初一数学方程路程应用题

合集下载

七年级上册数学《一元一次方程》教材应用题

七年级上册数学《一元一次方程》教材应用题

教材应用题1、一辆客车和一辆卡车同时从A地出发沿同一公路同方向行驶,客车的行驶速度是70km/h,卡车的行驶速度是60km/h,客车比卡车早1h经过B地,A、B两地间的路程是多少?级1班所捐款数比七年级2班少22元。

两班人数相同,每班有多少名学生?9、某校三年共购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年11、某制药厂制造一批药品,如用旧工艺,则废水排量要比环保限制的最大量还多200t;如用新工艺,则废水排量比环保限制的最大量少100t,新、旧废水的工艺排量之比为2:14、洗衣机厂今年计划生产洗衣机25500台,其中1型2型3型三洗衣机的数量1:2:14.这三种洗衣机计划各生产多少台?16、随着农业技术的现代化,节水型灌溉得到逐步推广,喷灌和摘灌是比漫灌节水的灌溉放水。

灌溉三块同样大的实验田,第一块用漫灌方式,第二块用喷灌方式,用第三块用摘灌方式,后两种方式用水量分别是漫灌的25%和15%。

问(1)设第一块实验田用水X吨,则另两块实验田的用水量各如何表示?17、某造纸厂为节约木材,大力矿大再生纸的生产,这家工厂去年10月生产再生纸2050吨,这比前年10月产量的2倍还多150吨,它前年10月生产再生纸多少吨?24、张华和李明登一座山,张华每分钟登高10米并且先出发30分钟,李明每分钟登高1 5米,两人同时登上山顶。

设张华登山用了x分,如何用含x的式子表明李明登山所用的h,半小时后两车相遇,两车两车的速度各是多少?26、在风速为24千米一小时的条件下,一架飞机顺风从A机场到B机场要用2.8小时,它逆风飞行同样的航线要用3小时,求(1)无风时这架飞机在这一航线的平均航速。

(2)两机场之间的航程。

28、有一些相同的房间需要粉刷墙面,一天3名一级技工去粉刷8个房间,结果其中50平方米未来的及粉刷,同样时间5名2级技工粉刷了10个房间之外,还多粉刷了另外的4 0平方米,每名一级技工比二级技工多粉刷10平方米的墙面,问每个房间需要粉刷墙面面30、一列火车均速行驶,经过一条长300米的隧道需要20s的时间.隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s.(1)设火车的长度为x米用含x的式子表示:从车头经过灯下到车尾经过灯下火车所走的路程和这段时间内火车的平均速度;(2)设火车的长度为x米用含x的式子表示:从车头进入隧道到车尾离开隧道火车所走的路程和这段时间内火车的平均速度;(3)上诉问题中火车的平均速度发生了变化吗?(4)求这列火车的长度.螺母,为使每天的产品刚好配套,则应该分配多少名工人生产螺钉?多少名工人生产螺32、整理一批图书,由一个人做要40小时完成。

7年级数学方程应用题100道

7年级数学方程应用题100道

7年级数学方程应用题100道1. 猴子爬山一个猴子爬山,白天爬3米,夜晚滑下2米。

如果山高100米,猴子需要多久才能爬到山顶?解答:设猴子需要x天才能爬到山顶,那么猴子在白天能爬3x米高度,在夜晚会滑下2x米高度。

根据题目中的信息,我们可以得到以下方程: 3x - 2x = 100 化简得到: x = 100,答案为100天。

2. 小明的花园小明有一个长方形的花园。

如果长度是x米,宽度是y米。

已知长和宽的比例为3:4,且周长为24米。

问花园的长度和宽度各是多少?解答:设花园的长度为3x,宽度为4x。

根据周长公式,我们可以得到以下方程: 2(3x + 4x) = 24 化简得到: 14x = 24 x = 24/14,答案为12/7米。

所以花园的长度为3 * (12/7)米,宽度为4 * (12/7)米。

3. 购买水果小王去市场买水果,他买了苹果、橙子和香蕉,总共花了30元。

已知苹果每个1元,橙子每个2元,香蕉每个0.5元。

问小王买了多少个水果?解答:设小王买了x个苹果,y个橙子和z个香蕉。

根据题目中的信息,我们可以得到以下方程: x + 2y + 0.5z = 30 化简得到: 2x + 4y + z = 60 答案不唯一,可以有多组解。

4. 买书小明去书店买书,他买了数学书和英语书,总共花了50元。

已知数学书每本8元,英语书每本10元。

问小明买了多少本书?解答:设小明买了x本数学书和y本英语书。

根据题目中的信息,我们可以得到以下方程:8x + 10y = 50 答案不唯一,可以有多组解。

5. 分苹果小明、小红和小李一起分苹果,已知小明得到的苹果数量是小红的4倍,小李得到的苹果数量是小红的2倍。

如果一共有45个苹果,问三个人各自分到了多少个苹果?解答:设小红得到x个苹果,那么小明得到4x个苹果,小李得到2x个苹果。

根据题目中的信息,我们可以得到以下方程: x + 4x + 2x = 45 化简得到: 7x = 45 x = 45/7,答案为6个苹果。

初一一元一次方程:行程问题应用题专题

初一一元一次方程:行程问题应用题专题

《一元一次方程:行程问题》解答题【基本知识】路程=速度×时间 时间=路程÷速度 速度=路程÷时间(1)相遇问题: 快行距+慢行距=原距(2)追及问题: 快行距-慢行距=原距(3)航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度抓住两码头间距离不变,水流速和船速(静不速)不变的特点考虑相等关系.行程问题:解行程问题的关键是抓住时间关系或路程关系,借助草图分析来解决问题.路程=速度×时间相遇路程=速度和×相遇时间追及路程=速度差×追及时间航行问题:顺水(风)速度=静水(风)速度+水流(风)速度逆水(风)速度=静水(风)速度-水流(风)速度水流速度=(顺水速度-逆水速度)÷2一、【求距离】1、七年级列队以每小时6千米的速度去甲地,小刚从队尾以每小时10千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了7.5分钟,求队伍的长。

【解】设队伍长度x 千米 ,等量:时间81164=+x x 52=∴x 答:略 2、队伍以每小时4千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了4.5分钟,求队伍的长。

【解】605.4168=+x x x = 0.4千米 3、队伍以每小时6千米的速度去甲地,小刚从队尾以每小时12千米的速度赶到队伍的排头后,又以同样的速度返回排尾,一共用了5分钟,求队伍的长。

【解】605186=+x x x = 0.375千米 4、一队学生从学校出发去部队军训,以每小时5千米的速度行进4.5千米时,一名通讯员以每小时14千米的速度从学校出发追赶队伍,他在离部队6千米处追上了队伍,设学校到部队的距离是x 千米,求x . 【解】565.4146--=-x x ∴ 13=x 5、已知某铁路桥长500m ,现在一列火车匀速通过该桥,火车从开始上桥到过完桥共用了30s ,整列火车完全在桥上的时间为20s ,则火车的长度为多少m ?【解】设火车的长度为x m ,根据火车的速度不变可得方程:2050030500x x -=+ 2(500+x )=3(500﹣x ) x =100. 答:火车的长度为100m .6、王先生计划骑车以每小时10千米的速度由A 地到B 地,这样便可在规定时间到达B 地,但他因事将原计划的出发时间推迟了10分钟,便只好以每小时12千米的速度前进,结果比规定时间早5分钟到达B 地,求A 、B 两地间的路程.【解】设由A 、B 两地的路程是 x 千米,则60560101210++=x x 解得:x=15,答:A 、B 两地间的路程是15千米 7、李明和王华步行同时从A 、B 两地出发,相向而行,在离A 地52米处相遇,到达对方出发点后,两人立即以原来的速度原路返回,又在离A 地44米处相遇,求A 、B 两地距离多少米?解:(行程问题,全是路程比与比例)设AB 相距x 千米李明 王华 路程和52 x -52 x2x -44 3x31344252==-∴x x x 8、某周末小明从家里到西湾公园去游玩,已知他骑自行车去西湾公园,骑自行车匀速的速度为每小时8千米,回家时选择乘坐公交车,公交车匀速行驶的速度为每小时40千米,结果骑自行车比公交车多用1.6小时,问他家到西湾公园相距多少千米?【解答】设小明家到西湾公园距离x 千米, 根据题意得:6.1408=-x x 解得:x =16. 答:小明家到西湾公园距离16千米.9、小张和父亲预定搭乘家门口的公交汽车赶往火车站,去家乡看望爷爷。

路程问题——列方程解应用题

路程问题——列方程解应用题

路程问题——列方程解应用题学习目标1.借助“线段图”分析复杂问题中的数量关系,从而建立方程,解决实际问题,发展分析问题、解决问题的能力.2.进一步体会方程模型的作用,提高应用数学的意识.3.培养学生文字语言、图形语言、符号语言这三种语言的转换的能力.学习过程:◆前置准备1.若小明每秒跑4米,那么他5秒能跑__ ___米.2.小明用4分钟绕学校操场跑了两圈(每圈400米),那么他的速度为___ __米/分.◆自主学习:1.已知小明家距离火车站1500米,他以4米/秒的速度骑车到达车站需要___ __分钟.2、甲乙两地相距a千米,小明以每小时b千米的速度从甲地出发,则经小时到达乙地。

3、甲在乙前方a千米,甲与乙分别以10千米/小时和15千米/小时的速度出发,经2时后乙追上甲,则甲共走了千米,乙共走了千米,乙比甲多走千米。

◆例题解析:列方程:(1)甲、乙两人练习跑步,甲每秒跑8米,乙每秒跑6米,若两人从相距700米的地方,同时相向起跑,几秒钟后相遇?分析:在这个过程中,两个人相同。

设x 秒后两人相遇根据题意,列出的方程是.(2)若改为乙先跑5秒,其他条件不变,甲起跑x 秒两人相遇,根据题意,列出的方程是◆当堂训练:1.已知小明家距离火车站1500米,他以4米/秒的速度骑车到达车站需要___ __分钟.2、甲乙两地相距a千米,小明以每小时b千米的速度从甲地出发,则经小时到达乙地中考真题:1.蜗牛前进的速度每秒只有1.5毫米,恰好是某人步行速度的千分之一,那么此人步行的速度大约是每小时()A 9千米B 5.4千米C 900米D 540米2. 甲在乙前方a千米,甲与乙分别以10千米/小时和15千米/小时的速度出发,经2时后乙追上甲,则甲共走了千米,乙共走了千米,乙比甲多走千米。

3.京津城际铁路将于8月1日开通运营,预计高速列车在北京、天津间单程直达运行时间为半小时.某次试车时,试验列车由北京到天津的行驶时间比预计时间多用了6分钟,由天津返回北京的行驶时间与预计时间相同.如果此次试车时,由天津返回北京比去天津时平均每小时多行驶40千米,那么这次试车时由北京到天津的平均速度是每小时多少千米?行程问题(1)相遇问题:全路程=甲走的路程+乙走的路程(2)追及问题:若甲为快者,则被追路程=甲走的路程—乙走的路程(3)航行问题:顺流船速=船速+水速;逆流船速=船速—水速一、相遇问题1、甲乙两地相距450千米,两列车同时开出,相向而行,快车从甲站开出,每小时行驶85千米,慢车从乙站开出,每小时行驶65千米。

七年级数学行程问题应用题精选

七年级数学行程问题应用题精选

一行程问题1.甲、已两个车站相距168千米,一列慢车从甲站开出,速度为36千米/小时,一列快车从乙站开出,速度为48千米/小时。

(1)两列火车同时开出,相向而行,多少小时相遇?(2)慢车先开1小时,相向而行,快车开几小时与慢车相遇?2.甲、乙两人从同地出发前往某地。

甲步行,每小时走4公里,甲走了16公里后,乙骑自行车以每小时12公里的速度追赶甲,问乙出发后,几小时能追上甲?3.甲、乙两人练习50米短距离赛跑,甲每秒钟跑7米,乙每秒钟跑6.5米。

(1)几秒后,甲在乙前面2米?(2)如果甲让乙先跑4米,几秒可追上乙?4甲、乙两人在400米的环行形跑道上练习跑步,甲每秒跑5.5米,乙每秒跑4.5米。

a)乙先跑10米,甲再和乙同地、同向出发,还要多长时间首次相遇?b)乙先跑10米,甲再和乙同地,背向出发,还要多长时间首次相遇?c)甲、乙同时同地同向出发,经过多长时间二人首次相遇?d)甲先跑10米,乙再和甲同地、同向出发,还要多长时间首次相遇?5、一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?6、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?7、甲、乙两人骑自行车,同时从相距65千米两地相向而行,甲的速度为17.5千米每小时,乙的速度为15千米每小时,经过了几小时两人相距32.5千米?二盈亏问题工作量与折扣问题8.用化肥若干千克给一块麦田施肥,每亩用6千克,还差17千克;每亩用5千克,还多3千克,这块麦田有多少亩?9毕业生在礼堂入座,1条长凳坐3人,有25人坐不下;1条长凳坐4人,正好空出4条长凳,则共有多少名毕业生?长凳有多少条?10 将一批货物装入一批箱子中,如果每箱装10件,还剩下6件;如果每箱装13件,那么有一只箱子只装1件,这批货物和箱子各有多少?11有一次数学竞赛共20题,规定做对一题得5分,做错或不做的题每题扣2分,小景得了86分,问小景对了几题?12.修一条路,A 队单独修完要20天,B 队单独修完要12天。

人教版初一数学一元一次方程与实际问题

人教版初一数学一元一次方程与实际问题

人教版初一数学一元一次方程与实际问题本文涉及到的格式错误已经被删除。

一元一次方程解应用题(1)——路程问题教学目标:1.掌握行程问题,能够熟练地利用路程、速度、时间的关系列方程。

2.提高学生分析实际问题中数量关系的能力。

研究过程:基本等量关系:1.路程 = 速度 ×时间,时间 = 路程 ÷速度,速度 = 路程 ÷时间。

2.相向而行相遇时的等量关系:快者的路程 - 慢者的路程= 两人初相距的路程;同向而行追击时的等量关系:快者的路程 + 慢者的路程 = 两人初相距的路程。

新课探究:例1:甲、乙两站间的路程为360 km,一列慢车从甲站开出,每小时行驶48 km;一列快车从乙站开出,每小时行驶72 km。

⑴两列火车同时开出,相向而行,经过多少小时相遇?⑵快车先开25分钟,两车相向而行,慢车行驶了多少小时相遇?练一:1.甲、乙两人骑自行车同时从相距65 km的两地相向而行,2小时相遇,甲比乙每小时多骑2.5 km,求乙的速度?2.甲、乙两人在运动场上进行慢跑晨练,甲跑一圈3分钟,乙跑一圈2分钟,两人同时同地反向慢跑,求两人几分钟后第一次相遇?例2:一队学生去校外进行野外长跑训练。

他们以5 km/h 的速度行进,跑了18分钟的时候,学校要将一个紧急通知传给队长。

一名老师从学校出发,骑自行车以14 km/h的速度按原路追上去。

这名老师用多少时间可以追上学生队伍?练二:1.甲的步行速度是每小时5 km,乙的步行速度是每小时7.5 km,乙在甲的后面同时同向出发,120分钟后追上甲,那么开始时甲、乙两人相距多少千米?2.某班学生以每小时4 km的速度从学校步行到校办农场参加活动,走了1.5小时后,XXX奉命回学校取一件物品,他以每小时6 km的速度回校取了物品后,立即又以同样的速度追赶队伍,结果在距农场2 km处追上了队伍,求学校到农场的距离。

巩固练:1.在800米圆形跑道上有两人练中长跑,甲每分钟跑320米,乙每分钟跑280米。

初一解方程应用题10题

初一解方程应用题10题以下是10道适合初一学生练习的解方程应用题:
1.一家超市的苹果每千克3元,小明买了x千克苹果,给了售货员50
元,售货员找回给他26元,请问小明买了多少千克的苹果?
2.一辆汽车从A地到B地,每小时行驶60千米,用了x小时,A地
到B地的距离是多少千米?
3.小华的妈妈买了2x千克的苹果和3x千克的梨,一共花了36元,如
果苹果每千克4元,梨每千克3元,那么x是多少?
4.一家书店新进了一批书,每本书的成本是20元,售价是25元,如
果书店要获得x元的利润,那么需要卖出多少本书?
5.小王用x元钱买了y支钢笔,每支钢笔的单价是6元,请问小王买
了多少支钢笔?
6.小明的爸爸每月给他x元零花钱,小明用这些钱买了y本笔记本,
每本笔记本的单价是3元,请问小明买了多少本笔记本?
7.一家工厂生产了x件产品,其中有y件不合格,合格率是多少?
8.小丽每分钟走60米,她走了x分钟,请问她走了多少米?
9.小明的爷爷今年70岁,小明的年龄是爷爷年龄的1/5,请问小明今
年多少岁?
10.小华的妈妈买了2千克的苹果和3千克的梨,一共花了24元,如果
苹果每千克x元,梨每千克y元,那么x和y分别是多少?
这些题目涵盖了各种不同类型的解方程应用题,旨在帮助学生提高解决实际问题的能力。

希望这些题目对初一学生的数学练习有所帮助!。

一元一次方程解应用题-行程问题专项练习 含答案)

一元一次方程解应用题-行程问题专项练习一、单选题1.一条山路,某人从山下往山顶走3小时还有1千米才到山顶,若从山顶走到山下只用150分钟,已知下山速度是上山速度的1.5倍,求山下到山顶的路程.设上山速度为x 千米/分钟,则所列方程为( ).A .31 2.5 1.5x x -=⨯B .31 2.5 1.5x x +=⨯C .31150 1.5x x -=⨯D .1801150 1.5x x +=⨯ 2.小明每天早晨在8时前赶到离家1km 的学校上学.一天,小明以80m/min 的速度从家出发去学校,5min 后,小明爸爸发现小明的语文书落在家里,于是,立即以180m/min 的速度去追赶.则小明爸爸追上小明所用的时间为( )A .2 minB .3minC .4minD .5min3.一货轮往返于上、下游两个码头,逆流而上38个小时,顺流而下需用32个小时,若水流速度为8千米/时,则下列求两码头距离x 的方程正确的是( )A .883238x x -+= B .883238x x -=+ C .832382x x -= D .21323823238x x x ⎛⎫=+ ⎪+⎝⎭ 4.如图所示,甲、乙两动点分别从正方形ABCD 的顶点A ,C 同时沿正方形的边开始移动,甲点依顺时针方向环行,乙点依逆时针方向环行,若乙的速度是甲的速度的4倍,则它们第2020次相遇在边( )上.A .AB B .BC C .CD D .DA5.A ,B 两地相距600km ,甲车以60km/h 的速度从A 地驶向B 地,当甲车行驶100km 后,乙车以100km/h 的速度沿着相同的道路从A 地驶向B 地.设乙车出发h x 后追上甲车,根据题意可列方程为( )A .60100100x x +=B .60100100x x -=C .60100600x x +=D .60100100600x x ++= 6.《九章算术》中记载了这样一个数学问题:今有甲发长安,五日至齐;乙发齐,七日至长安.今乙发已先二日,甲仍发长安,几何日相逢?译文:甲从长安出发,5日到齐国;乙从齐国出发,7日到长安.现乙先出发2日,甲才从长安出发.问甲乙经过多少日相逢?设甲乙经过x 日相逢,可列 方程( )A .7512x x +=+B .2175x x ++=C .2175x x +-=D .275x x += 7.甲、乙两车分别从A 、B 两地同时出发,相向而行,若快车甲的速度为60/km h ,慢车乙的速度比快车甲慢4/km h ,A 、B 两地相距80km ,求两车从出发到相遇所行时间,如果设xh 后两车相遇,则根据题意列出方程为( )A .4608080x x -+=B .()480x x -=C .()6060480x x +-=D .()6060480x x +-= 8.我国古代著名著作《算学启蒙》中有这样一道题:“良马日行二百四十里,驽马日行一直五十里,驽马先行一十二日,问良马几何追及之.”题意是:跑得快的马每天走240里,跑得慢的马每天走150里,慢马先走12天,则快马追上慢马需( )A .20天B .21天C .22天D .23天9.2020年12月30日,连云港市图书馆新馆正式开馆.小明同学从家步行去图书馆,他以5km/h 的速度行进24min 后,爸爸骑自行车以15km/h 的速度按原路追赶小明.设爸爸出发xh 后与小明会合,那么所列方程正确的是( )A .245()1560x x +=B .()52415x x +=C .()51524x x =+D .24515()60x x =+ 10.某中学学生军训,沿着与笔直的铁路并列的公路匀速前进,每小时走4.5千米.一列火车以每小时120千米的速度迎面开来,测得从火车头与队首学生相遇,到车尾与队末学生相遇,共经过12秒.如果队伍长150米,那么火车长( )A .150 米B .215米C .265 米D .310米11.《九章算术》是一部与现代数学的主流思想完全吻合的中国数学经典著作,全书分为九章,在第七章“均衡”中有一题:“今有凫起南海,七日至北海;雁起北海,九日至南悔.今凫雁俱起,问何日相逢?”愈思是:今有野鸭从南海起飞.7天到北海;大雁从北海起飞,9天到南海.现野鸭大雁同时起飞,问经过多少天相逢.利用方程思想解决这一问题时,设经过x 天相遇,根据题意列出的方程是( )A .()971x -=B .()971x +=C .11179x ⎛⎫+= ⎪⎝⎭D .11179x ⎛⎫-= ⎪⎝⎭12.一天早上,小宇从家出发去上学.小宇在离家800米时,突然想起班级今天要进行建党100周年合唱彩排,表演的衣服忘了,于是小宇立即打电话通知妈妈送来,自己则一直保持原来的速度继续赶往学校,妈妈接到电话后,马上拿起衣服以180米/分的速度沿相同的路线追赶小宇,10分钟后追上了小宇,把衣服给小宇后又立即以原速原路返回,小宇拿到衣服后继续原速赶往学校(打接电话、拿取衣服等时间都忽略不计).当小宇妈妈回到家中时,恰好小宇也刚好到学校.则小宇家离学校的距离为()A.1800米B.2000米C.2800米D.3200米二、填空题13.一艘轮船在水中由A地开往B地,顺水航行用了4小时,由B地开往A地,逆水航行比顺水航行多用了1小时,已知此船在静水中速度是18千米/时,水流速度为___________千米/小时.14.一列长150米的火车,以每秒15米的速度通过长600米的桥洞,从列车进入桥洞口算起,这列火车完全通过桥洞所需时间是____秒.15.甲乙两车在南北方向的笔直公路上相距90千米,相向而行.甲出发30分钟后,乙再出发,甲的速度为60千米/时,乙的速度为40千米/时.则甲出发________小时后甲乙相距10千米.16.有人要去某关口,路程为378里,第一天健步行走,从第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地.若求此人第六天走的路程为多少里.设此人第六天走的路程为x里,依题意,可列方程为________.17.小明与小美家相距1.8千米.有一天,小明与小美同时从各自家里出发,向对方家走去,小明家的狗和小明一起出发,小狗先跑去和小美相遇,又立刻回头跑向小明,又立刻跑向小美……一直在小明与小美之间跑动.已知小明速度为50米/分,小美速度为40米/分,小明家的狗速度为150米分,则小明与小美相遇时,小狗一共跑了__________米.三、解答题18.列方程解应用题:甲、乙两人从相距60千米的两地同时出发,相向而行2小时后相遇,甲每小时比乙少走4千米,求甲、乙两人的速度.19.小明在国庆节期间和父母外出旅游,他们先从宾馆出发去景点A参观游览,在景点A停留1.5h 后,又去景点B,再停留0.5h后返回宾馆.去时的速度是5km/h,回来时的速度是4km/h,来回(包括停留时间在内)一共用去7h,如果回来时的路程比去时多2km,求去时的路程.20.甲、乙两人分别后,沿着铁轨反向而行.此时,一列火车匀速地向甲迎面驶来,列车在甲身旁开过,用了15s;然后在乙身旁开过,用了17s.已知两人的步行速度都是3.6km/h,这列火车有多长?21.如图,在数轴上,点A、点B所表示的数分别是a和b,点A在原点右边,点B在原点左边,它们相距24个单位长度,且点A到原点的距离比点B到原点的距离大8,点P从点A出发,以每秒3个单位的速度向数轴负方向运动,到达点B后,立即以相同的速度反向运动;点Q从点B出发,以每秒1个单位的速度向数轴负方向运动,两点同时出发,设运动时间为t秒.(1)a=,b=;(2)当点P、点Q所表示的数互为相反数时,求t的值;(3)当点P、点Q与原点的距离之和为22时,求t的值.22.问题一:如图①,甲,乙两人分别从相距30km的A,B两地同时出发,若甲的速度为40km/h,乙的速度为30km/h,设甲追到乙所花时间为xh,则可列方程为;问题二:如图②,若将线段AC弯曲后视作钟表的一部分,线段AB对应钟表上的弧AB(1小时的间隔),已知∠AOB=30°.(1)分针OC的速度为每分钟转动度;时针OD的速度为每分钟转动度;(2)若从1:00起计时,几分钟后分针与时针第一次重合?(3)在(2)的条件下,几分钟后分针与时针互相垂直(在1:00~2:00之间)?参考答案1.D解:3小时=180分钟由题意下山的速度为1.5x 千米/分钟,从而可得方程:1801150 1.5x x +=⨯ 故选:D .2.C解:设小明爸爸追上小明所用的时间为min x ,则小明走的路程为(80580)x m ⨯+,小明的爸爸走的路程为180xm ,由题意列式得:805+80180x x ⨯=,解得:4x =.即小明爸爸追上小明所用的时间为4分钟.故选:C3.B解:∵逆流而上38个小时,∴逆流时船本身的速度可以表示为38x 千米/时, ∵顺流而下需用32个小时,∴顺流时船本身的速度可以表示为32x 千米/时, ∵静水的速度是不变的,∴可列方程为883238x x -=+. 故选:B .4.A解:设正方形的边长为a ,甲的速度为v ,则乙的速度为4v ,第一次相遇时间为1t ,第二次相遇时间为2t ,第n 次相遇时间为n t ,甲第一次走的路程为S 1,第二次走的路程为S 2,第n 次走的路程为S n , 1142vt vt a +=, 125a t v=,1125a S v t ==, 2244vt vt a +=, 245a t v=,2245a S v t ==,3344vt vt a +=,345a t v =,3345a S v t ==, … 45n a t v=,45n n a S v t ==, ()12422445555n n a a a a S S S S -=+⋯+=++⋯=, 当2020n =时,()4280781615,655n a a S a -===, 4403.9S a ÷=圈,0.94 3.6a a ⨯=,第2020次相遇在AB 上.故选:A .5.A解:设乙车出发h x 后追上甲车,等量关系为甲车h x 行驶的路程100km +=乙车h x 行驶的路程,据此列方程为60100100x x +=.故选:A.6.B解:根据题意设甲乙经过x 日相逢,则甲、乙分别所走路程占总路程的5x 和27x +,可列方程2175x x ++=. 故选B .7.C解:根据题意可知甲的速度为60/km h ,乙的速度是()604/km h -,相遇后甲行驶的路程+乙行驶的路程=80km ,∴可列方程为()6060480x x +-=.故选:C .8.A解:设快马x 天可以追上慢马,由题意,得240x ﹣150x =150×12,解得:x =20.答:快马20天可以追上慢马.故选:A .9.A解:设爸爸出发xh 后与小明会合,则此时小明出发了2460x ⎛⎫+ ⎪⎝⎭h , 依据题意得:2451560x x ⎛⎫+= ⎪⎝⎭, 故选:A .10.C解:12秒=1300小时,150米=0.15千米, 设火车长x 千米,根据题意得:1300×(4.5+120)=x +0.15, 解得:x =0.265,0.265千米=265米.答:火车长265米.故选:C .11.C解:设野鸭与大雁从南海和北海同时起飞,经过x 天相遇, 根据题意得:11179x ⎛⎫+= ⎪⎝⎭. 故选:C .12.C解:设小宇的速度为x 米/分,根据题意得:1018010800x =⨯-,解得:10x =,则小宇家离学校的距离为10180102800x +⨯=(米),故选:C .13.2解:设水流速度是x 千米/时,依题意有4(x +18)=(4+1)×(18−x ), 解得x =2.答:水流速度是2千米/时.14.50解:设这列火车完全通过桥洞所需时间为x 秒,根据题意得:15x =600+150,解得:x =50.答:这列火车完全通过隧道所需时间是50秒.故答案为:50.15.1或1.2或1解:设甲出发x 小时后甲乙相距10千米, 当甲乙相遇前:306040()901060x x +-=-, 解得x =1;当甲乙相遇后:306040()901060x x +-=+, 解得x =1.2,故答案为:1或1.2.16.2481632378+++++=x x x x x x解:设此人第六天走的路程为x 里,则前五天走的路程分别为2x ,4x ,8x ,16x ,32x 里,依题意得:2481632378+++++=x x x x x x ;故答案是:2481632378+++++=x x x x x x .17.3000解:设经过x 分钟两人相遇,依题意,得:(50+40)x =1800,解得:x =20,所以小狗跑的距离为150×20=3000(米)故答案为:3000.18.甲的速度为13千米每小时,乙的速度为17千米每小时解:设乙的速度为x 千米每小时,则甲的速度为(4)x -千米每小时,根据题意得, 22(4)60x x +-=解得17x =,则甲的速度为17413-=千米每小时 答:甲的速度为13千米每小时,乙的速度为17千米每小时. 19.10km解:设去时的路程为km x ,则回来时的路程就是(2)km x +,去时路上所用的时间为h 5x ,回来时路上所用的时间为2h 4x +.根据题意,得2 1.50.5754x x ++++=. 解得10x =. 因此,去时走的路程是10km .20.255m解:3.6km/h =1m/s .设这列火车的速度为x m/s ,则火车的长为15x +1×15=(15x +15)m , 根据题意得:17x ﹣17×1=15x +15×1, 解得:x =16,∴15(x +1)=255,答:这列火车长255m .21.(1)16,﹣8;(2)t 的值是2;(3)t 的值是1或7.5或11.5或9. 解:(1)∵点A 在原点右边,点B 在原点左边,它们相距24个单位长度,且点A 到原点的距离比点B 到原点的距离大8,0,0a b ∴>< ∴24,8a b a b -=-=∴a =(24+8)÷2=16,b =﹣(24﹣8)÷2=﹣8;故答案为:16,﹣8.(2)①当0≤t ≤8时,点P 表示的数是16﹣3t ,点Q 表示的数是﹣8﹣t , 所以(16﹣3t )+(﹣8﹣t )=0,解得t =2; ②当8<t <16时,点P 表示的数是﹣8+(3t ﹣24)=3t ﹣32,点Q 表示的数是﹣8﹣t , 所以(3t ﹣32)+(﹣8﹣t )=0,解得t =20(舍去); 所以当点P 、点Q 所表示的数互为相反数时,t 的值是2; (3)①当0≤t ≤8时,OP =|16﹣3t |,OQ =8+t , 所以|16﹣3t |+8+t =22,解得t =1或7.5;②当8<t<16时,OP=|3t﹣32|,OQ=8+t,所以|3t﹣32|+8+t=22,解得t=11.5或9;综上,当点P、点Q与原点的距离之和为22时,t的值是1或7.5或11.5或9.22.问题一:(40-30)x=30;问题二:(1)6,0.5;(2)从1:00起计时,6011分钟后分针与时针第一次重合;(3)24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).解:问题一:依题意有(40-30)x=30;故答案为:(40-30)x=30;问题二:(1)分针OC的速度为每分钟转动6度;时针OD的速度为每分钟转动0.5度;故答案为:6,0.5;(2)设从1:00起计时,y分钟后分针与时针第一次重合,依题意有(6-0.5)y=30,解得y=6011.故从1:00起计时,6011分钟后分针与时针第一次重合;(3)设在(2)的条件下,z分钟后分针与时针互相垂直(在1:00~2:00之间),依题意有(6-0.5)z=90+30或(6-0.5)z=270+30,解得z=24011或z=60011,故在(2)的条件下,24011或60011分钟后分针与时针互相垂直(在1:00~2:00之间).11。

行程问题初一一元一次方程

初一一元一次方程的行程问题是指通过解一元一次方程来求解与行程有关的问题。

这类问题通常涉及到距离、时间和速度之间的关系。

我们可以用变量来表示未知数,并通过列方程的方式解决问题。

以下是一个例子:
问题:小明骑自行车从家骑行到学校,全程5公里。

他的速度是10公里/小时。

请问他骑行到学校需要多少时间?
解决步骤:
假设骑行时间为t小时。

根据速度等于距离除以时间的公式,可以得到方程:
速度= 距离/ 时间
10 = 5 / t
通过距离除以速度,可以得到方程:
t = 5 / 10
简化计算,得到:
t = 1/2
因此,小明骑行到学校需要0.5小时,即30分钟的时间。

这是一个简单的初一一元一次方程行程问题的解决方法。

您可以使用类似的方法解决其他与行程相关的问题,根据已知的条件列方程,并求解未知数。

人教版七年级下册数学二元一次方程应用题分类训练(行程问题)

人教版七年级下册数学8.3 二元一次方程应用题分类训练(行程问题)1.A、B两地相距36千米,甲从A地步行到B地,乙从B地步行到A地,两人同时相向出发,4小时后两人相遇,6小时后,甲剩余的路程是乙剩余路程的2倍,求二人的速度.(用方程解)2.小颖家到学校的距离为1200m,其中有一段为上坡路,另一段为下坡路,她去学校共用去16min,假设小颖在上坡路的平均速度为3km/h,下坡路的平均速度为5km/h,小颖家到学校的上坡路和下坡路各有多少米?3.甲、乙两人同时从A,B两地出发赶往目的地B,A,甲骑摩托车,乙骑自行车,沿同一条路线相向匀速行驶,出发后经2.5小时两人相遇.已知在相遇时甲比乙多行驶了75千米,相遇后经过1小时甲到达B地.(1)求甲、乙两人行驶的速度.(2)在整个行程中,问甲、乙行驶多少小时,两车相距35千米.4.小明家离学校2120米,其中有一段为上坡路,另一段为下坡路.他跑步去学校共用了16分钟,已知小明在上坡路上的平均速度是4.8千米/时,而他在下坡路上的平均速度是12千米/时,小明上坡、下坡各用了多长时间?5.小杰、小明两人同时绕400米的环形跑道行走,已知小杰比小明速度快,如果他们同时由同一点同向而行12分30秒首次相遇,如果他们同时从同一点起背向而行2分首次相遇,求小杰、小明两人每分钟各走多少米?6.为了测得隧道长度和火车通过隧道时的速度,小明和小亮在隧道两端进行观察:火车从开始入隧道到完全出隧道共用时24秒,整列火车完全在隧道内的时间为14秒,整列火车长300米.请你根据小明和小亮获得的数据,求出隧道的长度和火车过隧道的速度.7.甲.乙两地相距880千米,小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米,问大客车每小时行多少千米?小轿车每小时行多少千米?8.某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时.原路返回时,以每小时6千米的速度下坡,又以每小时4千米的速度走平路,共用了3.5小时.问平路和坡路的路程各多少千来?9.一艘轮船在相距90千米的甲、乙两地之间匀速航行,从甲地到乙地顺流航行用6小时,逆流航行比顺流航行多用4小时.(1)求该轮船在静水中的速度和水流速度;(2)若在甲、乙两地之间建立丙码头,使该轮船从甲地到丙地和从乙地到丙地所用的航行时间相同,问甲、丙两地相距多少干米?10.甲、乙两个同学从A地到B地,甲步行的速度为3千米/小时,乙步行的速度是5千米/小时,两人骑车的速度都是15千米/小时.现在甲先步行,乙先骑自行车,两人同时从A地出发,走了一段路程后,乙放下自行车步行,甲到乙放自行车的地方处改骑自行车.后面不断这样交替进行,两人恰好同时到达B地.那么,甲走全程的平均速度是多少?11.甲说:你先跑10米,我跑5秒钟就能追上你.乙说:那我先跑2秒钟呢?甲说:那我只用跑4秒钟就追上你了.根据以上对话回答问题:求甲、乙两人速度各是多少?(假设两人同地同向出发且速度不变)12.“铁路建设助推经济发展”,近年来我国政府十分重视铁路建设.渝利铁路通车后,从重庆到上海比原铁路全程缩短了320千米,列车设计运行时速比原铁路设计运行时速提高了120千米/小时,全程设计运行时间只需8小时,比原铁路设计运行时间少用16小时.(1)渝利铁路通车后,重庆到上海的列车设计运行里程是多少千米?(2)专家建议:从安全的角度考虑,实际运行时速减少m%,以便于有充分时间应对m%小时,求m的值.突发事件,这样,从重庆到上海的实际运行时间将增加10913.A、B两地相距20千米,甲从A地向B地匀速行进,同时乙从B地向A地匀速行进,两个小时后两人在途中相遇,相遇后甲立即以原速返回A地,乙继续以原速向A地行进,甲回到A地时乙离A地还有4千米,求甲、乙两人的速度.14.已知甲、乙两辆汽车同时....A出发行驶...向从同一地点..、同方(1)若甲车的速度是乙车的2倍,甲车走了90千米后立即返回与乙车相遇,相遇时乙车走了1小时.求甲、乙两车的速度;(2)假设甲、乙每辆车最多只能带200升汽油,每升汽油可以行驶10千米,途中不能再加油,但两车可以互相借用对方的油,若两车都必须沿原路返回到出发点A,请你设计一种方案使甲车尽可能地远离出发点A,并求出甲车一共行驶了多少千米?15.男女运动员各一名在环形跑道上练习长跑,男运动员比女运动员速度快,他们从同一起点沿相反方向同时出发,每隔25秒相遇一次.现在他们从同一起跑点沿相同方向同时出发,经过25分钟男运动员追上女运动员,并且比女运动员多跑20圈.求(1) 男运动员的速度是女运动员的多少倍?(2) 男运动员追上女运动员时,女运动员跑了多少圈?16.小丽沿公路匀速前进,每隔4分钟就遇到一辆迎面而来的公共汽车,而每隔6分钟就会有一辆公共汽车从背后超过她.假定汽车速度不变,而且同一方向行驶的公共汽车相邻两车的距离都是1200米,求小丽前进的速度和公共汽车的速度,公共汽车每隔几分钟发一班车.17.抗洪指挥部的一位驾驶员接到一个防洪的紧急任务,要在限定的时内把一批抗洪物质从物质局运到水库,这辆车如果按每小时30千米的速度行驶在限定的时间内赶到水库,还差3千米,他决定以每小时40千米的速度前进,结果比限定时间早到18分钟,问限定时间是几小时?物质局仓库离水库有多远?18.从小华家到姥姥家的路由一段上坡路和一段下坡路组成.星期天,小华骑自行车去姥姥家,如果保持上坡每小时行3km,下坡每小时行5km,他到姥姥家需要66分钟,从姥姥家回来时需要78分钟才能到家那么从小华家到姥姥家的上坡路和下坡路各有多少千米?19.近几年某地在全面推进“两型社会”建设方面成效显著,低碳环保.生态节能的生活方式已成为社会共识.杨先生要从某地到长沙,若乘飞机需要3h,乘汽车需要9h.这两种交通工具每小时排放的二氧化碳总量为70kg,已知飞机每小时二氧化碳的排放量比汽车多44kg.(1)求汽车.飞机每小时二氧化碳的排放量各是多少千克;(2)杨先生若乘汽车来长沙,那么他此行与乘飞机相比将减少二氧化碳排放量多少千克?20.甲乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖拉机继续前进,汽车在相遇处停留1个小时后调头按原速返回,汽车在返回后半个小时追上了拖拉机.(1)在这个问题中,1小时20分=小时;(2)相向而行时,汽车行驶小时的路程+拖拉机行驶小时的路程=160千米;同向而行时,汽车行驶小时的路程=拖拉机行驶小时的路程;(3)全程汽车、拖拉机各自行驶了多少千米?参考答案:1.甲的速度为4千米/时,乙的速度为5千米/时2.小颖家到学校的上坡路有200米,下坡路有1000米.3.(1)甲:50/km h ,乙:20/km h ;(2)2h 或3h4.小明上坡用了9分钟,下坡用了7分钟.5.小杰每分钟走116米,小明每分钟走84米6.隧道长1140米,火车过隧道的速度为60米/秒.7.76,968.12;39.(1)该轮船在静水中的速度是12千米/小时,水流速度是3千米/小时;(2)甲、丙两地相距2254千米. 10.457千米/小时. 11.甲速度为6米/秒,乙速度为4米/秒.12.(1)1600千米;(2)62013.甲的速度为6千米/时,乙的速度为4千米/时.14.(1)120千米/时、60千米/时(2)3000米15.(1)男运动员速度是速度的2倍;(2)女运动员跑了20圈.16.小丽前进的速度是50米/分钟,公共汽车前进的速度是250米/分钟,公共汽车每隔4.8分钟发一班车.17.限定时间是1.5小时,物资局仓库离水库有48千米.18.从小华家到姥姥家有1.5km 上坡路,3km 下坡路.19.(1)汽车每小时二氧化碳的排放量是57千克,飞机每小时二氧化碳的排放量是13千克;(2)他此行与乘飞机相比将减少二氧化碳排放量54千克.20.(1)113;(2)113,113,12,112;(3)汽车行驶的路程为165千米,拖拉机行驶的路程为85千米.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

甲 乙
600
甲 乙 一元一次方程应用题分类练习题一
——行程问题
一、路程问题
(1)行程问题中的三个基本量及其关系: 路程=速度×时间,即S=vt (2)基本类型有① 相遇问题;② 追及问题;③行船问题
常见的还有:相背而行;环形跑道问题。

(3)解此类题的关键是抓住甲、乙两物体的时间关系或所走的路程关系,一般情况下问题就能迎刃而解。

并且还常常借助画草图来分析、理解行程问题。

例:甲、乙两站相距480公里,一列慢车从甲站开出,每小时行90公里,一列快车从乙站开出,每小时行140公里。

(1)慢车先开1小时,快车再开。

两车相向而行。

问快车开出多少小时后两车相遇? 分析:相遇问题,画图表示为:
等量关系是:慢车走的路程+快车走的路程=480公里。

解:
(2)两车同时开出,相背而行多少小时后两车相距600公里? 分析:相背而行,画图表示为:
等量关系是:两车所走的路程和+480公里=600公里。

解:
(3)两车同时开出,慢车在快车后面同向而行,几小时后快车与慢车相距600公里?
甲 乙
分析:画图表示为:
等量关系为:快车所走路程-慢车所走路程+480公里=600公里。

解:
(4)两车同时开出同向而行,快车在慢车的后面,多少小时后快车追上慢车? 分析:追及问题,画图表示为:
等量关系为:快车的路程=慢车走的路程+480公里。

解:
(5)慢车开出1小时后两车同向而行,快车在慢车后面,快车开出后多少小时追上慢车?
分析:追及问题,画图表示为:
等量关系为:快车的路程=慢车走的路程+480公里。

解:
二、行船问题:流水问题是研究船在流水中的行程问题,因此,又叫行船问题。

行船问题有如下两个基本公式:
顺水速度=船速+水速 (V 顺=V 静+V 水) 逆水速度=船速-水速 (V 顺=V 静-V 水)
例: 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?
【行程问题巩固练习】
1、已知A、B相距60千米,甲位于A处,骑自行车,他的速度是每小时15千米,乙位于B处,开汽车,他的速度是每小时45千米。

(1)若他们同时相向而行,则经几小时他们相遇?
(2)若他们相向而行,小明先骑车0.5小时,问几小时他们相遇?
(3)若他们同时同向而行,则经几小时乙追上甲?
(4)若他们同向而行,甲先骑车1小时以后,问乙经几小时追上甲?
(5)若他们同向而行,甲先骑车1小时以后,发现他的一个重要文件在乙那里,因此掉头去拿,同时乙也开车给甲送去,问甲经几小时和乙碰到?
2. 甲乙两人在400米的环形跑道上跑步,从同一起点同时出发,甲的速度是5米/秒,乙的速度是3米/秒。

(1)如果背向而行,两人多久第一次相遇?
(2)如果同向而行,两人多久第一次相遇?
3.一列客车长200 m,一列货车长280 m,在平行的轨道上相向行驶,从两车头相遇到两车尾相离经过16秒,已知客车与货车的速度之比是3∶2,问两车每秒各行驶多少米?
4、某人从家里骑自行车到学校。

若每小时行15千米,可比预定的时间早到15分钟;若每小时行9千米,可比预定的时间晚到15分钟;求从家里到学校的路程有多少千米?
5. A、B两地相距1200千米。

甲从A地、乙从B地同时出发,相向而行。

甲每分钟行50千米,乙每分钟行70千米。

两人在C处第一次相遇。

问AC之间距离是多少?如相遇后两人继续前进,分别到达A、B两地后立即返回,在D处第二次相遇。

问CD之间距离是多少?
6.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。

相关文档
最新文档