信号与系统第三章知识点总结

合集下载

信号与系统-第三章习题讲解

信号与系统-第三章习题讲解

Fn

1 T
T f (t)e jntdt 1
0
T
T E(1 t )e jntdt
0
T
E T e jnt dt 1 T te jnt dt]
T0
T0

E { 1 [t TT
1 e jnt
jn
|T0

T e jnt
0 jn
dt]}
E { 1 [T 1 0]} j E ; n 1, 2,....
E cos( )
2




2E cos( ) 2E cos( )

2
2 2 2

2
[1 ( )2 ]

3 32已知阶跃函数和正弦、余弦函数的傅立叶变换:
FT[u(t)] 1 (); j
FT[cos(0t)] [ ( 0 ) ( 0 )]; FT[sin(0t)] j[ ( 0 ) ( 0 )];
E
n

e
j

2
,
n为奇数
0,
n为偶数
故:f (t ) jE e jt jE e jt jE e j3t jE e j3t ....


3
3
4、求题图3-4所示周期三角信号的傅里叶级 数并画出幅度谱。
解:将该信号表示为三角形式的傅里叶级数,有
1T
2
频谱图如下所示:
3 7利用信号f (t)的对称性,定性判断题图3-7中各 周期信号的傅里叶级数中所含有的频率分量。
解:(1)图(a)中f (t)为偶函数,同时也是奇谐函数,故其 傅氏级数中只含奇次余弦分量。 (2)图(b)中f (t)为奇函数,同时也是奇谐函数,故其傅 氏级数中只含奇次正弦分量。 (3)图(c)中f (t)为奇谐函数,故其傅氏级数只含奇次谐 波分量。 (4)图(d )中f (t)为奇函数,故其傅氏级数中只含正弦分量。 (5)图(e)中f (t)既为偶函数又为偶谐函数,故其傅氏级数 中仅含直流和偶次谐波的余弦分量。

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念公式总结Last updated on the afternoon of January 3, 2021信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jba 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwt sin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f F n =如果满足:n i K dt t f j i dt t f t f i T T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集如果n i K i ,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f j i dt t f t f i T T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴;在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义:如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统重点概念公式总结

信号与系统重点概念公式总结

信号与系统重点概念及公式总结:第一章:概论1.信号:信号是消息的表现形式。

(消息是信号的具体内容)2.系统:由若干相互作用和相互依赖的事物组合而成的具有特定功能的整体。

第二章:信号的复数表示:1.复数的两种表示方法:设C 为复数,a 、b 为实数。

常数形式的复数C=a+jb a 为实部,b 为虚部;或C=|C|e j φ,其中,22||b a C +=为复数的模,tan φ=b/a ,φ为复数的辐角。

(复平面)2.欧拉公式:wt j wt e jwtsin cos +=(前加-,后变减) 第三章:正交函数集及信号在其上的分解1.正交函数集的定义:设函数集合)}(),(),({21t f t f t f Fn =如果满足:ni K dt t f ji dt t f t f iT T i T T j i 2,1)(0)()(21212==≠=⎰⎰则称集合F 为正交函数集 如果n i K i,2,11==,则称F 为标准正交函数集。

如果F 中的函数为复数函数条件变为:ni K dt t f t f ji dt t f t f iT T i i T T j i 2,1)()(0)()(2121**==⋅≠=⋅⎰⎰其中)(*t f i 为)(t f i 的复共轭。

2.正交函数集的物理意义:一个正交函数集可以类比成一个坐标系统;正交函数集中的每个函数均类比成该坐标系统中的一个轴; 在该坐标系统中,一个函数可以类比成一个点;点向这个坐标系统的投影(体现为该函数与构成坐标系的函数间的点积)就是该函数在这个坐标系统中的坐标。

3.正交函数集完备的概念和物理意义: 如果值空间中的任一元素均可以由某正交集中的元素准确的线性表出,我们就称该正交集是完备的,否则称该正交集是不完备的。

如果在正交函数集()()()()t g n ,t g ,t g ,t g 321之外,不存在函数x (t )()∞<<⎰2120t t dt t x ,满足等式:()()⎰=210t t i dt t g t x ,则此函数集称为完备正交函数集。

信号与系统第三章 连续信号的正交分解

信号与系统第三章 连续信号的正交分解

f (t ) Ci gi (t )
i 1
n
第三章连续信号的正交分解
13
理论上讲
f (t ) lim Ci gi (t )
n i 1
n
在使近似式的均方误差最小条件下,可求得
t t1 f (t ) gi (t )dt Ci t 2 gi2 (t )dt t1
均方误差
n t2 2 ( t ) [ f ( t ) crgr ( t )]2 dt t 2 t 1 t 1 r 1
第三章连续信号的正交分解 23
1

若令 n 趋于无限大, 2 (t )的极限等于零 lim 2 (t ) 0
n
则此函数集称为完备正交函数集
第三章连续信号的正交分解
15
定义2:
如果在正交函数集 g1( t ), g 2( t ), gn( t ) 之外, 不存在函数x(t)
t2 2 0 x ( t )dt t1 t2 满足等式 x( t ) gi ( t )dt 0 t1
第三章连续信号的正交分解 8
信号的分量和信号的分解
信号常以时间函数表示,所以信号的分解指的就是 函数的分解。 1、函数的分量 设在区间
t 1 t t 2 内,用函数 f 1(t )
在另一
函数 f 2(t ) 中的分量 C 12 f 2(t ) 来近似的代表 原函数 f 1(t ) 。
f 1(t ) C12 f 2(t )
1 jnt f (t ) An e cn e jnt 2 n n
cn
1 An 称为复傅里叶系数。 2
表明任意周期信号可以表示成 e jn t 的线性组合,加权因 子为 cn 。

信号与系统分析《信号与系统分析》吴京,国防科技大学出版社第三章-1

信号与系统分析《信号与系统分析》吴京,国防科技大学出版社第三章-1
例:x1 ( n) u( n), x 2 ( n) 1 2 u( n), 求y( n) x1 ( n) * x 2 ( n)。
n
2.图解法。 步骤:变量置换、翻转、移位、相乘及累加。
例: x1 (n) 2,1,50 , x 2 (n) 3,1,4,21 , 求y(n) x1 (n) * x 2 (n)。
§3.1 离散时间信号-序列
一 离散时间信号的描述 1. 解析式: 例如:x( n) 2( 1) n ,
1 x ( n) , 2
n
n 0,1,2,... n 0,1,2,...
双边离散信号 单边离散信号
2. 一组数字-序列的形式:
例如: x(n) ...,2,2,2,2,2,...
第三章离散时间信号与系统分析31离散时间信号序列32离散信号的基本运算33序列的卷积和34离散时间系统的差分方程35零输入响应36零状态响应37离散系统响应模式分析31离散时间信号序列一离散时间信号的描述1
第三章 离散时间信号与系统分析
§3.1 离散时间信号-序列 §3.2 离散信号的基本运算 §3.3 序列的卷积和 §3.4 离散时间系统的差分方程 §3.5 零输入响应 §3.6 零状态响应 §3.7 离散系统响应模式分析
一 序列的相加
y(n) x1 (n) x 2 (n)
例: x1 ( n) u( n), x2 ( n) u( n 3), 求y( n) x1 ( n) x2 ( n)
同序号的值对应相加减。 x1(n)

x1(n)+x2(n)
{ 1, 1, 1, 1, 1, 1, ...}0
2 1
2
n-2 n-1 n
x1(0) x2(1) x2(2) x2(3) x2(4) x1(0)x2(1) x1(0)x2(2) x1(0)x2(3) x1(0)x2(4)

信号与系统王明泉第三章习题解答

信号与系统王明泉第三章习题解答
(3)周期信号的傅里叶变换;
(4)频域分析法分析系统;
(5)系统的无失真传输;
(6)理想低通滤波器;
(7)系统的物理可实现性;
3.3本章的内容摘要
3.3.1信号的正交分解
两个矢量 和 正交的条件是这两个矢量的点乘为零,即:
如果 和 为相互正交的单位矢量,则 和 就构成了一个二维矢量集,而且是二维空间的完备正交矢量集。也就是说,再也找不到另一个矢量 能满足 。在二维矢量空间中的任一矢量 可以精确地用两个正交矢量 和 的线性组合来表示,有
条件1:在一周期内,如果有间断点存在,则间断点的数目应是有限个。
条件2:在一周期内,极大值和极小值的数目应是有限个。
条件3:在一周期内,信号绝对可积,即
(5)周期信号频谱的特点
第一:离散性,此频谱由不连续的谱线组成,每一条谱线代表一个正弦分量,所以此谱称为不连续谱或离散谱。
第二:谐波性,此频谱的每一条谱线只能出现在基波频率 的整数倍频率上。
(a)周期、连续频谱; (b)周期、离散频谱;
(c)连续、非周期频谱; (d)离散、非周期频谱。
答案:(d)
题7、 的傅里叶变换为
答案:
分析:该题为典型信号的调制形式
题8、 的傅里叶变换为
答案:
分析:根据时移和频移性质即可获得
题9、已知信号 如图所示,且其傅里叶变换为
试确定:
(1)
(2)
(3)
解:
(1)将 向左平移一个单位得到
对于奇谐函数,满足 ,当 为偶数时, , ;当 为奇数时, , ,即半波像对称函数的傅里叶级数展开式中只含奇次谐波而不含偶次谐波项。
(4)周期信号傅里叶级数的近似与傅里叶级数的收敛性
一般来说,任意周期函数表示为傅里叶级数时需要无限多项才能完全逼近原函数。但在实际应用中,经常采用有限项级数来代替无限项级数。无穷项与有限项误差平方的平均值定义为均方误差,即 。式中, , 。研究表明, 越大, 越小,当 时, 。

《信号与系统》第三章

《信号与系统》第三章
式中 ai i 1,2,, n、bj j 1,2,, m 都是常数。
它的解: y(k ) y h k y p k
齐次解 特解
齐次解:齐次差分方程
y(k) an1 y(k 1) a0 y(k n) 0
的解,称为齐次解。
例y(k ) ay(k 1)
0
yk yk 1
当a是特征单根
a p k ak p 1k 1ak p1kak p0ak 当 是 重特征根。
cosk P cosk Q sink
当所有的特征根均不等于 e j
sin k Acosk , Ae j P jQ
全解:n阶线性差分方程的全解是齐次解与特解之和。 如果方程的特征根均为单根,则差分方程的全解为:
F k, yk,yk,,n yk 0
n 阶差分方程。
由于各阶差分均可写成 yk及其各移位序列的线
性组合,故通常所说的差分方程是指如下的形式:
Gk, yk, yk 1,, yk n 0
n 阶差分方程。
例如 yk 3yk 1 2 yk 2 f k
5、线性常系数差分方程
如果 yk及其各移位序列 yk 1,, yk n 均为
·主要内容 一、差分与差分方程 二、差分方程的经典解 三、零输入响应和零状态响应
一、差分与差分方程(书上这部分符号有错误,请改正) 1、一阶差分的定义及序列求和运算(85页)
设有序列 f k,则称 f k 1, f k 1, f k 2
等为 f k的移位序列。
仿照连续信号的微分运算,定义离散信号的差分运算。
a1f1k a2f2k 因此差分具有线性性质。
3、二阶及更高阶差分定义
2 f k f k f k f k 1
f k f k 1

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

信号与系统(郑君里第二版)讲义第三章 傅里叶变换

t0
⎧0 ⎪T cos(mω1t )cos(nω1t )dt = ⎨ 1 ⎪2 ⎩T1
m≠n m=n≠0 m=n=0


t0 +T1
t0
0 ⎧ ⎪T sin (mω1t )sin (nω1t )dt = ⎨ 1 ⎪ ⎩2
m≠n m=n≠0
t0 +T1
t0
sin (mω1t )cos(nω1t )dt = 0 ,对于所有的 m 和 n
n =1
⎧ ⎪d 0 = a 0 ⎪ 2 2 ⎨d n = a n + bn ⎪ an ⎪θ n = arctan bn ⎩
n = 1,2,3,L n = 1,2,3,L
三、虚指数形式的傅里叶级数 任何周期信号 f (t ) 可以分解为
f (t ) =
n =−∞
∑ Fe
n

jnω1t
傅里叶系数:
Fn = 1 t0 +T1 f ( t ) e − jnω1t dt ∫ t 0 T1
f (t )
E 2

T1 2
0
T1 2
t
奇函数的傅里叶级数展开式的系数为: a0 = an = 0
4 bn = T1
Fn = −
∫ f (t )sin (nω t )dt
1
T1 2 0
1 π jbn , ϕ n = − 2 2
6
奇函数的 Fn 为虚数。在奇函数的傅里叶级数中不会含有余弦项,只可能含 有正弦项。 3、奇谐函数(半波对称函数) 若波形沿时间轴平移半个周期并相对于该轴上下反转, 此时波形并不发生变 化,即满足 ⎛ T ⎞ f (t ) = − f ⎜ t ± 1 ⎟ 2⎠ ⎝ 这样的函数称为半波对称函数或称为奇谐函数。 奇谐函数的傅里叶级数展开式的系数为: a0 = 0 an = bn = 0 ( n 为偶数) ( n 为奇数)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章需要重点掌握的知识点
2.傅立叶级数的物理意义 表征信号在不同频率点的强度,是频域分析的 一种方法。
3.傅里叶级数的性质 表3.1 表3.2
第三章需要重点掌握的知识点
4.傅立叶级数的收敛 仅连续时间傅里叶级数存在收敛问题 (1)平方可积

T0
x(t ) dt < ∞
2
(2)狄里赫利条件
5.傅立叶级数与LTI系统 系统函数 频率响应

T
x (t ) e
1 ak = N
分析公式
n =< N >
∑ x ( n )e
− jk
会画 ak 的幅度和相位图。
离散域和连续域的相似处和不同处
x(t ) =
1 ak = T
k = −∞
∑a e
k

jk
2π t T
x ( n) =
dt
k =< N >
2π t − jk T
∑a e
k
jk
2π n N
1 ak = N
n =< N >
∑ x ( n )e
− jk
第三章需要重点掌握的知识点
1.傅立叶级数的表示方法 针对周期信号!
综合公式
x(t ) =
1 ak = T
k = −∞
∑a e
k

2π jk t T
2π t − jk T
x ( n) =
dt
k =< N >
∑a e
k
jk
2π n N
2π n N
− st
H ( s ) = ∫ h (t )e dt
−∞

H ( jω ) = ∫ h (t )e − jω t dt
−∞

H ( z) =
n =−∞



h( n) z
−n
H ( e jω ) =
n = −∞


h ( n ) e − jω n
y(t ) =
y(n) =
k =−∞
ak H ( jkω0 )e jkω0t ∑
k =< N >
∑ a H (e
k
j
2π k N
)eN

T
x (t ) e
1 ak = N
n =< N >
∑ x ( n )e
− jk
相似处:1.信号都可以表示为成谐波关系的复指数信 号的线性组合 2.傅立叶级数系数是离散的 3.求解傅立叶级数系数的方法相似 不同处:1.离散域仅N个复指数信号累加 2.离散域傅立叶级数系数是周期的 3.连续域存在收敛问题,而离散域无该问题
第三章需要重点掌握的知识点
1.傅立叶级数的表示方法
第三章需要重点掌握的知识点
1.傅立叶级数的表示方法 针对周期信号!
x(t ) =
1 ak = T
k = −∞
∑a e
k

2π jk t T
2π t − jk T
x ( n) =
dt
k =< N >
∑a e
k
jk
2π n N
2π n N

T
x (t ) e
相关文档
最新文档