纤维素地结构及性质
纤维素的结构和生产工艺

纤维素的结构和生产工艺纤维素是一种天然高分子化合物,在大自然中广泛存在,是植物细胞壁的主要成分。
纤维素的结构和生产工艺一直是科学家研究的热点话题。
本文将从纤维素的结构和生产工艺两个方面进行探讨。
一、纤维素的结构纤维素是由D-葡萄糖单元组成,这些单元通过β-1,4键相连形成纤维素微纤维。
单个纤维素微纤维是由直径约为3-5nm的纤维素微纤维原颗粒组成的。
在植物细胞壁中,这些原颗粒被形成纤维素微纤维束,这些微纤维束支撑植物细胞壁的稳定性。
纤维素的结构对其性质具有重要影响。
纤维素的β-1,4键键长为0.63nm,微纤维直径为3-5nm,这导致纤维素微纤维之间的结晶度非常高。
纤维素微纤维的结晶度直接影响了纤维素的物理力学性质和可溶性。
二、纤维素的生产工艺纤维素的生产工艺可以分为两个阶段:预处理阶段和生产阶段。
预处理阶段:预处理阶段包括原材料的选取、清洗和切碎。
原材料的选取:纤维素的原材料一般是木材、竹材和棉花等植物纤维。
选择原材料需要考虑原材料的纤维素含量、可用性和成本等因素。
清洗:清洗原材料是为了去除杂质和污染物。
清洗过程中需要注意避免对纤维素微纤维的结构和性质等造成损害。
切碎:切碎原材料是为了增加纤维素微纤维的表面积,便于后续生产过程中的化学反应。
生产阶段:生产阶段包括纤维素的化学处理、纤维素的解聚和纤维素的纺丝。
化学处理:化学处理是将切碎后的原材料进行碱处理,使纤维素微纤维变得可溶性和可加工性,为后续纺丝过程提供充分的保障。
解聚:解聚是将纤维素微纤维溶解于一定浓度的碱性溶液中,通过泵将溶液压缩后,通过旋转滤饼机械原理将解聚后的纤维素微纤维分散到空气中。
纺丝:纺丝是将纤维素微纤维进行拉伸和旋转,使其逐渐凝固成纤维素丝。
纤维素的生产工艺中涉及到的化学物质和化学反应具有一定的危险性,需要进行安全保护和环保措施。
三、结论纤维素是一种天然高分子化合物,在大自然中广泛存在,是植物细胞壁的主要成分。
纤维素的结构和生产工艺一直是科学家研究的热点话题。
纤维素的结构

纤维素的结构引言纤维素(cellulose)是一种天然聚合物,它是植物细胞壁的主要成分,也是地球上最常见的有机化合物之一。
纤维素的结构不仅具有重要的生物学功能,而且在工业上有着广泛的应用价值。
本文将深入探讨纤维素的结构特点,包括化学组成、分子结构、晶体结构等方面的内容。
化学组成纤维素的化学式为(C6H10O5)n,其中n代表纤维素分子中重复单元的数量,可以是很大的一个数。
纤维素由葡萄糖分子通过β-1,4-糖苷键连接而成,因此纤维素可以看作是由许多葡萄糖分子组成的长链聚合物。
分子结构纤维素分子的结构比较复杂,由于葡萄糖分子通过β-1,4-糖苷键连接,使得纤维素分子呈现出直链的结构。
纤维素分子中的葡萄糖单元可以同时在链的不同位置上水解,因此纤维素分子具有较高的反应性。
纤维素分子的分子量较大,通常在几万到几十万之间。
纤维素的分子量与纤维素的来源有关,不同的植物纤维素具有不同的分子量分布。
晶体结构纤维素的晶体结构是纤维素研究的重要内容之一。
纤维素在自然界中以纤维素微纤维的形式存在,这些微纤维进一步结合形成纤维素纤锥,最终形成纤维素晶体。
纤维素晶体的晶格结构较为复杂,包含有多种晶体面。
其中最具有代表性的是纤维素I和纤维素II晶体。
纤维素I晶体是最常见的纤维素晶体形态,其晶体结构由两层纤维素链平行排列而成。
纤维素II晶体是较不常见的一种形态,其晶体结构由三层纤维素链交叉排列而成。
纤维素晶体具有很高的结晶度和强度,这使得纤维素在工业上具有广泛的应用。
纤维素的晶体结构还影响了纤维素的物理化学性质,如吸水性、热稳定性等。
分子间作用力纤维素分子之间通过多种分子间作用力相互吸引和排斥。
这些分子间作用力包括静电相互作用、范德华力、氢键等。
静电相互作用是纤维素分子间作用力的一种主要形式,纤维素分子中含有大量的羟基,这些羟基带有部分电荷,从而形成静电相互作用。
范德华力是一种瞬时极化引起的作用力,也是纤维素分子间相互吸引的重要力量。
纤维素的大分子结构

纤维素的大分子结构纤维素是一种由β-葡萄糖单体组成的天然聚合物大分子。
它是地球上最常见的有机化合物之一,在植物细胞壁中起着关键的结构和功能作用。
纤维素的大分子结构决定了它的物理性质和化学性质,对于理解纤维素的特性和应用至关重要。
纤维素的大分子结构是由若干个β-葡萄糖单体通过β-1,4-连接键连接而成的线性聚合物。
β-葡萄糖单体有两个C1和C4碳原子,它们通过氧原子形成1,4-葡萄糖醚键。
这种键的特殊性决定了纤维素的特殊性质,如生物降解性和高强度。
纤维素的结构中的OH基团没有被化学修饰,因此纤维素是一种天然的、无毒的高分子化合物。
纤维素在自然界中主要存在于植物细胞壁中。
在植物细胞中,纤维素通常以微纤的形式存在,形成了复杂的网状结构。
纤维素的微纤具有一定的直径和长度,纤维素纤维在纳米尺度上呈平行排列,形成了纤维素纤维束和纤维。
纤维素的大分子结构非常有序,这种有序结构使纤维素具有很高的拉伸强度和模量。
纤维素纤维的强度和模量远远超过钢铁,因此纤维素具有很高的生物力学性能。
纤维素还具有超强的吸水能力,纤维素纤维能够吸收大量的水分,使其体积增大,并形成高度结晶的纤维素水胶体。
在纤维素纤维中,纤维素链之间通过氢键和范德华力相互作用。
这种相互作用使纤维素具有相对稳定的二级结构。
纤维素链通常以平行排列的方式组织在一起,形成纤维素纤维束和纤维。
纤维素的线性结构和氢键相互作用决定了纤维素的高度结晶性和热稳定性。
纤维素还具有很高的生物降解性和可再生性。
纤维素是植物细胞壁中的主要组分,它在自然界中被微生物和酶降解。
纤维素的降解产物是水和二氧化碳,没有任何有害的副产物。
这种生物降解性使纤维素成为一个非常重要的可再生材料,可以广泛应用于纺织、造纸、食品、医药等领域。
总结来说,纤维素的大分子结构是由若干个β-葡萄糖单体通过β-1,4-连接键连接而成的线性聚合物。
纤维素以微纤的形式存在于植物细胞壁中,并且形成了复杂的网状结构。
纤维素的有序结构使其具有很高的拉伸强度和模量,而其生物降解性和可再生性使其成为一个重要的可持续发展材料。
简述纤维素的化学结构特征__概述及解释说明

简述纤维素的化学结构特征概述及解释说明1. 引言1.1 概述纤维素是一种广泛存在于植物细胞壁中的高分子化合物,具有重要的生态和经济意义。
它是由葡萄糖分子通过β-(1→4)型糖苷键连接而成的线性聚合物。
纤维素晶体具有高度的结晶性和机械强度,使其成为自然界最丰富和可再生的生物质。
1.2 文章结构本文将首先介绍纤维素的化学结构特征,包括其组成成分、分子结构以及化学键结构。
接着,将探讨纤维素的物理性质和化学性质,并介绍其在各个领域中的功能和应用。
然后,将阐述天然来源和工业提取方法以及生物技术提取方法中纤维素的提取过程。
最后得出本文的结论。
1.3 目的本文旨在全面了解纤维素的化学结构特征,深入探讨其性质与功能,并介绍不同来源和提取方法,从而为进一步研究和应用纤维素提供基础知识。
同时也旨在增加对纤维素的认识,促进可持续发展与环境保护的实现。
2. 纤维素的化学结构特征2.1 纤维素的组成成分纤维素是一种由多个葡萄糖分子通过β-1,4-糖苷键连接而成的聚合物。
它主要由纤维素链(纤维素微晶区)和非纤维素物质(如半纤维素和木质素)组成。
其中,纤维素链是由数百至数千个葡萄糖单体通过β-1,4-糖苷键连接而形成的线性链状结构。
2.2 纤维素的分子结构纤维素的分子结构具有高度有序性。
每个葡萄糖单体都与前后两个单体通过氢键相互连接,形成了平行排列且紧密堆积的微晶区域。
这种有序结构赋予了纤维素优异的力学性能和稳定性。
2.3 纤维素的化学键结构在纤维素中,葡萄糖单体之间通过β-1,4-糖苷键进行连接。
这种化学键结构使得纤维素链具有较高的强度和稳定性,并且不容易被水解。
此外,纤维素链中的羟基(OH)官能团也是一些化学反应和功能修饰的重要位点。
总的来说,纤维素的化学结构特征是由线性排列的葡萄糖单体通过β-1,4-糖苷键连接而成的聚合物。
其分子结构高度有序,具有微晶区域,并且具有较高的力学性能和稳定性。
这种特殊结构不仅赋予了纤维素独特的物理性质和化学性质,还为其在各个领域中的广泛应用提供了基础。
纤维素 四级结构-概述说明以及解释

纤维素四级结构-概述说明以及解释1.引言1.1 概述概述:纤维素是一种广泛存在于自然界中的生物聚合物,其在植物细胞壁中起到了重要的作用。
纤维素的四级结构是指其包括一级结构、二级结构、三级结构和四级结构在内的层次化组织。
通过深入了解纤维素的四级结构,我们可以更好地理解其在生物体内的功能和性质,以及对其进行更有效的利用和应用。
在纤维素的一级结构中,纤维素由葡萄糖分子通过β-1,4-糖苷键相互连接而成。
这种线性的连接方式赋予了纤维素出色的机械强度和稳定性。
纤维素的二级结构是指葡萄糖分子链在空间中的排列方式。
纤维素的二级结构主要包括平行和反平行两种排列方式,这取决于葡萄糖分子链的方向性。
这种排列方式的差异直接影响着纤维素的力学性能和水解程度。
在纤维素的三级结构中,纤维素分子通过氢键、范德华力和静电相互作用等力作用形成纤维素原纤的结构。
这种具有高度有序性和晶体结构的纤维素原纤是纤维素纤维的基本单元。
纤维素的四级结构即纤维素纤维的更高级组织。
纤维素纤维可通过非共价键的相互作用形成纤维束和纤维网络等更大尺度的结构。
这些结构对于植物细胞壁的形成和机械支撑具有重要作用。
对纤维素的四级结构进行深入研究可以揭示其与植物生长发育、植物细胞壁的机械性能、纤维素材料的制备和应用等方面的关系。
同时,纤维素的四级结构研究也为纤维素的改性和生物降解等领域的进一步开发提供了新的思路和方法。
总之,纤维素的四级结构是一个复杂而又有机的层次化组织,其结构与性质的关系对于进一步理解纤维素的功能和应用具有重要意义。
在下文中,我们将深入探讨纤维素的一级结构和二级结构,以及纤维素四级结构的重要性和研究进展。
1.2文章结构文章结构部分的内容如下:1.2 文章结构本文将围绕纤维素的四级结构展开讨论。
首先,我们将进行概述,介绍纤维素的基本特征和重要性。
接着,我们将详细探讨纤维素的一级结构,包括其化学组成和分子特性。
然后,我们将深入研究纤维素的二级结构,探究纤维素分子间的相互作用及其形成的纤维结构。
第三章 纤维素纤维的结构和性能

第三章纤维素纤维的结构和性能天然纤维素纤维(棉、麻)纤维素纤维再生纤维素纤维(粘胶纤维、铜氨纤维、醋酯纤维)§3.1纤维素纤维的形态结构一棉纤维的形态结构棉纤维是种子纤维,其主要成分为纤维素、果胶、蜡质、灰分、含氮物质。
外形:上端尖而封闭,下端粗而敞口,细长的扁平带子状,有螺旋状扭曲,截面呈腰子形,中间干瘪空腔。
最外层:初生胞壁从外到里分三层:中间:次生胞壁内部:胞腔1 初生胞壁决定棉纤维的表面性质,它又分为三层,最外层为果胶物质和蜡质所组成的皮层。
因而具有拒水性,在棉生长过程中起保护作用。
但在染整加工中不利。
2 次生胞壁纤维素沉积最后的一层,是构成纤维的主体部分,纤维素含量很高,其组成和结构决定棉纤维的主要性能。
3 胞腔输送养料和水分的通道,蛋白质、色素等物质的残渣沉积胞壁上,胞腔是棉纤维内最大的空隙,是染色和化学处理时重要的通道。
二麻纤维的形态结构麻纤维主要有:苎麻、亚麻是属于韧皮纤维,以纤维束形式存在单根纤维是一个厚壁、两端封闭、内有狭窄胞壁的长细胞苎麻两端呈锤头形或分支亚麻两端稍细呈纺锤形纵向有竖纹和横节主要化学组成和棉纤维一样是纤维素,但含量低。
§3.2纤维素大分子的分子结构纤维素是一种多糖物质,其大分子是由很多葡萄糖剩基连接而成,分子式为(C6H10O5)n复杂的同系物混合物,n为聚合度,棉聚合度为2500~ 10000,麻聚合度为10000~ 15000,粘胶纤维聚合度为250~ 500纤维素大分子的化学结构是由β-d-葡萄糖剩基彼此以1,4-甙键连接而成,结构如下每隔两环有周期性重复,两环为一个基本链节,链节数为(n-2)/2,n为葡萄糖剩基数,即纤维的聚合度,葡糖糖剩基上有三个自由存在的羟基,其中2,3位上是仲羟基,6位上伯羟基§3.3棉纤维的超分子结构超分子结构也称为微结构,主要指棉纤维中次生胞壁纤维素大分子的聚集态结构,纤维素大分子的排列状态,排列方向,聚集紧密程度等。
木质素和纤维素

木质素和纤维素1. 介绍木质素和纤维素是两种在植物细胞壁中起重要作用的化合物。
它们在生物学、材料科学和能源领域都具有重要的应用价值。
本文将深入探讨木质素和纤维素的结构、性质以及相关应用。
2. 木质素2.1 结构木质素是一种复杂的天然有机化合物,主要存在于植物细胞壁中。
它是由苯丙烯单体通过共轭连接形成的聚合物。
常见的木质素类化合物包括桦木酚、松脂酸等。
2.2 性质木质素具有很高的分子量和相对分子量,通常为几千到几万之间。
它们通常为固体,具有不溶于水、耐酸碱等特点。
由于其复杂的结构,使得木质素具有较强的稳定性和抗生物降解性。
2.3 应用2.3.1 材料科学领域由于其高分子量和稳定性,木质素在材料科学领域具有广泛的应用。
它们被用作增强剂,可以提高聚合物的力学性能和热稳定性。
木质素还可以用于制备高强度纤维素材料,如木质素纤维板和木质素纤维增强复合材料。
2.3.2 能源领域木质素是一种丰富的生物质资源,可以通过化学和生物技术转化为可再生能源。
其中,木质素可以通过热解、气化等方式转化为液体燃料或生物柴油。
此外,木质素还可以通过发酵产生乙醇和甲烷等可燃气体。
2.3.3 生物学领域木质素在生物学领域也有重要的应用。
它们是植物细胞壁的主要组成部分,在植物生长和发育过程中起到支撑和保护作用。
此外,木质素还参与了植物对逆境胁迫的响应过程。
3. 纤维素3.1 结构纤维素是一种多聚葡萄糖结构的天然高分子化合物。
它是植物细胞壁中最主要的组成部分,占据了细胞壁总质量的50%以上。
纤维素由β-葡萄糖苷键连接而成,形成线性链状结构。
3.2 性质纤维素是一种无色、无味的固体,具有很高的分子量和相对分子量。
它具有良好的机械强度、耐热性和耐酸碱性。
纤维素在水中难以溶解,但可以与一些溶剂如离子液体形成复合物。
3.3 应用3.3.1 纸浆和造纸工业纤维素是制造纸张的重要原料之一。
通过将木质素和其他杂质去除,得到纯净的纤维素原料后,可以进行漂白、加工等工艺制备各种类型的纸张。
纤维素在水中的溶解

纤维素在水中的溶解纤维素是一种常见的生物高分子化合物,存在于植物细胞壁中。
在水中的溶解是纤维素的一项重要性质,本文将对纤维素在水中的溶解进行详细描述。
一、纤维素的结构和性质纤维素是一种由葡萄糖分子通过β-1,4-糖苷键连接而成的多糖。
它的分子结构特点使得纤维素在水中的溶解性较差。
纤维素的溶解性与其分子量、结晶度、纤维素来源等因素有关。
纤维素在常温下的晶体形态是颗粒状,不易溶于水。
但由于纤维素分子中含有大量的羟基(OH),这些羟基与水分子之间可以发生氢键作用,使得纤维素能够与水发生一定的相互作用。
纤维素的溶解性与水分子的渗透能力有关。
在一定条件下,纤维素可以吸收水分子,使纤维素颗粒膨胀,逐渐溶解于水中。
这是因为水分子能够通过纤维素颗粒之间的空隙进入纤维素内部,与纤维素分子之间形成氢键,从而实现溶解。
然而,纤维素的溶解性是有限的。
纤维素的颗粒膨胀程度受到纤维素本身的结晶度和纤维素颗粒间的相互作用力的影响。
结晶度高的纤维素颗粒间的相互作用力较强,难以被水分子充分渗透,溶解度较低。
相反,结晶度低的纤维素颗粒间的相互作用力较弱,容易被水分子渗透,溶解度较高。
三、纤维素溶解度的影响因素除了纤维素的结晶度外,纤维素的溶解度还受到其他因素的影响。
1. 温度:一般情况下,温度升高会促进纤维素的溶解。
这是因为温度升高可以增加水分子的热运动能量,从而提高纤维素颗粒间的氢键破坏,有利于纤维素的溶解。
2. pH值:纤维素在不同pH值下的溶解性也有所不同。
在酸性条件下,纤维素的溶解度较低,这是因为酸性环境可以使纤维素颗粒间的氢键变得更加稳定。
而在碱性条件下,纤维素的溶解度较高,这是因为碱性环境可以破坏纤维素颗粒间的氢键。
3. 纤维素来源:不同植物的纤维素来源不同,其溶解度也会有所差异。
一般来说,来源于木质部的纤维素溶解度较低,而来源于纤维组织的纤维素溶解度较高。
四、纤维素溶解的应用纤维素的溶解性是纤维素在生物体内发挥功能的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一.结构纤维素是一种重要的多糖,它是植物细胞支撑物质的材料,是自然界最非丰富的生物质资源。
在我们的提取对象-农作物秸秆中的含量达到450-460g/kg。
纤维素的结构确定为β-D-葡萄糖单元经β-(1→4)苷键连接而成的直链多聚体,其结构中没有分支。
纤维素的化学式:C6H10O5化学结构的实验分子式为(C6H10O5)n早在20世纪20年代,就证明了纤维素由纯的脱水D-葡萄糖的重复单元所组成,也已证明重复单元是纤维二糖。
纤维素中碳、氢、氧三种元素的比例是:碳含量为44.44%,氢含量为6.17%,氧含量为49.39%。
一般认为纤维素分子约由8000~12000个左右的葡萄糖残基所构成。
O OOOOOOOO1→4)苷键β-D-葡萄糖纤维素分子的部分结构(碳上所连羟基和氢省略)二.天然纤维素的原料的特征做为陆生植物的骨架材料,亿万年的长期历史进化使植物纤维具有非常强的自我保护功能。
其三类主要成分-纤维素、半纤维素和木质素本身均为具有复杂空间结构的高分子化合物,它们相互结合形成复杂的超分子化合物,并进一步形成各种各样的植物细胞壁结构。
纤维素分子规则排列、聚集成束,由此决定了细胞壁的构架,在纤丝构架之间充满了半纤维素和木质素。
天然纤维素被有效利用的最大障碍是它被难以降解的木质素所包被。
纤维素和半纤维素或木质素分子之间的结合主要依赖于氢键,半纤维素和木质素之间除了氢键外还存在着化学健的结合,致使半纤维素和木质素之间的化学健结合主要在半纤维素分子支链上的半乳糖基和阿拉伯糖基与木质素之间。
表:植物细胞壁中纤维素、半纤维素、和木质素的结构和化学组成项目纤维素木质素半纤维素结构单元吡喃型D-葡萄糖基G、S、H D-木糖、苷露糖、L-阿拉伯糖、半乳糖、葡萄糖醛酸结构单元间连接键β-1,4-糖苷键多种醚键和C-C键,主要是β-O-4型醚键主链大多为β-1,4-糖苷键、支链为β-1,2-糖苷键、β-1,3-糖苷键、β-1,6-糖苷键聚合度几百到几万4000 200以下聚合物β-1,4-葡聚糖G木质素、GS木质素、GSH木质素木聚糖类、半乳糖葡萄糖苷露聚糖、葡萄糖甘露聚糖结构由结晶区和无定型区两相组成立体线性分子α不定型的、非均一的、非线性的三维立体聚合物有少量结晶区的空间结构不均一的分子,大多为无定型三类成分之间的连氢键与半纤维素之间有化学健作用与木质素之间有化学健作用接天然纤维素原料除上述三大类组分外,尚含有少量的果胶、含氮化合物和无机物成分。
天然纤维素原料不溶于水,也不溶于一般有机溶剂,在常温下,也不为稀酸和稀碱所溶解。
三.纤维素的分类按照聚合度不同将纤维素划分为:α-纤维素、β-纤维素、γ-纤维素,据测α-纤维素的聚合度大于200、β-纤维素的聚合度为10~100、γ-纤维素的聚合度小于10。
工业上常用α-纤维素含量表示纤维素的纯度。
综纤维素是指天然纤维素原料中的全部碳水化合物,即纤维素和半纤维素的总和。
按照晶型结构纤维素分为五类:Ⅰ-Ⅴ型。
纤维素的结晶具有多型性。
固态纤维素存在5种变体,纤维素晶体在一定条件下可以转变成各种结晶变体,其中Ⅰ型是天然纤维素的晶型,Ⅰα是三斜晶胞模型、Ⅰβ是单斜晶胞模型,而Ⅰα是一种亚稳态结构,它能转变成稳定结构Ⅰβ构型。
其它的Ⅱ-Ⅴ型均为“人造纤维”的模型。
四.天然纤维素的形态结晶结构纤维素的聚集状态,即所谓纤维素的超分子结构。
X射线衍射研究发现纤维素大分子的聚集体中包括结晶区和无定型区,结晶区部分分子排列的比较整齐、有规则,呈现清晰的X射线衍射图,密度大,1.588g/cm3,晶胞结构为单斜晶胞模型,;无定型区的分子排列不整齐、较疏松,因而密度较低,1.500 g/cm3从结晶区到无定型区是逐步过渡的,无明显界限。
在结晶区葡萄糖基2,3,6位的原游离羟基的位置上均已形成氢键,只有在无定型区才有部分游离羟基存在。
很多化学处理和热处理都会使晶型发生变化,球磨可以使晶格完全破坏。
纤丝结构天然纤维素具有10000个葡萄糖单元;原纤维大约含有60~80根纤维素分子;微纤丝由基原原纤维所构成,尺寸比较固定;大纤丝由一个以上的微纤丝构成,其大小随原料来源或加工条件不同而有差异。
在基原原纤维的周围存在着半纤维素,在微纤丝的周围存在着许多木质素,因此,微纤丝只有在脱木素后才能观察到,基元原纤维只有在半纤维素水解后才能观察到。
五.纤维素理化性质纤维素的物理性质红外光谱中,主要表征纤维素的原子团包括有CH2、CH、C-O-C、OH、C-C-H、C-O-H等。
特征吸收的波数为2900cm-1、1425 cm-1、1370 cm-1、895 cm-1是纤维素中β-D-葡萄糖基的特征吸收峰这些特征峰还可以测定纤维素的结晶度。
纤维素的润胀作用,纤维素的游离羟基对许多溶剂和溶液有强的吸引力,但吸附水只在无定型区,结晶区并没有吸附水分子。
纤维素所吸附的水有一部分是进入纤维素无定型区后与纤维素的羟基形成氢键结合的水,称为结合水。
结合水的水分子受纤维素羟基的吸引、排列有一定的方向,密度较高,并使纤维素发生润张,有热效应产生。
当纤维素吸湿达到纤维饱和点后,水分子继续进入纤维的细胞腔和各孔隙中,形成多层吸附水或毛细管水,称之游离水。
吸附游离水时无热效应,亦不能使纤维素发生润张。
纤维素的润涨分为结晶区间的润张和结晶区内的润张,结晶区间的润胀是指润张剂只能达到无定型区和结晶区表面,纤维素的X射线衍射图不发生变化。
结晶区内的润张是指润张剂渗透到微纤丝结晶区内部而发生的,由此产生新的晶格,出现新的X射线衍射图。
纤维素上的羟基本身是有极性的,作为润张剂,液体的极性越大,润张的程度就越大。
碱溶液中的金属离子通常以“水合离子”的形式存在对于进入结晶区更为有利,除碱外,其它润张剂的润张能力由强到弱为磷酸、水、极性有机溶剂等。
纤维素的溶解性,纤维素做为一种高分子化合物,特点就是分子量大,内聚力也较大,在体系中运动也比较困难,扩散能力差,它不能及时在溶剂中分散,因此,纤维素在溶剂中溶解所得的溶液不是真的纤维素溶液,而是由纤维素和存在于液体中的组分形成一种加成的产物。
纤维素的溶剂可分为水溶剂和非水溶剂两大类。
水溶剂有如下几类:(1)无机酸类,如硫酸(65~80%)、盐酸(40~42%)、磷酸(73~83%)、硝酸(84%)这些酸可导致纤维素的均相水解。
浓硝酸(66%)不能溶解纤维素,形成一种加成化合物;(2)Lewis酸类,如氯化锂、氯化锌、高氯酸铍、硫代氰酸盐、碘化物、溴化物等可溶解低聚合度纤维素(3)无机碱类,如NaOH、联氨和锌酸钠、肼等,其中NaOH和锌酸钠仅能溶解低聚合度纤维素;(4)有机碱类,如季铵碱(CH3)4NOH和胺化物;(5)配合物类。
如铜氨、铜乙二胺(Cuen)、钴乙二胺(Cooxen)、锌乙二胺(Zincoxen)、镉乙二胺(Cadoxen)和铁-酒石酸-钠配合物(EWNN)。
纤维素的非水溶剂是指以有机溶剂为基础的不含水或含水少的溶剂。
有机液可做为活性剂的成分,也可作为活性剂的溶剂,使溶剂具有较大极性,促进纤维素溶解,Nakao提出在非水溶剂体系中形成电子供体-受体配合体,所以在有机溶剂中不能简单用润胀作用来理解。
纤维素的几种非水溶剂体系:(1)聚甲醛/二甲基亚砜(PF/DMSO)是纤维素的一种优良无降解的溶剂体系,PF受热分解成甲醛与纤维素的羟基反应成羟甲基纤维素而溶解在DMSO中;(2)四氧二氮/二甲基甲酰胺体系(N2O4/DMF或DMSO)是N2O4与纤维素反应生成亚硝酸酯中间衍生物而溶于DMF或DMSO。
通过乙醇或异丙醇水溶液,亦或含有0.5%H2O2的水溶液,可形成再生纤维素。
(3)胺氧化物(MMO)是直接溶解纤维素。
(4)液氨/ 硫氰酸铵体系(液NH3/NH4SCN),由72.1%(质量分数)的NH4SCN、26.5%(质量分数)的NH3和1.4%(质量分数)的水组成的溶剂体系具有最大的溶解能力。
(5)氯化锂/二甲基乙酰胺(LiCl/ DMAC)是直接溶解。
在室温下LiCl/ DMAC溶液很稳定可进行抽丝、成膜等开发。
NMMO(N-甲基吗啉-N-氧化物)、离子液体、NaOH/脲(硫脲)纤维素的热降解,纤维素在300~375℃较窄的温度范围内发生热分解。
在200~280℃加热,着重于脱水生成脱水纤维素,随后形成木炭和气体产品。
在280~340℃加热,更多的得到易燃的挥发性产物(焦油)在此过程中,最重要的中间产物是左旋葡萄糖。
在400℃以上可以形成芳环结构,与石墨结构相似。
纤维素的机械降解,是由于在机械过程中能有效地吸收机械能引起其形态和微细结构的改变,表现出聚合度下降、结晶度下降、可及性明显提高。
纤维素的化学性质纤维素的可及性,纤维素链中每个葡萄糖基环上有3个活泼羟基,因此纤维素可以发生一系列与羟基有关的化学反应。
然而,这些羟基又可以综合成分子内及分子间氢键。
他们对纤维素链的形态和反应性有很大的影响,尤其是C3位羟基与邻近环上的氧所形成的分子间氢键不仅增强了纤维素分子链的线性完整性和刚性,而且使其分子链紧密排列成高度有序的结晶区,反应试剂抵达纤维素羟基的难易程度,即纤维素的可及性(accessibility).C6位羟基的空间位阻最小,故庞大的取代基对C6位羟基的反应性高于对其它羟基的反应性。
另外,结晶度越高,氢键越强,则反应试剂难以达到其羟基上。
在润张或溶解状态的纤维素中所有羟基都有可及性。
w 纤维素的降解,降解反应可用于鉴定组成多糖的单糖组分以及比例。
酸降解、微生物降解、和碱降解主要是纤维素相邻两个葡萄糖单体间的糖苷键被打开;碱剥皮反应和纤维素的还原反应作用于纤维素的还原性末端;纤维素的氧化降解主要发生在纤维素的葡萄糖苷键;纤维素的酯化反应和醚化反应发生在纤维素分子单体上的三个醇羟基上、甲基化反应是多糖中未被取代的羟基被全甲基化,连接糖之间的键被水解这样就能确定在多糖中单糖的结合位点。
甲基化试剂有硫酸二甲酯/NaOH水溶液(Haworth);碘代甲烷/氧化银(purdie);二甲基硫化钠/DMSO(Hakomori);中性条件下甲基化采用的试剂是三氟甲磺酸甲酯/磷酸三甲酯。