已知图中ABCD 为等腰梯形(AB ∥DC ),支点A 与B 相距8m ,罐底最低点到地面CD 距离为1m ,设油罐横截面圆心为O ,半径为5m ,56D ∠=︒,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin530.8︒≈,tan56 1.5︒≈,3π≈,结果保留整数)【来源】上海市闵行区七宝中学2019-2020学年高一上学期9月月考数学试题 【答案】202m46.明朝数学家程大位在他的著作《算法统宗》中写了一首计算秋千绳索长度的词《西江月》:“平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…”某教师根据这首词的思想设计如下图形,已知CE l ⊥,DF l ⊥,CB CD =,AD BC ⊥,5DF =,2BE =,AD =则在扇形BCD 中随机取一点求此点取自阴影部分的概率.【来源】山西省阳泉市2018-2019学年高一第一学期期末考试试题数学试题【答案】1)4(P A π=-47.某企业欲做一个介绍企业发展史的铭牌,铭牌的截面形状是如图所示的扇形环面(由试卷第11页,总11页 扇形OAD 挖去扇形OBC 后构成的).已知10, (0<<10)OA=OB =x x ,线段BA 、CD与弧BC 、弧AD 的长度之和为30米,圆心角为θ弧度.(1)求θ关于x 的函数解析式;(2)记铭牌的截面面积为y ,试问x 取何值时,y 的值最大?并求出最大值.【来源】上海市黄浦区2018届高三4月模拟(二模)数学试题【答案】(1)210(010)10x x x θ+=<<+;(2)当52x =米时铭牌的面积最大,且最大面积为2254平方米. 48.已知一扇形的圆心角为()0αα>,所在圆的半径为R .(1)若90,10R cm α==o ,求扇形的弧长及该弧所在的弓形的面积;(2)若扇形的周长是一定值()0C C >,当α为多少弧度时,该扇形有最大面积?【来源】2019高考备考一轮复习精品资料 专题十五 任意角和弧度制及任意角的三角函数 教学案【答案】(1)2550π-;(2)见解析49.已知在半径为10的圆O 中,弦AB 的长为10.(1)求弦AB 所对的圆心角α(0<α<π)的大小;(2)求圆心角α所在的扇形弧长l 及弧所在的弓形的面积S .【来源】(人教A 版必修四)1.1.2弧度制(第一课时)同步练习02【答案】(1)π3(2)10π3;50(π3−√32) 50.已知在半径为6的圆O 中,弦AB 的长为6,(1)求弦AB 所对圆心角α的大小;(2)求α所在的扇形的弧长l 以及扇形的面积S.【来源】江西省玉山县一中2018-2019学年高一(重点班)下学期第一次月考数学(文)试卷【答案】(1)3π ;(2)2l π= ,6S π=。

2020年高一高二数学百所名校好题分项解析汇编专题04 空间几何体的外接球与内切球(必修2)(原卷版)

2020年高一高二数学百所名校好题分项解析汇编专题04  空间几何体的外接球与内切球(必修2)(原卷版)

高一数学(必修2)百所名校速递分项汇编专题04 空间几何体的外接球与内切球一、选择题1.【2017-2018学年辽宁省抚顺二中高一(上)期末】在三棱锥中,,,则该三棱锥的外接球的表面积为A.B.C.D.【答案】D∴外接球的表面积为S=4π×DG2=43π.故选:D.2.【黑龙江省实验中学2017-2018学年高一下学期期末】四面体中,,,,则此四面体外接球的表面积为A.B.C.D.【答案】A【解析】由题意,△BCD中,CB=DB=2,∠CBD=60°,可知△BCD是等边三角形,BF=∴△BCD的外接圆半径r==BE,FE=∵∠ABC=∠ABD=60°,可得AD=AC=,可得AF=∴AF⊥FB∴AF⊥BCD,∴四面体A﹣BCD高为AF=.设:外接球R,O为球心,OE=m可得:r2+m2=R2……①,()2+EF2=R2……②由①②解得:R=.四面体外接球的表面积:S=4πR2=.故选:A.3.【四川省泸州市泸化中学2017-2018学年高一5月月考】三棱柱中,,、、,则该三棱柱的外接球的表面积为( )A.4πB.6πC.8πD.10π【答案】C【解析】由题意得三棱柱为直三棱柱,且正好是长方体切出的一半,所以外接球半径为,,选C.4.【四川省泸州市泸化中学2017-2018学年高一5月月考】三棱柱中,,、、,则该三棱柱的外接球的体积( )A.B.C.D.【答案】B【解析】为直角三角形,斜边为,球心与该斜边的中点的连线垂直于平面,故球的半径,故球的体积为,故选B.5.【2018年人教A版数学必修二】棱长分别为2、、的长方体的外接球的表面积为()A.B.C.D.【答案】B【解析】设长方体的外接球半径为,由题意可知:,则:,该长方体的外接球的表面积为.本题选择B选项.6.【浙江省嘉兴市第一中学2018-2019学年高二上学期期中】在四面体中,,二面角的余弦值是,则该四面体外接球的表面积是()A.B.C.D.【答案】C【解析】取中点,连接,,平面,为二面角,在中,,,取等边的中心,作平面,过作平面,(交于),因为二面角的余弦值是,,,点为四面体的外接球球心,其半径为,表面积为,故选C.7.【安徽省黄山市屯溪第一中学2018-2019学年高二上学期期中考试】三棱锥P ­ABC中,PA⊥平面ABC,Q是BC边上的一个动点,且直线PQ与面ABC所成角的最大值为则该三棱锥外接球的表面积为( )A.B.C.D.【答案】C【解析】三棱锥P﹣ABC中,PA⊥平面ABC,直线PQ与平面ABC所成角为θ,如图所示;则sinθ==,且sinθ的最大值是,∴(PQ)min=2,∴AQ的最小值是,即A到BC的距离为,∴AQ⊥BC,∵AB=2,在Rt△ABQ中可得,即可得BC=6;取△ABC的外接圆圆心为O′,作OO′∥PA,∴=2r,解得r=2;∴O′A=2,取H为PA的中点,∴OH=O′A=2,PH=,由勾股定理得OP=R==,∴三棱锥P﹣ABC的外接球的表面积是S=4πR2=4×=57π.故答案为:C8.【广东省佛山市第一中学2018-2019学年高二上学期第一次段考】三棱锥的三视图如图所示,则该三棱锥外接球的体积为()A.B.C.D.【答案】A则球的半径R为,所以球的体积为.本题选择A选项.9.【内蒙古鄂尔多斯市第一中学2018-2019学年高二上学期期中考试】已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,则该三棱锥的外接球体积为()A.B.C.D.【答案】C【解析】由三视图知几何体是一个侧棱与底面垂直的三棱锥,底面是斜边上的高为的等腰直角三角形,与底面垂直的侧面是个等腰三角形,底边长为,高为,故三棱锥的外接球与以棱长为的正方体的外接球相同,其直径为,半径为三棱锥的外接球体积为故选10.【四川省遂宁市2017-2018学年高二上学期教学水平监测】已知长方体中,,则长方体外接球的表面积为A.B.C.D.【答案】C11.【山西省朔州市应县第一中学2018-2019学年高二上学期期中考试】在三棱锥中,三侧面两两互相垂直,侧面的面积分别为,则此三棱锥的外接球的表面积为()A.B.C.D.【答案】A【解析】由题意得,侧棱两两垂直,设,则都是以为直角顶点的直角三角形,得,解之得,即,侧棱两两垂直,以为过同一顶点的三条棱作长方体,该长方体的对角线长为,恰好等于三棱锥外接球的直径,由此可得外接球的半径,可得此三棱锥外接球表面积为,故选A.12.【重庆市铜梁一中2018-2019学年高二10月月考】棱长分别为2,,的长方体的外接球的表面积为( )A.B.C.D.【答案】B13.【黑龙江省大庆中学2018-2019学年高二10月月考】长方体的三个相邻面的面积分别为2,3,6,则该长方体外接球的表面积为A.B.C.D.【答案】C【解析】设长方体的棱长分别为,则,所以,于是,设球的半径为,则,所以这个球面的表面积为.本题选择C选项.14.【重庆市万州三中2018-2019学年高二上学期第一次月考】已知一个表面积为44的长方体,且它的长、宽、高的比为3 21,则此长方体的外接球的体积为()A.B.C.D.【答案】D【解析】设长方体的长、宽、高分别为,则,解得,即,即长方体的棱长分别为,所以长方体的对角线长为,所以球的半径为,即,所以球的体积为,故选D.二、填空题15.【江西省赣州市十四县(市)2018-2019学年高二上学期期中联考】在三棱锥中,,,,,,则三棱锥的外接球的表面积为_______________.【答案】【解析】由题意,在三棱锥中,平面,以为长宽高构建长方体,则长方体的外接球是三棱锥的外接球,所以三棱锥的外接球的半径为,所以三棱锥的外接球的表面积为.16.【贵州省遵义市南白中学2018-2019学年高二上学期第一次月考】正四面体内切球半径与外接球半径之比为__________.【答案】【解析】由正四面体的对称性可得正四面体的内切球与外接球球心重合且在正四面体的高上,设正四面体的内切球与外接球球心为,正四面体的高为,将正四面体分成以为顶点,以四面体的四个面为底面的四个正四棱锥,这四个正四棱锥的底面积是正四面体的底面积,高为内切球的半径,设四面体外接球半径为,则,由四个正四棱锥的体积和等于正四面体的体积可得,故答案为.17.【山西省长治市第二中学2017-2018学年高二下学期期末考试】已知三棱锥中,,,则三棱锥的外接球的表面积为________________.【答案】【解析】如图:∵AD=2,AB=1,BD=,满足AD2+AB2=SD2∴AD⊥AB,又AD⊥BC,BC∩AB=B,∴AD⊥平面ABC,∵AB=BC=1,AC=,∴AB⊥BC,∴BC⊥平面DAB,∴CD是三棱锥的外接球的直径,∵AD=2,AC=,∴CD=,∴三棱锥的外接球的表面积为4π()2=6π.故答案为:6π18.【高二人教版必修2 第一章本章能力测评】已知正六棱柱的底面边长为4,高为6,则它的外接球的表面积为__________.【答案】【解析】根据正六棱柱的对称性可得,正六棱柱的体对角线就是球的直径,由高为,底面边长为,结合正六边形的性质,可得,即,所以外接球的表面积为,故答案为.19.【江西省南昌市第十中学2017-2018学年高二下学期期末考试】在三棱锥中,,,,,且三棱锥的体积为,则该三棱锥的外接球半径是_________【答案】3【解析】取的中点,连接,因为,,,,所以,且,所以平面,且是外接球的直径,设,所以为正三角形,则,则,解得.20.【山东省潍坊市2017-2018学年高二5月份统一检测】如图,在三棱锥中,平面,,,,则三棱锥外接球的表面积为__________.【答案】。

2017-2018学年安徽省淮南二中文创班高二上学期第二次月考数学试题(解析版)

2017-2018学年安徽省淮南二中文创班高二上学期第二次月考数学试题(解析版)

2017-2018学年安徽省淮南二中文创班高二(上)第二次月考数学试卷一、选择题:本题共12题,每小题5分1.(5分)已知两定点A(﹣1,0),B(1,0),动点P(x,y)满足,则点P的轨迹是()A.椭圆B.双曲线C.一条线段D.一条射线2.(5分)已知f(x),g(x)是定义在[a,b]上连续函数,则“f(x)<g(x)对一切x∈[a,b]成立”是“f(x)的最大值小于g(x)的最小值”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件3.(5分)设函数f(x)=x3+ax+1(a<0),曲线y=f(x)在点(a,f(a))处的切线方程为y=2x+b,则a+b=()A.﹣1 B.1 C.2 D.44.(5分)已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数).下面四个图象中,y=f(x)的图象大致是()A.B.C.D.5.(5分)若函数f(x)=x3﹣tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A.(﹣∞,] B.(﹣∞,3]C.[,+∞) D.[3,+∞)6.(5分)已知不等式|x﹣m|<1成立的一个充分非必要条件是<x<,则实数m的取值范围是()A.B.C.D.7.(5分)已知抛物线y2=8x的准线与双曲线交于A,B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率是()A.B.2 C. D.8.(5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,记椭圆和双曲线的离心率分别为e1,e2,则的值为()A.1 B.2 C.3 D.49.(5分)过抛物线y2=4x的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,则|AB|=()A.B.C.8 D.1610.(5分)椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.11.(5分)设函数f(x)的导函数为f′(x),且在R上2f(x)+xf′(x)<0恒成立,则f(1),,的大小关系为()A.B.C.D.12.(5分)已知函数f(x)=﹣k(+lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为()A.(﹣∞,e]B.[0,e]C.(﹣∞,e)D.[0,e)二、填空题:本题共4小题,每小题5分13.(5分)已知双曲线的一条渐近线方程为y=,则m=.14.(5分)已知椭圆的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若线段AB的中点坐标为(1,﹣1),则椭圆的方程为.15.(5分)若函数f(x)=lnx+ax2﹣2在区间()内存在单调递增区间,则实数a的取值范围是.16.(5分)已知函数f(x)=x+,g(x)=+x,若∀x1∈[],∃x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是.三、解答题:本题共6小题,第17题10分,第18至22题每小题10分17.(10分)已知命题p:∀x∈[1,3],3x2﹣a≥0;命题q:∃x0∈R,使4x02+3(a﹣1)x0+1<0,若“p或q”为真,“p且q”为假,求实数a的取值范围.18.(12分)如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.19.(12分)已知函数f(x)=ax2﹣(a+2)x+lnx.(1)若x=是函数f(x)的一个极大值点,求a的取值范围;(2)当a>0时,若f(x)在区间[1,e]上的最小值为﹣2,求a的取值范围.20.(12分)已知函数f(x)=xlnx+1.(1)求f(x)的单调性;(2)设g(x)=e x+mx(m∈R),若关于x的方程f(x)=g(x)有解,求m的取值范围.21.(12分)已知抛物线C:y2=2px(p>0)的焦点F与椭圆E:的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M,N两点.(1)求抛物线C的方程以及|AF|的值;(2)记抛物线C的准线与x轴交于点B,若|BM|2+|BN|2=40,求直线l的方程.22.(12分)已知函数f(x)=ln(ax+1)+x2﹣ax﹣ln2(a>0)(1)讨论f(x)在[)上的单调性;(2)若对∀a∈(1,2),总存在x0]使不等式f(x0)≥m(1﹣a2)成立,求m的范围.2017-2018学年安徽省淮南二中文创班高二(上)第二次月考数学试卷参考答案与试题解析一、选择题:本题共12题,每小题5分1.(5分)已知两定点A(﹣1,0),B(1,0),动点P(x,y)满足,则点P的轨迹是()A.椭圆B.双曲线C.一条线段D.一条射线【分析】根据题意,由A、B的坐标计算可得|AB|=2,结合题意分析可得=|AB|,分析可得答案.【解答】解:根据题意,两定点A(﹣1,0),B(1,0),则|AB|=2,若动点P(x,y)满足=|AB|,则点P的轨迹是一条射线;故选:D.【点评】本题考查曲线轨迹的求法,涉及双曲线的定义,涉及比较两定点间的距离与2的大小.2.(5分)已知f(x),g(x)是定义在[a,b]上连续函数,则“f(x)<g(x)对一切x∈[a,b]成立”是“f(x)的最大值小于g(x)的最小值”的()A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【分析】f(x)的最大值小于g(x)的最小值⇒f(x)<g(x)对一切x∈[a,b]成立,反之不成立,即可判断出结论.【解答】解:f(x)的最大值小于g(x)的最小值⇒f(x)<g(x)对一切x∈[a,b]成立,反之不成立,由于f(x)<g(x)对一切x∈[a,b]成立⇔f(x)﹣g(x)<0对一切x∈[a,b]成立.∴“f(x)<g(x)对一切x∈[a,b]成立”.是“f(x)的最大值小于g(x)的最小值”的必要不充分条件.故选:B.【点评】本题考查了函数的单调性、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.3.(5分)设函数f(x)=x3+ax+1(a<0),曲线y=f(x)在点(a,f(a))处的切线方程为y=2x+b,则a+b=()A.﹣1 B.1 C.2 D.4【分析】求出函数的导数,求出切线方程,得到关于a,b的方程组,求出a,b 的值即可.【解答】解:f′(x)=3x2+a,故f(a)=a3+a2+1,f′(a)=3a2+a,故切线方程是:y﹣(a3+a2+1)=(3a2+a)(x﹣a),即y=(3a2+a)x﹣2a3+1,故,解得,故a+b=2,故选:C.【点评】本题考查了切线方程问题,考查导数的应用,是一道中档题.4.(5分)已知函数y=xf′(x)的图象如图所示(其中f′(x)是函数f(x)的导函数).下面四个图象中,y=f(x)的图象大致是()A.B.C.D.【分析】根据函数y=xf′(x)的图象,依次判断f(x)在区间(﹣∞,﹣1),(﹣1,0),(0,1),(1,+∞)上的单调性即可【解答】解:由函数y=xf′(x)的图象可知:当x<﹣1时,xf′(x)<0,∴f′(x)>0,此时f(x)增当﹣1<x<0时,xf′(x)>0,∴f′(x)<0,此时f(x)减当0<x<1时,xf′(x)<0,∴f′(x)<0,此时f(x)减当x>1时,xf′(x)>0,f′(x)>0,此时f(x)增.故选:B.【点评】本题间接利用导数研究函数的单调性,考查函数的图象问题以及导数与函数的关系.5.(5分)若函数f(x)=x3﹣tx2+3x在区间[1,4]上单调递减,则实数t的取值范围是()A.(﹣∞,] B.(﹣∞,3]C.[,+∞) D.[3,+∞)【分析】由题意可得f′(x)≤0即3x2﹣2tx+3≤0在[1,4]上恒成立,由二次函数的性质可得不等式组的解集.【解答】解:∵函数f(x)=x3﹣tx2+3x,∴f′(x)=3x2﹣2tx+3,若函数f(x)=x3﹣tx2+3x在区间[1,4]上单调递减,则f′(x)≤0即3x2﹣2tx+3≤0在[1,4]上恒成立,∴t≥(x+)在[1,4]上恒成立,令y=(x+),由对勾函数的图象和性质可得:函数在[1,4]为增函数,当x=4时,函数取最大值,∴t≥,即实数t的取值范围是[,+∞),故选:C【点评】本题主要考查函数的单调性和导数符号间的关系,二次函数的性质,属于中档题.6.(5分)已知不等式|x﹣m|<1成立的一个充分非必要条件是<x<,则实数m的取值范围是()A.B.C.D.【分析】根据不等式的性质以及充分条件和必要条件的定义即可得到结论.【解答】解:不等式|x﹣m|<1等价为m﹣1<x<m+1,∵不等式|x﹣m|<1成立的一个充分非必要条件是<x<,∴,即,解得,故选:B【点评】本题主要考查充分条件和必要条件的应用,根据不等式之间的关系是解决本题的关键.7.(5分)已知抛物线y2=8x的准线与双曲线交于A,B两点,点F为抛物线的焦点,若△FAB为直角三角形,则双曲线的离心率是()A.B.2 C. D.【分析】先根据抛物线方程求得准线方程,代入双曲线方程求得y,根据双曲线的对称性可知△FAB为等腰直角三角形,进而可求得A或B的纵坐标为4,进而求得m,利用a,b和c的关系求得c,则双曲线的离心率可得.【解答】解:抛物线y2=8x的焦点F(2,0),准线x=﹣2,代入双曲线,得y=±,不妨设A(﹣2,),B(﹣2,﹣),∵△FAB是等腰直角三角形,∴=4,解得m=,∴c2=a2+b2=+1=,∴e==,故选D.【点评】本题主要考查了双曲线的简单性质,离心率的求法,解题的关键是通过双曲线的对称性质判断出△FAB为等腰直角三角形.8.(5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点,且∠F1PF2=,记椭圆和双曲线的离心率分别为e1,e2,则的值为()A.1 B.2 C.3 D.4【分析】先设椭圆的长半轴长为a1,双曲线的半实轴长a2,焦距2c.因为涉及椭圆及双曲线离心率的问题,所以需要找a1,a2,c之间的关系,而根据椭圆及双曲线的定义可以用a1,a2表示出|PF1|,|PF2|,并且,在△F1PF2中根据余弦定理可得到:,所以.【解答】解:如图,设椭圆的长半轴长为a1,双曲线的半实轴长为a2,则根据椭圆及双曲线的定义:;∴|PF1|=a1+a2,|PF2|=a1﹣a2,设|F1F2|=2c,,则:在△PF1F2中由余弦定理得,;∴化简得:,该式可变成:;∴.故选D.【点评】考查椭圆及双曲线的交点,及椭圆与双曲线的定义,以及它们离心率的定义,余弦定理.9.(5分)过抛物线y2=4x的焦点F的直线l交抛物线于点A,B,交其准线于点C,若|BC|=2|BF|,则|AB|=()A.B.C.8 D.16【分析】分别过A、B作准线的垂线,利用抛物线定义将A、B到焦点的距离转化为到准线的距离,结合已知即可得BF,AF即可..【解答】解:作AM、BN垂直准线于点M、N,则|BN|=|BF|,又|BC|=2|BF|,得|BC|=2|BN|,∴∴,CF=4∵,∴,解得AF=4,∴.故选:B【点评】考查抛物线的定义以及待定系数法求抛物线的标准方程.体现了数形结合的思想,特别是解析几何,一定注意对几何图形的研究,以便简化计算.10.(5分)椭圆+=1的左焦点为F,直线x=a与椭圆相交于点M、N,当△FMN的周长最大时,△FMN的面积是()A.B.C.D.【分析】设右焦点为F′,连接MF′,NF′,由于|MF′|+|NF′|≥|MN|,可得当直线x=a过右焦点时,△FMN的周长最大.c==1.把c=1代入椭圆标准方程可得:=1,解得y,即可得出此时△FMN的面积S.【解答】解:设右焦点为F′,连接MF′,NF′,∵|MF′|+|NF′|≥|MN|,∴当直线x=a过右焦点时,△FMN的周长最大.由椭圆的定义可得:△FMN的周长的最大值=4a=4.c==1.把c=1代入椭圆标准方程可得:=1,解得y=±.∴此时△FMN的面积S==.故选:C.【点评】本题考查了椭圆的定义标准方程及其性质、三角形的三边大小关系与三角形面积计算公式,考查了推理能力与计算能力,属于中档题.11.(5分)设函数f(x)的导函数为f′(x),且在R上2f(x)+xf′(x)<0恒成立,则f(1),,的大小关系为()A.B.C.D.【分析】根据题意,构造函数g(x)=x2f(x),对其求导分析可得g(x)在(0,+∞)上减函数,进而分析可得f(1)=12f(1)=g(1),2f()=()2f()=g(),3f()=()2 f()=g(),结合函数g(x)的单调性,分析可得答案.【解答】解:根据题意,设g(x)=x2f(x),其导数g′(x)=(x2)′f(x)﹣x2•f′(x)=x[2f(x)+xf′(x)],又由函数f(x)满足2f(x)+xf′(x)<0,当x>9时,有g′(x)<0,即g(x)在(0,+∞)上减函数,f(1)=12f(1)=g(1),2f()=()2f()=g(),3f()=()2 f()=g(),又由1<<,则有g()<g()<g(1),则有3f()<2f()<f(1);故选:C.【点评】本题考查函数的导数与函数单调性的关系,注意依据题意,构造函数g (x),并分析g(x)的单调性.12.(5分)已知函数f(x)=﹣k(+lnx),若x=2是函数f(x)的唯一一个极值点,则实数k的取值范围为()A.(﹣∞,e]B.[0,e]C.(﹣∞,e)D.[0,e)【分析】由f(x)的导函数形式可以看出,需要对k进行分类讨论来确定导函数为0时的根.【解答】解:∵函数f(x)=﹣k(+lnx),∴函数f(x)的定义域是(0,+∞)∴f′(x)=﹣k(﹣+)=∵x=2是函数f(x)的唯一一个极值点∴x=2是导函数f′(x)=0的唯一根.∴e x﹣kx=0在(0,+∞)无变号零点,令g(x)=e x﹣kxg′(x)=e x﹣k①k≤0时,g′(x)>0恒成立.g(x)在(0,+∞)时单调递增的g(x)的最小值为g(0)=1,g(x)=0无解②k>0时,g′(x)=0有解为:x=lnk0<x<lnk时,g′(x)<0,g(x)单调递减lnk<x时,g′(x)>0,g(x)单调递增∴g(x)的最小值为g(lnk)=k﹣klnk∴k﹣klnk>0∴k<e,由y=e x和y=ex图象,它们切于(1,e),综上所述,k≤e.故选A【点评】本题考查由函数的导函数确定极值问题.对参数需要进行讨论.二、填空题:本题共4小题,每小题5分13.(5分)已知双曲线的一条渐近线方程为y=,则m=4.【分析】根据题意,由双曲线的方程分析可得a、b的值以及焦点的位置,由双曲线的渐近线方程可得=,解可得m的值,即可得答案.【解答】解:根据题意,双曲线的焦点在y轴上,必有m>0,a=,b==3,又由双曲线的一条渐近线为y=,则有=,解可得m=4;故答案为:4【点评】本题考查双曲线的几何性质,注意分析双曲线的焦点的位置.14.(5分)已知椭圆的右焦点为F(3,0),过点F的直线交椭圆于A、B两点.若线段AB的中点坐标为(1,﹣1),则椭圆的方程为.【分析】设A(x1,y1),B(x2,y2),代入椭圆的方程,两式相减,根据线段AB 的中点坐标为(1,﹣1),求出斜率,进而可得a,b的关系,根据右焦点为F(3,0),求出a,b的值,即可得出椭圆的方程.【解答】解:设A(x1,y1),B(x2,y2),则,,两式相减可得,,∵线段AB的中点坐标为(1,﹣1),∴=,∵直线的斜率为=,∴=,∵右焦点为F(3,0),∴a2﹣b2=9,∴a2=18,b2=9,∴椭圆方程为:.故答案为:.【点评】本题考查椭圆的方程,考查点差法的运用,考查学生的计算能力,属于中档题.15.(5分)若函数f(x)=lnx+ax2﹣2在区间()内存在单调递增区间,则实数a的取值范围是a>﹣2.【分析】求出函数的导数,问题转化为a>﹣,而g(x)=﹣在(,2)递增,求出g(x)的最小值,从而求出a的范围即可.【解答】解:f′(x)=+2ax,若f(x)在区间(,2)内存在单调递增区间,则f′(x)>0在x∈(,2)有解,故a>﹣,令g(x)=﹣,∵g(x)=﹣在(,2)递增,∴g(x)>g()=﹣2,故a>﹣2,故答案为:a>﹣2.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及函数恒成立问题.16.(5分)已知函数f(x)=x+,g(x)=+x,若∀x1∈[],∃x2∈[2,3],使得f(x1)≥g(x2),则实数a的取值范围是(﹣∞,1] .【分析】由∀x1∈[,1],都∃x2∈[2,3],使得f(x1)≥g(x2),可得f(x)在x1∈[,1]的最小值不小于g(x)在x2∈[2,3]的最小值,构造关于a的不等式,可得结论.【解答】解:当x1∈[,1]时,由f(x)=x+得,f′(x)=1﹣<0,∴f(x)在[,1]单调递减,∴f(1)=5是函数的最小值,当x2∈[2,3]时,g(x)=+x为增函数.∴g(2)=a+4是函数的最小值,又∵∀x1∈[,1],都∃x2∈[2,3],使得f(x1)≥g(x2),可得f(x)在x1∈[,1]的最小值不小于g(x)在x2∈[2,3]的最小值,即5≥a+4,解得:a≤1,故答案为(﹣∞,1].【点评】本题考查的知识是指数函数以及对勾函数函数的图象和性质,考察导数的应用,函数的单调性问题,本题是一道中档题.三、解答题:本题共6小题,第17题10分,第18至22题每小题10分17.(10分)已知命题p:∀x∈[1,3],3x2﹣a≥0;命题q:∃x0∈R,使4x02+3(a﹣1)x0+1<0,若“p或q”为真,“p且q”为假,求实数a的取值范围.【分析】分别求出命题p、q为真时a的范围,再根据根据复合命题真值表得:若“p或q”为真,“p且q”为假,则命题p、q一真一假,分别求出当p真q假时和当p假q真时a的范围,再求并集可得答案【解答】解:命题p为真,则a≤3;命题q为真,则△=9(a﹣1)2﹣16>0,即a>或a<﹣,根据复合命题真值表得:若“p或q”为真,“p且q”为假,则命题p、q一真一假,当p真q假时,﹣≤a≤;当p假q真时,a>3,故a的取值范围是(3,+∞)∪[﹣,].【点评】本题借助考查了复合命题的真假判定,考查了特称命题与全称命题,熟练掌握复合命题真值表是解题的关键.18.(12分)如图,F1、F2分别是椭圆C:(a>b>0)的左、右焦点,A是椭圆C的顶点,B是直线AF2与椭圆C的另一个交点,∠F1AF2=60°.(Ⅰ)求椭圆C的离心率;(Ⅱ)已知△AF1B的面积为40,求a,b 的值.【分析】(Ⅰ)直接利用∠F1AF2=60°,求椭圆C的离心率;(Ⅱ)设|BF2|=m,则|BF1|=2a﹣m,利用余弦定理以及已知△AF1B的面积为40,直接求a,b 的值.【解答】解:(Ⅰ)∠F1AF2=60°⇔a=2c⇔e==.(Ⅱ)设|BF2|=m,则|BF1|=2a﹣m,在三角形BF1F2中,|BF1|2=|BF2|2+|F1F2|2﹣2|BF2||F1F2|cos120°⇔(2a﹣m)2=m2+a2+am.⇔m=.△AF1B面积S=|BA||F1A|sin60°⇔=40⇔a=10,∴c=5,b=5.【点评】本题考查椭圆的简单性质,余弦定理的应用,考查计算能力.19.(12分)已知函数f(x)=ax2﹣(a+2)x+lnx.(1)若x=是函数f(x)的一个极大值点,求a的取值范围;(2)当a>0时,若f(x)在区间[1,e]上的最小值为﹣2,求a的取值范围.【分析】(1)求出函数的导数,通过讨论a的范围,得到关于a的不等式组,解出即可;(2)求出导数,对a讨论,求出单调区间,可得最小值,解方程,即可得到所求范围;【解答】解:(1)f′(x)=2ax﹣(a+2)x+=,若x=是函数f(x)的一个极大值点,则或或a=0,解得:a<2;(2)当a>0时,f′(x)=2ax﹣(a+2)+=,当≤即a≥2时,在[1,e]上,f′(x)>0,f(x)递增,f(1)最小,且为﹣2,则a﹣a﹣2+ln1=﹣2,成立;当<≤1,即为1≤a<2时,在[1,e]上,f′(x)>0,f(x)递增,f(1)最小,且为﹣2,则a﹣a﹣2+ln1=﹣2,成立;当1<≤e即为≤a<1时,f(x)在[1,]递减,[,e]递增,则x=取得最小值,且为﹣1﹣+ln=﹣2,即有1﹣=lna,由y=lnx和y=1﹣的图象可得交点为(1,0),则a∈∅;当>e即为0<a<时,f(x)在[1,e]递减,即有f(e)=﹣2,即为ae2﹣(a+2)e+1=﹣2,解得a=<0,故不成立.综上可得,a≥1.【点评】本题考查导数的运用:求切线方程和单调区间、极值和最值,同时考查不等式恒成立问题,运用分类讨论的思想方法是解题的关键.20.(12分)已知函数f(x)=xlnx+1.(1)求f(x)的单调性;(2)设g(x)=e x+mx(m∈R),若关于x的方程f(x)=g(x)有解,求m的取值范围.【分析】(1)求导函数,确定函数的单调性,(2)关于x的方程f(x)=g(x)有解,转化为m=lnx+﹣,即y=m与y=lnx+﹣有交点,构造函数,利用导数求出函数的最值即可.【解答】解:(1)求导函数,可得f′(x)=lnx+1,x>0.由f′(x)=lnx+1>0,可得x>;f′(x)=lnx+1<0,可得0<x<,∴f(x)在(0,)上单调递减,在(,+∞)上单调递增.(2)∵g(x)=e x+mx(m∈R),若关于x的方程f(x)=g(x)有解,∴e x+mx=xlnx+1在x>0上有解,∴m=lnx+﹣,∴y=m与y=lnx+﹣有交点设h(x)=lnx+﹣,x>0,∴h′(x)=﹣﹣==,令h′(x)=0,解得x=1,当h′(x)>0时,解得0<x<1,函数h(x)单调递增,当h′(x)<0时,解得x>1,函数h(x)单调递减,∴h(x)max=h(1)=0+1﹣e=1﹣e,∴m≤1﹣e,故m的范围为(﹣∞,1﹣e].【点评】本题主要考查导数知识的运用,考查函数的单调性与极值,考查了运算能力和转化能力,属于中档题.21.(12分)已知抛物线C:y2=2px(p>0)的焦点F与椭圆E:的一个焦点重合,点A(x0,2)在抛物线上,过焦点F的直线l交抛物线于M,N两点.(1)求抛物线C的方程以及|AF|的值;(2)记抛物线C的准线与x轴交于点B,若|BM|2+|BN|2=40,求直线l的方程.【分析】(1)依题意F(1,0),故=1,则p=2,可得抛物线C的方程.将A(x0,2)代入抛物线方程,解得x0,即可得|AF|的值.(2)依题意,F(1,0),设l:x=my+1,设M(x1,y1)、N(x2,y2),联立方程,消去x,得y2﹣4my﹣4=0,根据韦达定理和两点间的距离公式,即可求出m的值,问题得以解决.【解答】解:(1)依题意,椭圆E:中,a2=6,b2=5,故c2=a2﹣b2=1,故=1,则p=2,可得抛物线C的方程为y2=4x.将A(x0,2)代入y2=4x,解得x0=1,故|AF|=1+=1+1=2.(2)依题意,F(1,0),设l:x=my+1,设M(x1,y1)、N(x2,y2),联立方程,消去x,得y2﹣4my﹣4=0,∴y1+y2=4m,y1y2=﹣4,∴y12+y22=(y1+y2)2﹣2y1y2=16m2+8,∵x1=my1+1,x2=my2+1,∴x1+x2=m(y1+y2)+2=4m2+2,x1x2=(my1+1)(my2+1)=m2y1y2+m(y1+y2)+1=﹣4m2+4m2+1=1,∴x12+x22=(x1+x2)2﹣2x1x2=(4m2+2)2﹣2=16m4+16m2+2,∵抛物线的准线方程为x=﹣1,∴B(﹣1,0),∵|BM|2+|BN|2=40,∴(x1+1)2+y12+(x2+1)2+y22=x12+x22+2(x1+x2)+2+y12+y22=16m4+16m2+2+8m2+4+2+16m2+8=16m4+40m2+16=40,解得m2=∴m=±,∴直线l的方程x=±y+1,即方程为2x﹣y﹣2=0,或2x+y﹣2=0【点评】本题考查了抛物线的方程与性质,直线与抛物线的位置关系,考查了向量与曲线,属于中档题.22.(12分)已知函数f(x)=ln(ax+1)+x2﹣ax﹣ln2(a>0)(1)讨论f(x)在[)上的单调性;(2)若对∀a∈(1,2),总存在x0]使不等式f(x0)≥m(1﹣a2)成立,求m的范围.【分析】(1)f′(x)=+2x﹣a=,a>0,x∈[).由,a>0时,解得a≤2;由,a>0时,解得a>2.进而得出单调性.(2)对∀a∈(1,2),此时函数f(x)在x∈上单调递增.可得f(x)=f(1)=ln(a+1)+1﹣a﹣ln2.由总存在x0∈上使不等式f(x0)≥m max(1﹣a2)成立,可得f(1)=ln(a+1)+1﹣a﹣ln2﹣m(1﹣a2)≥0成立,令g(a)=ln(a+1)+1﹣a﹣ln2﹣m(1﹣a2),a∈(1,2).由于g(1)=0,则函数g(a)在(1,2)上必然单调递增,因此g′(a)≥0,化进而得出m的范围.【解答】解:(1)f′(x)=+2x﹣a=,a>0,x∈[).由,a>0时,解得a≤2;由,a>0时,解得a>2.∴0<a≤2时,f′(x)>0,此时函数f(x)在x∈[)上单调递增.a>2时,函数f(x)在上单调递减,在上单调递增.(2)对∀a∈(1,2),此时函数f(x)在x∈上单调递增.∴f(x)max=f(1)=ln(a+1)+1﹣a﹣ln2.由总存在x0∈上使不等式f(x0)≥m(1﹣a2)成立,∴ln(a+1)+1﹣a﹣ln2﹣m(1﹣a2)≥0成立,令g(a)=ln(a+1)+1﹣a﹣ln2﹣m(1﹣a2),a∈(1,2).g′(a)=﹣1+2ma=+2ma,由于g(1)=0,则函数g(a)在(1,2)上必然单调递增,因此g′(a)=+2ma≥0,化为:m≥,∴m≥.∴m的范围是.【点评】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、分类讨论方法、等价转化方法,考查了推理能力与计算能力,属于难题.。

山东省青岛市西海岸新区胶南第一高级中学2017-2018学年高二下学期3月月考数学(理)试题

山东省青岛市西海岸新区胶南第一高级中学2017-2018学年高二下学期3月月考数学(理)试题

高二理科数学月考2一、选择题(每小题5分,共60分)1.若曲线ln y kx x =+在点1(,k )处的切线平行于x 轴,则k= ( )A .-1B .1C .-2D .22.函数f (x )的定义域为开区间(a ,b ),其导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内的极值点有( )A .1个B .2个C .3个D .4个3.若()f x 在R 上可导,,则2()2'(2)3f x x f x =++,则3()f x dx =⎰( )4.A. 16 B. 18 C. 24 D. 544.若函数()f x kx Inx =-在区间()1,+∞单调递增,则k 的取值范围是( ) A. (],2-∞- B. (],1-∞- C. [)2,+∞ D. [)1,+∞5.若方程330x x m -+=在[0,2]上有解,则实数m 的取值范围是( ) A .[2,2]- B .[0,2] C .[2,0]- D .(,2)-∞-∪(2,)+∞ 6.函数)(x f y =的图象如下图所示,则导函数)('x f y =的图象的大致形状是( )A .B .C .D .7.()f x 是定义在非零实数集上的函数,'()f x 为其导函数,且0.2220.222(2)(0.2)(log 5)0'()()0,,,20.2log 5f f f x xf x f x b c >-<==时,记a=则 ( )A.a<b<cB.b<a<cC. c<a<bD.c<b<a8.过点(1,-1)且与曲线32y x x =-相切的直线方程为( )A. 或B.20x y --=C. 或4510x y ++=D. +20x y -=9.已知函数32()f x x bx cx =++的图象如图所示,则212-x (x )等于( )A .32 B .34 C .38 D .31610.已知f(x)=2x 3-6x 2+m(m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A.-37B.-29C.-5D.以上都不对11.函数()22, 0,4,02,x x f x x x -≤⎧⎪=-<≤,则()22f x dx -⎰的值为 ( ) A. 6π+ B.2π- C.2π D. 8 12.已知函数()()32,5a fx g x x x x ==--,若对任意的121,,22x x ⎡⎤∈⎢⎥⎣⎦,都有()()122f x g x -≥成立,则实数a 的取值范围是A. [)2,∞+B. ()2,∞+C. (),0∞-D. (],1∞-- 二、填空题(每小题5分,共20分)13.已知函数11()(,)212ax f x x +=-∞-+在内单调递增,则实数a 的取值范围是 __ .14.函数()y f x =的图象在点()()2,2M f 处的切线方程是28y x =-,则()()'22f f =__________.15.曲线y =log 2x 在点(1,0)处的切线与坐标轴所围三角形的面积等于________.16.如图是函数()y f x =的导函数()y f x ='的图象,给出下列命题:O 2x1x yx12①()y f x =在0x =处切线的斜率小于零; ②2-是函数()y f x =的极值点;③()y f x =在区间()2,2-上单调递减. ; ④1不是函数()y f x =的极值点.则正确命题的序号是____.(写出所有正确命题的序号) 三、解答题(共70分)17.(本小题10分)若函数f(x)= xe x在x=c 处的导数值与函数值互为相反数,求c 的值.18.(本小题12分)求曲线y =x 2和直线x =0,x =1,y =t ,t ∈(0,1)所围成的图形的面积的最小值.19.(本小题12分)某超市销售某种小商品的经验表明,该商品每日的销售量y (单位:件)与销售价格(单位:元/件)满足关系式,其中,a为常数,已知销售价格为元/件时,每日可售出该商品件.若该商品的进价为元/件,当销售价格为何值时,超市每日销售该商品所获得的利润最大.20.(本小题12分)设函数f (x )=2x 3+3ax 2+3bx +8c 在x =1及x =2时取得极值.(1)求a ,b 的值;(2)若存在0x ∈[0,3],有f (0x )<c 2成立,求c 的取值范围.21.(本小题12分)已知函数()()1ln f x ax x a R =--∈. (1)讨论函数()f x 在定义域内的极值点的个数;(2)若函数()f x =0在区间1e ⎡⎤⎢⎥⎣⎦,e 上有两个解,求a 的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

眉山中学2018届5月数学理科月考
一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个备选项中,只有一项是符合题目要求的.
1、复数
22i
i -+的虚部为( ) A .45
i - B .45i
C .4
5
-
D .
35
2、某小区有125户高收入家庭、280户中等收入家庭、95户低收入家庭。

现采用分层抽样的方法从中抽取100户,对这些家庭社会购买力的某项指标进行调查,则中等收入家庭中应抽选出的户数为( )
A 、70户
B 、17户
C 、56户
D 、25户 3、下列求导运算错误..
的是( ) A.()
2424x x '+=+ B.()21
log ln 2
x x '=
C. ()cos sin x x '=-
D.211x x '⎛⎫=-
⎪⎝⎭
4、A 、B 、C 、D 、E 共5人站成一排,如果A 、B 中间隔一人,那么排法种数共有( ) A . 60种
B .36种
C .48种
D .24种
6、在用数学归纳法证明)3,(12...1)(*≥∈<++++=
n N n n
n n n f 的过程中:假设当)3,(*≥∈=k N k k n 时,不等式1)(<k f 成立,则需证当1+=k n 时,1)1(<+k f 也
成立.若)()()1(k g k f k f +=+,则=)(k g ( ) A 、221121+++k k B 、k k k 1
221121-+++ C 、
k k 1221-+ D 、k
k 21
221-+
7、
已知函数)(x f 的定义域[-1,5],部分对应值如表,)
(x f 的导函数)('x f y =的图
象如图所示,
下列关于函数)(x f 的命题: ①函数)(x f 的值域为[1,4]; ②函数)(x f 在[0,2]上是减函数;
③如果当],1[t x -∈时,)(x f 的最大值是4,那么t 的最大值为4; ④当41<<a 时,函数a x f y -=)(最多有4个零点. 其中正确的命题个数为 ( ) A .0 B .1
C .2
D .3
8、已知结论:“在正ABC ∆中,BC 中点为D ,若ABC ∆内一点G 到各边的距离都相等,则
2=GD
AG
”.若把该结论推广到空间,则有结论:在棱长都相等的四面体ABCD 中,若BCD ∆的中心为M ,四面体内部一点O 到四面体各面的距离都相等,则
=OM
AO
( ) .A 1 .B 2 .C 3 .D 4
9、设复数),()1(R y x yi x z ∈+-=,若1||≤z ,则x y ≥的概率为( )
A 、
π2143+ B 、π121+ C 、π121- D 、π
2141- 10、眉山市某高中的5名高三学生计划在高考结束后到北京、上海、杭州、广州等4个城市
去旅游,要求每个城市都要有学生去,每个学生只去一个城市旅游,且学生甲不到北京,则不同的出行安排有( ) A 、180 B 、72 C 、216 D 、204
11、已知定义域为R 的奇函数()x f y =的导函数为()x f y '=,当0≠x 时,
()()0>+
'x x f x f ,若()⎪⎭

⎝⎛-=--=⎪⎭⎫ ⎝⎛=21ln 2ln ,22,2121f c f b f a ,则c b a ,,的大
小关系正确的是( )
.A a c b << .B b c a << .C c b a << .D b a c << 12、设集合}6,5,4,3,2,1{=S ,定义集合对),(B A :S B S A ⊆⊆,,A 中含有3个元素,B 中至少含有2个元素,且B 中最小的元素不小于A 中最大的元素.记满足S B A =⋃的
集合对),(B A 的总个数为m ,满足Φ≠⋂B A 的集合对
),(B A 的总个数为n ,则n
m
的值为 ( ) A 、
111 B 、161 C 、221 D 29
2
二、填空题:本大题共4小题,每小题5分,共20分.请把答案填在答题卡相应位置.
13、如表是某一单位1-4月份用水量(单位:百吨)的一组数据:
由散点图可知,用水量y 与月份x 之间有较强的线性相关关系,其线性回归直线方程是
ˆˆ0.7y
x a =-+,由此可预测该单位第5个月的用水量是 百吨. 14、如图,点A 的坐标为)0,1(,点C 的坐标为)4,2(,函数 2)(x x f =,若在矩形ABCD 内随机取一点,则此点取自阴影部分的 概率等于:
15、在安排语文、数学、英语、物理、化学、生物6个学科的6堂考试时,若语文、数学两个学科均安排在生物学科之前,则不同的安排方法共有 种
16、有下列命题:
①复数z 满足112z z -++=则复数z 所对应点Z 的轨迹是一个椭圆; ② 00000
0/
)()(lim )()(lim
)(0x x x f x f h x f h x f x f x x h --=-+=→→=h
h x f x f h )
()(lim 000--→; ③将5封信投入3个邮筒,不同的投法共有35种; ④已知一组数据54321,,,,x x x x x 的平均数是2,方差是
3
1
,那么另一组数据231-x ,232-x ,233-x ,234-x ,235-x 的平均数和方差分别是4和3;
⑤若0,0a b >>,()3
2
422f x x ax bx =--+在1x =处有极值,则ab 的最大值为9
其中正确的有:
三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.
17、(本题满分10分) ⑴解方程:2
2
13
1223x x x C A A +=+;
(2)复数z 满足5
z ,12z z i
-=-求
18、(本题满分12分)2018年4月眉山市中小学生田径运动会圆满落幕,市文体局举行表
彰大会.某校有男运动员6名,女运动员4名,其中男女队长各1人,从中选5人参加表彰会,下列情形各有多少种选派方法(结果用数字作答).
⑴男3名,女2名; ⑵队长至少有1人参加; ⑶至少1名女运动员.
19、(本题满分12分)已知函数1
()(2)lnx 2(0)f x a ax a x
=-++≤ (1)当0a =时,求()f x 的极值; (2)当a <0时,讨论()f x 的单调性.
20、(本题满分12分)某中学举行一次“地理信息知识
竞赛”,全校学生参加了这次竞赛,为了了解本次竞赛的成绩情况,从中抽取了部分学生的成绩(得分为正整数,满分为100分)作为样本进行统计。

请根据下面尚未完成并有局部污损的频率分布表和频率分布直方图(如图所示)解决下列问题: (1)写出y x b a ,,,的值;
(2)在选取的样本中,从竞赛成绩是80分以上(含80分)的学生中随机抽取2名同学到
广场参加志愿宣传活动.
①求所抽取的2名同学中至少有1名同学来自第5组
的概率;
②求所抽取的2名同学来自同 一组的概率.
21、(本题满分12分)已知函数)0(2
3)(2
3≠++=
a cx x
b x a x f 与.ln )(x x x g = (1) 若)(x f 的减区间是)3,1(,且()x f '的最小值为1-求)(x f 的解析式; (2) 当2,1==
c a 时,若函数()()()x f x g x φ'=+有零点,求实数b 的最大值。

22、(本题满分12分)已知函数.0,212ln 2
1)(2
<-++-=m m mx x m x x f (1)当1-=m 时,求函数3
)(x
x f y -
=的单调区间; (2)已知2e m -≤,若存在实数],2
1
,
21(0--∈e x 使1)(0+>e x f 成立. 求证:012<++e m ; (3)证明:2)
2)(1(ln 33812
++>-∑=n n k
k n
k )(*N n ∈。

相关文档
最新文档