2016届高三物理《考点归纳总结》人教版一轮复习 第二章 相互作用单元小结练[来源:学优高考网610816]

合集下载

高考物理一轮复习第2章相互作用新人教版

高考物理一轮复习第2章相互作用新人教版
力的动态变化分析、 力的合成与分解是高考的热点,要注意加强
3.矢量和标量 Ⅰ 的对象。
4.力的合成和分解 2.由于本章内容是高

中物理的基础,所以对
名师点拨
• 相互作用是高中物理的重要内容,其中力的 合成和分解、共点力的平衡、力的平行四边 形定则(实验探究)为Ⅱ级要求。相互作用涉 及的“弹簧模型”可以在不同物理情境下综 合应用,是高考常考模型,摩擦力方向的判 断和大小的计算也是此专题的难点,应着重 分析,另外,要注重此专题与电场力、磁场 力相结合的平衡问题。本专题常以选择题形 式考查,也有综合性计算题。
走向高考 ·物理
人教版 ·高考总复习
路漫漫其修远兮 吾将上下而求索
第二章 相互作用
1 高考导航 2 名师点拨
高考导航
最新考纲
考向瞭望
1.滑动摩擦、静摩 擦、动摩擦因数 Ⅰ
1.对弹力、摩擦力的分 析与计算一直是近几年 高考考查的热点,预计
2.形变、弹性、胡 在明年的高考中,弹力、
克定律 Ⅰ
摩擦力将仍是重点考查

高考物理一轮复习考点延伸训练:第二章《相互作用》(含解析).pdf

高考物理一轮复习考点延伸训练:第二章《相互作用》(含解析).pdf

第二章 相 互 作 用 (1)从近三年高考试题考点分布可以看出,高考对本章内容的考查重点有:弹力、摩擦力的分析与计算,共点力平衡的条件及应用,涉及的解题方法主要有力的合成法、正交分解法、整体法和隔离法的应用等。

(2)高考对本章内容主要以选择题形式考查,静摩擦力的分析、物体受力分析及平衡条件的应用是本章的常考内容。

2015高考考向前瞻 (1)本章主要考查共点力作用下物体的平衡条件的应用,平衡条件推论的应用;共点力作用下的平衡与牛顿运动定律、动能定理、功能关系相结合,与电场及磁场中的带电体的运动相结合,是高考命题的热点。

(2)以生活中的实际问题为背景考查力学知识是今后高考命题的一大趋势。

第1节弹力__摩擦力 弹 力 [记一记] 1.弹力 (1)定义:发生弹性形变的物体由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力。

(2)产生条件: 两物体相互接触; 发生弹性形变。

(3)方向:弹力的方向总是与施力物体形变的方向相反。

2.胡克定律 (1)内容:弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比。

(2)表达式:F=kx。

k是弹簧的劲度系数,单位为牛/米;k的大小由弹簧自身性质决定。

x是弹簧长度的变化量,不是弹簧形变以后的长度。

[试一试] 1.(2014·清远质检)如图2-1-1所示,小车受到水平向右的弹力作用,与该弹力的有关说法中正确的是( ) 2-1-1 A.弹簧发生拉伸形变 B.弹簧发生压缩形变 C.该弹力是小车形变引起的 D.该弹力的施力物体是小车 解析:选A 小车受到水平向右的弹力作用,弹簧发生拉伸形变,该弹力是弹簧形变引起的,该弹力的施力物体是弹簧,选项A正确,B、C、D错误。

[想一想] (1)摩擦力的方向与物体的运动方向不相同就相反,这种说法对吗? (2)物体m沿水平面滑动时,受到的滑动摩擦力大小一定等于μmg吗? (3)滑动摩擦力是不是一定阻碍物体的运动? 提示:(1)摩擦力的方向可以与物体的运动方向相同,也可以相反,还可以与物体的运动方向成任何角度,但一定与相对运动方向相反。

2016届高考物理第一轮复习总结(15-2) 第二章 相互作用

2016届高考物理第一轮复习总结(15-2)    第二章 相互作用

【解析】用支持力、静摩擦力方向的判断方法解 题. M处支持力方向与支持面(地面)垂直,即竖直向 上,选项A正确;N处支持力方向与支持面(原木接触 面)垂直,即垂直MN向上,故选项B错误;摩擦力方 向与接触面平行,故选项C、D错误.
【答案】A
3.(2014重庆)为了研究人们 用绳索跨越山谷过程中绳 索拉力的变化规律,同学 们设计了如下图所示的实 验装置,他们将不可伸长 轻绳的两端通过测力计(不计质量及长度)固定在相距 为D的两立柱上,固定点分别为P和Q,P低于Q,绳 长为L(L>PQ). 他们首先在绳上距离P点10 cm处(标记为C)系上 质量为m的重物(不滑动),由测力计读出绳PC、QC的 拉力大小TP、TQ,随后,改变重物悬挂点C的位置, 每次将P到C点的距离增加10 cm,并读出测力计的示 数,最后得到TP、TQ与绳长PC的关系曲线如下图所 示,由实验可知:
(5)相似三角形法:对于受到三个共点力的作用而 处于平衡状态的物体来说,这三个力可构成一个封闭 的矢量三角形,我们可运用数学中解三角形的有关知 识来求解,如正弦、余弦定理.有时还可以利用力的矢 量三角形与物体所在空间构成的几何三角形的相似来 求解. (6)图解法:这种方法适用于三力平衡或力的分 解、合成中已知一个力的大小、方向不变,另一个力 的方向不变,判断因第三个力的变化而引起两个力的 大小变化的情况,以及另一个力的大小不变、方向改 变而引起第三个力的变化的情况.
本章内容是力学的基础,其研究方法贯穿整个物 理学的核心内容,本章的重点是摩擦力的大小和方向 判断问题、共点力的合成问题、物体的平衡问题.而 共点力作用下物体的平衡问题又是高考的重点、 热点. 1.分析共点力作用下物体平衡问题的基本思路
2.共点力作用下物体平衡问题的求解方法 求解平衡问题的基本方法是力的合成法和分解 法,同时也要注意以下方法的灵活运用. (1)整体法和隔离法:把发生相互作用的几个物 体组成的系统当作整体考虑,分析其受力情况及运动 情况的方法称为整体法;而把系统中某个物体或某几 个物体从系统中隔离出来,分析其受力情况及运动情 况的方法称为隔离法.在选取研究对象时,整体法和 隔离法是常用的方法,要灵活选择.

人教版高中物理必修部分章末小结二

人教版高中物理必修部分章末小结二

考源教学资源网
第11页
返回导航
必修1 第二章 章末小结
高考进行时 一轮总复习· 物理(新课标通用版)
解析:只要球B有沿斜面向下的加速度,其水平分加速 度向左,B受到的水平合外力也就向左,此力一定由Q点提 供,因此一定是Q点对球有压力,A、D项正确,B项错误; 若A匀速下滑,处于平衡状态,P、Q两点均不可能有力的作 用,C项错误.
第4页
返回导航
必修1 第二章 章末小结
高考进行时 一轮总复习· 物理(新课标通用版)
相 互 作 用
考源教学资源网
第5页
返回导航
必修1 第二章 章末小结
高考进行时 一轮总复习· 物理(新课标通用版)
产生:①物体接触且挤压;②接触面粗 糙;③有相对运动趋势 静摩擦力方向:沿接触面的切线,与相对运动趋 势方向相反 相 大小:0<F≤Fmax 互 作 力学中常见的三种力摩擦力 产生:①接触且挤压;②接触面粗糙; ③有相对滑动 用 滑动摩擦力方向:沿接触面的切线,与相对滑动的 方向相反 大小:Ff=μFN 作用点:在接触面上
考源教学资源网
第6页
返回导航
必修1 第二章 章末小结
高考进行时 一轮总复习· 物理(新课标通用版)
相 互 作 用
方法:平行四边形定则 合成合力范围:|F1-F2|≤F≤F1+F2 F1、F2大小不变时,夹角θ越大,合力越小 力的合成与分解 按效果分解 方法:平行四边形定则正交分解 分解 唯一解已知一个分力的大小及方向 的条件已知两分力方向 平衡状态:静止、匀速运动a=0 共点力的平衡 Fx=0 平衡条件:F =0或Fy=0 探究弹力和弹簧伸长的关系 实验 验证力的平行四边形定则

高中物理必修一第二章知识点总结及复习题

高中物理必修一第二章知识点总结及复习题

1、匀变速直线运动的规律(1).匀变速直线运动的速度公式vt=vo+at (减速:vt=vo-at ) (2).2ot v v v +=此式只适用于匀变速直线运动.(3). 匀变速直线运动的位移公式s=vot+at2/2(减速:s=vot-at2/2) (4)位移推论公式:2202t S aυυ-=(减速:2202t S a υυ-=-)(5).初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的 时间间隔内的位移之差为一常数:Δs = aT2 (a----匀变速直线运动的 加速度 T----每个时间间隔的时间) 匀变速直线运动推论:1)202tt v v v v +==(匀变速直线运动在某段时间内的平均速度等于这段时间中间时刻的瞬时速度。

)2)22202t S v v v +=(匀变速直线运动在某段位移中点的瞬时速度等于初速度与末速度平方和一半的平方根。

)3)S2—S1=S3—S2=S4—S3=……=△S=aT² 4)初速度为零连续各个Ts 末的速度之比n v v v v n ::3:2:1::::321 =。

3)初速度为0的n 个连续相等的时间内S 之比: S1:S2:S3:……:Sn=1:3:5:……:(2n —1) 4)初速度为0的n 个连续相等的位移内t 之比: t1:t2:t3:……:tn=1:(√2—1):(√3—√2):……:(√n—√n—1) 5)a=(Sm —Sn )/(m —n )T²(利用上各段位移,减少误差→逐差法) 6)vt²—v0²=2as 7前s t s t s t 32、、内通过的位移之比,222::3:2:1::::N S S S S N =ⅢⅡⅠ前nS S S S 、、、、32的位移所用时间之比,即N t t t t t ⅣⅢⅡⅠ、、、之比(利用位移公式2021at v S +=,00=v ,即221at S =)N t t t t N ::3:2:1:::: =ⅢⅡⅠ(8)通过连续相等的各个S 所用时间之比,即n t t t t 321、、之比)1(::)23(:)12(:1::::321----=n n t t t t n 2、匀变速直线运动的x —t 图象和v-t 图象 x-t 图象1)定义:描述做匀变速直线运动的物体的位移随时间的变化关系的曲线 2)特点:不反映物体运动的轨迹.3)纵坐标为s ,横坐标t s:t 表示速度.4)斜率k=tanα(直线和x 轴单位、物理意义不同) 5)图象中两图线的交点表示两物体在这一时刻相遇。

高考物理一轮复习第2章相互作用章末专题复习学案新人教版

高考物理一轮复习第2章相互作用章末专题复习学案新人教版

第2章相互作用(对应学生用书第38页)[知识结构导图][导图填充]①μF N②F=kx③等效替代④|F1-F2|≤F≤F1+F2⑤F合=0或F x=0、F y=0[思想方法]1.假设法.2.整体法、隔离法.3.合成法、分解法、正交分解法.4.解析法、图解法、相似三角形法.[高考热点]1.受力分析,力的合成与分解.2.平衡中的临界极值问题.物理模型|绳上的“死结”与“活结”模型1.“死结”可理解为把绳子分成两段,且不可以沿绳子移动的结点.“死结”两侧的绳因结而变成了两根独立的绳,因此由“死结”分开的两段绳子上的弹力不一定相等.2.“活结”可理解为把绳子分成两段,且可以沿绳子移动的结点.“活结”一般是由绳跨过滑轮或者绳上挂一光滑挂钩而形成的.绳子虽然因“活结”而弯曲,但实际上是同一根绳,所以由“活结”分开的两段绳子上弹力的大小一定相等,两段绳子合力的方向一定沿这两段绳子夹角的平分线.如图2­1甲所示,细绳AD跨过固定的水平横梁BC右端的定滑轮挂住一个质量为M1的物体,∠ACB=30°;图乙中轻杆HG一端用铰链固定在竖直墙上,另一端G通过细绳EG拉住,EG与水平方向也成30°,轻杆的G点用细绳GF拉住一个质量为M2的物体,求:图2­1(1)细绳AC 段的张力T AC 与细绳EG 的张力T EG 之比; (2)轻杆BC 对C 端的支持力; (3)轻杆HG 对G 端的支持力.[题眼点拨] ①“细绳AD 跨过…右端的定滑轮”说明F AC =M 1g ;②“HG 一端用铰链固定…另一端G 通过细绳EG 拉住”说明HG 可绕H 点转动且T EG ≠M 2g .[解析](1)图甲中细绳AD 跨过定滑轮拉住质量为M 1的物体,物体处于平衡状态,细绳AC 段的拉力T AC =T CD =M 1g图乙中由T EG sin 30°=M 2g ,得T EG =2M 2g .所以T AC T EG =M 12M 2.(2)图甲中,三个力之间的夹角都为120°,根据平衡规律有N C =T AC =M 1g ,方向和水平方向成30°角,指向右上方.(3)图乙中,根据平衡方程有T EG sin 30°=M 2g ,T EG cos 30°=N G ,所以N G =2M 2g cos 30°=3M 2g ,方向水平向右.[答案](1)M 12M 2 (2)M 1g 方向和水平方向成30°角指向右上方 (3)3M 2g 方向水平向右[突破训练]1. 如图2­2所示,直杆BC 的一端用铰链固定于竖直墙壁上,另一端固定一个小滑轮C ,细绳下端挂一重物,细绳的AC 段水平.不计直杆、滑轮及细绳的质量,忽略所有摩擦.若将细绳的端点A 稍向下移至A ′点,使之重新平衡,则此时滑轮C 的位置( )【导学号:84370096】图2­2A .在A 点之上B .与A ′点等高C .在A ′点之下D .在AA ′之间A [由于杆一直平衡,而两侧细绳上的拉力的合力沿杆的方向向下,又由于同一根绳子中的张力处处相等,所以两侧细绳上的拉力大小相等且等于物体的重力G ,根据平行四边形定则,合力一定在两侧绳夹角的角平分线上,即杆在此角平分线上.若将细绳的端点A 稍向下移至A ′点,若杆不动,则∠A ′CB <∠BCG ,杆不能平衡,若要杆再次平衡,则杆应向上转动一定角度,此时C 点在A 点之上,故A 正确.]物理方法|求解平衡类问题方法的选用技巧1.常用方法解析法、图解法、正交分解法、三角形相似法等.2.选用技巧(1)物体只受三个力的作用,且三力构成特殊三角形,一般用解析法.(2)物体只受三个力的作用,且三力构成普通三角形,可考虑使用相似三角形法. (3)物体只受三个力的作用,处于动态平衡,其中一个力大小方向都不变,另一个力方向不变,第三个力大小、方向均变化,则考虑选用图解法. (4)物体受四个以上的力作用时一般要采用正交分解法.如图2­3所示,小圆环A 吊着一个质量为m 2的物块并套在另一个竖直放置的大圆环上,有一细线一端拴在小圆环A 上,另一端跨过固定在大圆环最高点B 的一个小滑轮后吊着一个质量为m 1的物块.如果小圆环A 、滑轮、绳子的大小和质量以及相互之间的摩擦都可以忽略不计,绳子又不可伸长,若平衡时弦AB 所对的圆心角为α,则两物块的质量比m 1∶m 2应为( )图2­3A .cos α2B .sin α2C .2sin α2D .2cos α2C [解法一:采用相似三角形法对小圆环A 受力分析,如图所示,T 2与N 的合力与T 1平衡,由矢量三角形与几何三角形相似,可知m 2g R =m 1g2R sin α2,解得:m 1m 2=2sin α2,C 正确.解法二:采用正交分解法建立如解法一图中所示的坐标系,由T 2sin θ=N sin θ,可得T 2=N =m 2g,2T 2sin α2=T 1=m 1g ,解得m 1m 2=2sin α2,C 正确.解法三:采用三力平衡的解析法T 2与N 的合力与T 1平衡,则T 2与N 所构成的平行四边形为菱形,则有2T 2sin α2=T 1,T 2=m 2g ,T 1=m 1g ,解得m 1m 2=2sin α2,C 正确.][突破训练]2. 如图2­4所示,光滑的四分之一圆弧轨道AB 固定在竖直平面内,A 端与水平面相切.穿在轨道上的小球在拉力F 作用下,缓慢地由A 向B 运动,F 始终沿轨道的切线方向,轨道对球的弹力为N .在运动过程中( )【导学号:84370097】图2­4A .F 增大,N 减小B .F 减小,N 减小C .F 增大,N 增大D .F 减小,N 增大 A [解法一 解析法由题意知,小球在由A 运动到B 过程中始终处于平衡状态.设某一时刻小球运动至如图所示位置,则对球受力分析,由平衡条件得F=mg sin θ,N=mg cos θ,在运动过程中,θ增大,故F增大,N减小,A正确.解法二图解法由于球缓慢地由A运动到B,因此球可以看成是动态平衡,对球受力分析可知,轨道对球的弹力N与球受到的拉力F始终垂直,且两个力合力恒与重力等大反向,因此三个力首尾相连构成封闭直角三角形,如图所示.由图解法可知,随着F与竖直方向的夹角减小,F增大,N减小,选项A正确.]高考热点|平衡中的临界、极值问题1.临界问题:当某物理量变化时,会引起其他几个物理量发生变化,从而使物体所处的平衡状态“恰好出现”或“恰好不出现”,在问题中常用“刚好”“刚能”“恰好”等语言描述.常见的临界状态有:(1)两接触物体脱离与不脱离的临界条件是相互作用力为0(主要体现为两物体间的弹力为0);(2)绳子断与不断的临界条件为绳中张力达到最大值;绳子绷紧与松弛的临界条件为绳中张力为0;(3)存在摩擦力作用的两物体间发生相对滑动或相对静止的临界条件为静摩擦力达到最大.2.极值问题:平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题.一般用图解法或解析法进行分析.3.处理临界、极值问题的常用方法(1)解析法:根据物体的平衡条件列方程,在解方程时采用数学知识求极值.通常用到的数学知识有二次函数求极值、讨论分式求极值、三角函数求极值以及几何法求极值等.(2)图解法:根据平衡条件作出力的矢量图,如只受三个力,则这三个力构成封闭矢量三角形,然后根据矢量图进行动态分析,确定最大值和最小值.(3)极限法:极限法是一种处理临界问题的有效方法,它是指通过恰当选取某个变化的物理量将问题推向极端(“极大”“极小”“极右”“极左”等),从而把比较隐蔽的临界现象暴露出来,使问题明朗化,便于分析求解.如图2­5所示,质量为m 的物体,放在一固定的斜面上,当斜面倾角为30°时恰能沿斜面匀速下滑.对物体施加一大小为F 的水平向右的恒力,物体可沿斜面匀速向上滑行.设最大静摩擦力等于滑动摩擦力,当斜面倾角增大并超过某一临界角θ0时,不论水平恒力F 多大,都不能使物体沿斜面向上滑行,试求:图2­5(1)物体与斜面间的动摩擦因数; (2)这一临界角θ0的大小.【自主思考】 1.物体恰能沿斜面匀速下滑满足的力学方程是?[提示] mg sin 30°-μmg cos 30°=02.施加F 后物体沿斜面匀速上滑的力学方程是?[提示] F cos 30°-mg sin 30°-F f =03.要物体沿斜面匀速上滑,当倾角α增大时F 怎样变化?[提示] 增大[解析](1)由题意物体恰能沿斜面匀速下滑,则满足mg sin 30°=μmg cos 30°解得μ=33.(2)设斜面倾角为α,受力情况如图所示,由匀速直线运动的条件有F cos α=mg sin α+F f2, N =mg cos α+F sin α, F f2=μN解得F =mg sin α+μmg cos αcos α-μsin α当cos α-μsin α→0时,F →∞,即“不论水平恒力F 多大,都不能使物体沿斜面向上滑行”,此时临界角θ0=α=60°. [答案](1)33 (2)60°如图所示,三根相同的轻杆用铰链连接,并用铰链固定在位于同一水平线上的A 、B 两点,A 、B 间的距离是杆长的2倍,铰链C 上悬挂一质量为m 的重物,为使杆CD 保持水平,在铰链D 上应施加的最小力是( )A .mg B.33mg C.12mgD.14mgC [对于节点C ,受力情况如图(a)所示.根据平衡条件可得F DC =33mg ,根据牛顿第三定律可知F DC =F CD =33mg .对于节点D ,受CD 杆的拉力F CD 、BD 杆的拉力F BD 及施加的外力F ,作出三个力的矢量三角形如图(b)所示.由图可知,在铰链D 上应施加的最小力F =F CD sin 60°=12mg .故C 项正确.][突破训练]3. (2017·山西临汾月考)(多选)如图2­6所示,一根长为L 的细绳一端固定在O 点,另一端悬挂质量为m 的小球A ,为使细绳与竖直方向成30°角且绷紧,小球A 静止,则需对小球施加的力可能等于( )【导学号:84370098】图2­6A.3mgB .mgC.13mgD.36mgAB [以小球为研究对象进行受力分析,如图所示,当力F 与细绳垂直时,所用的力最小.根据平衡条件得F 的最小值为F min =G sin 30°=12mg ,所以对小球施加的力F ≥12mg ,故A 、B 正确.]4. 质量为M 的木楔倾角为θ(θ<45°),在水平面上保持静止,当将一质量为m 的木块放在木楔斜面上时,它正好匀速下滑.当用与木楔斜面成α角的力F 拉木块,木块匀速上升,如图2­7所示(已知木楔在整个过程中始终静止).图2­7(1)当α=θ时,拉力F 有最小值,求此最小值; (2)求在(1)的情况下木楔对水平面的摩擦力是多少? [解析] 木块在木楔斜面上匀速向下运动时,有mg sin θ=μmg cos θ,即μ=tan θ,(1)木楔在力F 的作用下沿斜面向上匀速运动,有F cos α=mg sin θ+F f F sin α+F N =mg cos θ F f =μF N解得F =2mg sin θcos α+μsin α=2mg sin θcos θcos αcos θ+sin αsin θ=mg sin 2θcos θ-α 则当α=θ时,F 有最小值 则F min =mg sin2θ.(2)因为木块及木楔均处于平衡状态,整体受到地面的摩擦力等于F 的水平分力,即F f ′=F cos(α+θ)当F 取最小值mg sin 2θ时,F f ′=F min cos 2θ=mg sin 2θ·cos 2θ=12mg sin 4θ. [答案](1)mg sin 2θ (2)12mg sin 4θ拖把是由拖杆和拖把头构成的擦地工具(如图).设拖把头的质量为m ,拖杆质量可忽略;拖把头与地板之间的动摩擦因数为常数μ,重力加速度为g .某同学用该拖把在水平地板上拖地时,沿拖杆方向推拖把,拖杆与竖直方向的夹角为θ.(1)若拖把头在地板上匀速移动,求推拖把的力的大小;(2)设能使该拖把在地板上从静止刚好开始运动的水平推力与此时地板对拖把的正压力的比值为λ.已知存在一临界角θ0,若θ≤θ0,则不管沿拖杆方向的推力多大,都不可能使拖把从静止开始运动.求这一临界角的正切tan θ0.[解析](1)设该同学沿拖杆方向用大小为F 的力推拖把.将推拖把的力沿竖直和水平方向分解,根据平衡条件有F cos θ+mg =F N① F sin θ=F f②式中F N 和F f 分别为地板对拖把的正压力和摩擦力.所以有F f =μF N ③联立①②③式得F =μsin θ-μcos θ mg .④(2)若不管沿拖杆方向用多大的力都不能使拖把从静止开始运动,应有F sinθ≤λF N⑤这时,①式仍成立.联立①⑤式得sin θ-λcos θ≤λmgF ⑥求解使上式成立的θ角的取值范围.上式右边总是大于零,且当F 无限大时极限为零,有sin θ-λcos θ≤0⑦使上式成立的θ角满足θ≤θ0,这里θ0即题中所定义的临界角,即当θ≤θ0时,不管沿拖杆方向用多大的力都推不动拖把.临界角的正切为tan θ0=λ.⑧[答案](1)μsin θ-μcos θ mg (2)λ。

高三物理第二章知识点总结

高三物理第二章知识点总结

高三物理第二章知识点总结第一节电路基本定律1.欧姆定律2.基尔霍夫定律3.等效电阻、等效电动势根据欧姆定律,电流强度与电阻R成正比,与电压U成正比,与二者的乘积成正比。

基尔霍夫第一定律是利用电荷守恒定律写出的,即在闭合电路中,电流的总量不会减少,在连接节点的地方,电流的总和不会发生改变。

基尔霍夫第二定律是根据能量守恒定律和电压增量抵消定律推导出来的,即在闭合电路中,电压的总和等于电动势的总和。

等效电阻是指在某些特定条件下,用一个电阻代替一个电路。

等效电动势是指在某些特定条件下,用一个电动势代替一个电路。

这两个定律的本质都是利用电路的特性和性质,将一个复杂的电路简化为一个简单的电路。

第二节串联电路和并联电路1.串联电路的特点及计算2.并联电路的特点及计算3.混联电路的特点及计算串联电路是指两个或多个电器按顺序连接在同一条线上,电流只能沿着一条路径流动。

并联电路是指两个或多个电器并联接在同一条电线上,电流从电源沿不同的路径流过不同的电器。

混联电路则是串联电路和并联电路的组合,电路中有两种电器的连接方式。

串联电路的特点是电流只有一条路径可以通过,电流大小相等,但电压不相等。

并联电路的电流是分路的,电压是相等的,但电流大小不相等。

混联电路则是串联电路和并联电路的结合,具有两种电器的特性。

串联电路的计算是根据串联电阻的等效电阻和基尔霍夫第二定律来求解,而并联电路的计算是根据并联电阻的等效电阻和电流的分路规律来求解。

混联电路的计算则是根据串联和并联两种电器的特性及其相互联系来求解。

第三节电功率和电能1.电功率的计算和测量2.电能的计算和测量电功率是指单位时间内电路中电能的消耗和转化速率。

电功率的计算是利用电功率公式,即P=UI或P=I²R。

电功率的测量是通过电能表或热传感器来实现的。

电能是指单位时间内电路中电能的总消耗。

电能的计算是利用电功率公式和时间的乘积来求解。

电能的测量是通过电能表来实现的。

(教师用书)高考物理一轮复习 第二章 相互作用-人教版高三全册物理试题

(教师用书)高考物理一轮复习 第二章 相互作用-人教版高三全册物理试题

第二章相互作用必须掌握的概念、方法规律必须理解的3个关键点必须明确的3处易错易混点1.5个重要概念弹力、摩擦力、合力、分力、物体的平衡.2.2个常用方法合成的方法分解的方法1.必须正确理解常见力(重力、弹力、摩擦力)的产生条件、方向判断、大小计算.2.合成与分解是处理矢量问题的根本方法.1.对常见力的误解①误认为重力“垂直于地面〞或“指向地心〞②误认为重心一定在物体中心或在物体上③误认为物体形变就一定产生弹力3.3个重要规律摩擦定律平行四边形定如此平衡条件3.利用平衡条件和合成分解的方法是解决物体受力问题的有效手段.④误认为静止的物体才受静摩擦力,运动的物体才受滑动摩擦力2.对合成、分解的误解①误认为合力一定大于分力②混淆矢量运算与标量运算的差异3.受力分析时常“添力〞或“漏力〞.第1节重力弹力摩擦力[真题回放]1.(2010·课标全国卷)一根轻质弹簧一端固定,用大小为F1的力压弹簧的另一端,平衡时长度为l1;改用大小为F2的力拉弹簧,平衡时长度为l 2.弹簧的拉伸或压缩均在弹性限定内,该弹簧的劲度系数为( )A.F 2-F 1l 2-l 1 B.F 2+F 1l 2+l 1 C.F 2+F 1l 2-l 1 D.F 2-F 1l 2+l 1【解析】 设弹簧的原长为l 0,劲度系数为k ,由胡克定律有F 1=k (l 0-l 1),F 2=k (l 2-l 0),解得k =F 2+F 1l 2-l 1,故C 正确. 【答案】 C2.(2013·课标全国卷Ⅱ)如图2­1­1所示,在固定斜面上的一物块受到一外力F 的作用,F 平行于斜面向上.假设要物块在斜面上保持静止,F 的取值应有一定范围,其最大值和最小值分别为F 1和F 2(F 2>0),由此可求出( )图2­1­1A .物块的质量B .斜面的倾角C .物块与斜面间的最大静摩擦力D .物块对斜面的正压力【解析】 静摩擦力的大小、方向随F 的变化而变化.设斜面倾角为α,物块与斜面间的最大静摩擦力为F max ,当F 取最大值时, 满足F 1=mg sin α+F max ,当F 取最小值时,满足F 2+F max =mg sin α,由以上两个式子可求得F max =F 1-F 22,故C 正确;由于缺少条件,其他选项均无法求得,故A 、B 、D 错误.【答案】 C3.(2014·广东高考)如图2­1­2所示,水平地面上堆放着原木.关于原木P 在支撑点M 、N 处受力的方向,如下说法正确的答案是( )图2­1­2A .M 处受到的支持力竖直向上B .N 处受到的支持力竖直向上C .M 处受到的静摩擦力沿MN 方向D .N 处受到的静摩擦力沿水平方向【解析】点与面之间支持力方向垂直于接触面指向受力物体,静摩擦力方向沿着接触面与相对运动趋势的方向相反,具体受力如下列图,故A正确.【答案】 A[考向分析](1)形变、弹性、胡克定律Ⅰ1.考纲展示(2)滑动摩擦力、动摩擦因数、静摩擦力Ⅰ本节考点在全国考卷中,可单独考查少,也经常与其它知识点综合考查,如2014新课标卷Ⅰ,2.命题趋势17题和20题,2014新课标卷Ⅱ,17题均涉与本节考点,应予以重视.3.选材特点考查多以生活中的实例为背景,综合多个知识点进展考查.考点一弹力的分析与计算1.弹力有无的判断(1)“条件法〞:根据弹力产生的两个条件——接触和形变直接判断.(2)“假设法〞或“撤离法〞:在一些微小形变难以直接判断的情况下,可以先假设有弹力存在,然后判断是否与研究对象所处状态的实际情况相符合.还可以设想将与研究对象接触的物体“撤离〞,看研究对象能否保持原来的状态.图2­1­3中绳“1〞对小球必无弹力,否如此小球不能静止在此位置.图2­1­32.弹力方向的判断(1)弹力方向除几种典型情况(压力、支持力、绳力等)外,一般应由其运动状态结合动力学规律确定.(2)几种典型弹力的方向(3)弹力大小的计算弹力大小除弹簧类弹力由胡克定律计算外,一般也要结合运动状态,根据平衡条件或牛顿第二定律求解.【例1】[考向:侧重弹力方向考查]画出图中物体A受力的示意图:【答案】【例2】[考向:弹力大小的计算]如图2­1­4所示,两个弹簧的质量不计,劲度系数分别为k1、k2,它们一端固定在质量为m的物体上,另一端分别固定在Q、P上,当物体平衡时上面的弹簧处于原长,假设把固定的物体换为质量为2m的物体(弹簧的长度不变,且弹簧均在弹性限度内),当物体再次平衡时,物体比第一次平衡时的位置下降了x,如此x为( )图2­1­4A.mgk1+k2B.k1k2mg k1+k2C.2mgk1+k2D.k1k22mg k1+k2【解析】物体质量为m时,上面的弹簧处于原长,由于物体处于平衡状态,下面的弹簧一定对物体有向上的支持力,因此下面的弹簧被压缩x1,由平衡条件得k1x1-mg=0.换成质量为2m的物体后,下面的弹簧将进一步压缩x,同时上面的弹簧被拉伸x,平衡时有k1(x1+x)+k2x-2mg=0,联立解得x=mgk1+k2.【答案】 A【反思总结】弹簧类弹力的计算要点是弹簧形变量确实定.思维程序为:(1)恢复弹簧的原长确定弹簧处于原长时端点的位置;(2)判断弹簧的形变形式和形变量:从弹簧端点的实际位置与弹簧处于原长时端点的位置比照判断弹簧的形变形式和形变量x,并由形变形式判断弹力的方向;(3)由胡克定律计算弹力的大小.考点二静摩擦力方向的判断1.假设法2.状态法根据平衡条件、牛顿第二定律,可以判断静摩擦力的方向.3.相互作用法利用牛顿第三定律(即作用力与反作用力的关系)来判断.此法关键是抓住“力是成对出现的〞,先确定受力较少的物体受到的静摩擦力的方向,再根据“相互作用〞确定另一物体受到的静摩擦力的方向.【例3】(多项选择)如图2­1­5所示,倾角为θ的斜面C置于水平地面上,小物块B置于斜面上,通过细绳跨过光滑的定滑轮与物体A相连接,连接B的一段细绳与斜面平行,A、B、C都处于静止状态,如此( )图2­1­5A.B受到C的摩擦力一定不为零B.C受到地面的摩擦力一定为零C.C有沿地面向右滑动的趋势,一定受到地面向左的摩擦力D.将细绳剪断,假设B依然静止在斜面上,此时地面对C的摩擦力为0【思维模板】问1:B相对C的运动趋势有几种情况?提示:3种.问2:B、C看成一个整体,受A的拉力,将有向哪个方向运动的趋势?提示:向右.问3:假设绳断后,B仍静止在C上,BC看成一体,有无在水平方向上的运动趋势?提示:无.【解析】假设绳对B的拉力恰好与B的重力沿斜面向下的分力平衡,如此B与C间的摩擦力为零,A项错误;将B和C看成一个整体,如此B和C受到细绳向右上方的拉力作用,故C有向右滑动的趋势,一定受到地面向左的摩擦力,B项错误,C项正确;将细绳剪断,假设B依然静止在斜面上,利用整体法判断,B、C整体在水平方向不受其他外力作用,处于平衡状态,如此地面对C的摩擦力为0,D项正确.【答案】CD突破训练 1在倾角θ=37°的固定斜面上叠放着A、B两物块,A、B通过绕过定滑轮的轻绳相连,如图2­1­6所示,A、B间光滑,B与斜面间动摩擦因数μ=0.5,物块A的质量为m,B的质量为M.不计绳与滑轮间摩擦,系统处于静止状态,sin37°=0.6,cos 37°=0.8,重力加速度为g,最大静摩擦力等于滑动摩擦力.如此如下判断正确的答案是( )图2­1­6A.斜面对B的摩擦力可能为零B.连接A、B的轻绳张力为0.2(m+M)gC.A、B的质量关系必须满足M=5mD.物块B受到的静摩擦力方向一定沿斜面向上【解析】由于A、B间光滑,因此A受三个力而平衡,如图乙所示,轻绳张力T=mg sin 37°=0.6mg.对B受力分析如图丙所示,除斜面对B的静摩擦力方向不确定外,其他力的方向确定,由平衡条件得T-Mg sin 37°±F f=0,其中F f≤μ(m+M)g cos 37°=0.4(m+M)g,可得(0.2M-0.4m)g≤T≤(M+0.4m)g,如此0.2M≤m≤5M,而当m=M时,摩擦力为零,A对,B、C、D均错.【答案】 A考点三摩擦力大小的计算1.滑动摩擦力的计算滑动摩擦力用公式F f=μF N或力的平衡条件进展分析计算,切记,F N表示正压力,不一定等于重力G.2.静摩擦力的计算(1)静摩擦力大小不能用F f=μF N计算,只有当静摩擦力达到最大值时,其最大值一般可认为等于滑动摩擦力,即Ff m=μF N.(2)静摩擦力的大小要根据物体的受力情况和运动情况共同确定,其可能的取值范围是:0<F f≤Ff m.【例4】如图2­1­7所示,质量为m B=24kg的木板B放在水平地面上,质量为m A=22 kg的木箱A放在木板B上,另一端拴在天花板上,轻绳与水平方向的夹角为θ=37°.木箱A与木板B之间的动摩擦因数μ1=0.5.现用水平向右、大小为200 N的力F将木板B从木箱A下面匀速抽出(sin 37°≈0.6,cos37°≈0.8,重力加速度g取10 m/s2),如此木板B与地面之间的动摩擦因数μ2的大小为( )图2­1­7A.0.3 B.0.4C.0.5 D.0.6【解析】对A受力分析如图甲所示,由题意得F T cos θ=F f1①F N1+F T sin θ=m A g②F f1=μ1F N1③由①②③得:F T=100 N对A、B整体受力分析如图乙所示,由题意得F T cos θ+F f2=F④F N2+F T sin θ=(m A+m B)g⑤F f2=μ2F N2⑥由④⑤⑥得:μ2=0.3,故A选项正确.【答案】 A突破训练 2(多项选择)(2014·南京模拟)在探究静摩擦力变化的规律与滑动摩擦力规律的实验中,特设计了如图2­1­8甲所示的演示装置,力传感器A与计算机连接,可获得力随时间变化的规律,将力传感器固定在光滑水平桌面上,测力端通过细绳与一滑块相连(调节传感器高度可使细绳水平),滑块放在较长的小车上,小车一端连接一根细绳并跨过光滑的轻定滑轮系一只空沙桶(调节滑轮可使桌面上部细绳水平),整个装置处于静止状态.实验开始时打开传感器同时缓慢向沙桶里倒入沙子,小车一旦运动起来,立即停止倒沙子,假设力传感器采集的图象如图2­1­8乙所示,如此结合该图象,如下说法中正确的答案是( )甲乙图2­1­8A.可求出空沙桶的重力B.可求出滑块与小车之间的滑动摩擦力的大小C.可求出滑块与小车之间的最大静摩擦力的大小D.可判断第50秒后小车做匀速直线运动(滑块仍在车上)【解析】t=0时刻,传感器显示拉力为2N,如此滑块受到的摩擦力为静摩擦力,大小为2N,由车与空沙桶受力平衡可知空沙桶的重力也等于2 N,A对;t=50 s时刻静摩擦力达到最大值,最大静摩擦力为3.5 N,同时小车启动,说明带有沙的沙桶重力等于3.5 N,此时静摩擦力立即变为滑动摩擦力,最大静摩擦力略大于滑动摩擦力,故静摩擦力突变为3 N的滑动摩擦力,B、C正确;此后由于沙桶重力3.5 N大于滑动摩擦力3 N,故50 s后小车将加速运动,D错.【答案】ABC思想方法3 临界条件在摩擦力突变问题中的应用1.问题特征当物体受力或运动发生变化时,摩擦力常发生突变,摩擦力的突变,又会导致物体的受力情况和运动性质的突变,其突变点(时刻或位置)往往具有很深的隐蔽性,对其突变点的分析与判断是物理问题的切入点.2.常见类型(1)静摩擦力突变为滑动摩擦力.(2)滑动摩擦力突变为静摩擦力.【例5】长直木板的上外表的一端放有一个木块,如图2­1­9所示,木板由水平位置缓慢向上转动(即木板与地面的夹角α变大),另一端不动,如此木块受到的摩擦力F f随角度α的变化图象是如下图中的( )图2­1­9【思路导引】【解析】 下面通过“过程分析法〞和“特殊位置法〞分别求解: 解法一:过程分析法(1)木板由水平位置刚开始运动时:α=0,F f 静=0.(2)从木板开始转动到木板与木块发生相对滑动前,木块所受的是静摩擦力.由于木板缓慢转动,可认为木块处于平衡状态,受力分析如图:由平衡关系可知,静摩擦力大小等于木块重力沿斜面向下的分力:F f 静=mgsin α.因此,静摩擦力随α的增大而增大,它们满足正弦规律变化.(3)木块相对于木板刚好要滑动而没滑动时,木块此时所受的静摩擦力为最大静摩擦力F fm .α继续增大,木块将开始滑动,静摩擦力变为滑动摩擦力,且满足F fm >F f 滑.(4)木块相对于木板开始滑动后,F f 滑=μmg cos α,此时,滑动摩擦力随α的增大而减小,满足余弦规律变化. (5)最后,α=π2,F f 滑=0综上分析可知选项C 正确. 解法二:特殊位置法此题选两个特殊位置也可以方便地求解,具体分析见下表:特殊位置分析过程木板刚开始运动时此时木块与木板无摩擦,即F f静=0,故A选项错误.木块此时所受的静摩擦力为最大静摩擦力,且大于刚开始运动时所受的滑动木块相对于木板刚好要滑动而没滑动时摩擦力,即F fm>F f滑,故B、D选项错误.由以上分析知,选项C正确.【答案】 C【反思总结】用临界法解决摩擦力突变问题的三点注意:(1)临界判断:题目中出现“最大〞“最小〞“刚好〞等关键词时,一般隐藏着临界问题.有时,有些临界问题中并不含上述常见的“临界术语〞,但审题时发现某个物理量在变化过程中会发生突变,如此该物理量突变时物体所处的状态即为临界状态.(2)最大静摩擦力判断:静摩擦力是被动力,其存在与大小、方向取决于物体间的相对运动的趋势,而且静摩擦力存在最大值.存在静摩擦的连接系统,相对滑动与相对静止的临界条件是静摩擦力达到最大值.(3)临界条件:研究传送带问题时,物体和传送带的速度相等的时刻往往是摩擦力的大小、方向和运动性质的分界点.[对力的概念的理解]1.(2015·南昌二中质检)关于力的概念,如下说法中正确的答案是( )A.因为力是物体对物体的作用,所以力与物体是相互依存的B.对于受多个力的物体,可以同时找到几个施力物体C.放在桌面上的书本受到桌面对它向上的弹力,这是由书本发生微小形变而产生的D.压缩弹簧时,手先给弹簧一个压力,等弹簧被压缩一段距离后才反过来给手一个弹力【解析】力依存于物体,而物体不依存于力,选项A错误;一个物体同时受到多个力的作用时,该物体是受力物体,而每个力对应一个施力物体,选项B正确;弹力是施力物体发生弹性形变而对受力物体的作用力,选项C中书本受到的弹力是由桌面发生微小形变而对书本产生的力,选项C错误;压缩弹簧时,手给弹簧的压力与弹簧给手的弹力是一对作用力和反作用力,它们同时产生,选项D错误.【答案】 B[弹力的分析、判定]2.如图2­1­10所示,一重为10 N的球固定在支杆AB的上端,今用一段绳子水平拉球,使杆发生弯曲,绳的拉力为7.5 N,如此AB 杆对球的作用力( )图2­1­10A.大小为7.5 NB.大小为10 NC.方向与水平方向成53°角斜向右下方D.方向与水平方向成53°角斜向左上方【解析】对小球进展受力分析可得,AB杆对球的作用力F N与绳的拉力的合力与小球重力等值反向,可得F N方向斜向左上方,令AB杆对小球的作用力与水平方向夹角为α,可得:tan α=GF拉=43,α=53°,F N=Gsin 53°=12.5 N,故只有D项正确.【答案】 D[摩擦力的分析、判定]3.如图2­1­11所示,质量为m的物体用细绳拴住放在水平粗糙传送带上,物体与传送带间的动摩擦因数为μ,当传送带分别以v1、v2的速度做逆时针运动时(v1<v2),绳中的拉力分别为F1、F2,物体受到的摩擦力分别为f1、f2如此如下说法正确的答案是( )图2­1­11A.f1<f2B.物体所受摩擦力方向向右C.F1=F2D.f1=μmg【解析】物体的受力分析如下列图,滑动摩擦力与绳的拉力的水平分量平衡,因此方向向左,B错误;设绳与水平方向成θ角,如此F cos θ-μF N=0,F N+F sin θ-mg=0,解得F=μmgcos θ+μsin θ,F大小与传送带速度大小无关,C正确;物体所受摩擦力f=F cos θ恒定不变,A、D错误.【答案】 C[弹力、摩擦力的综合分析、计算]4.一弧形的轨道如图2­1­12所示,现取两个完全一样的物块分别置于A、B两点,两物块处于静止状态,如此如下说法正确的答案是( )图2­1­12A.在A点的物块受到的支持力较大B.在A点的物块受到的摩擦力较大C.在A点的物块受到的合外力较大D.假设将其中一物块放在B点上方的C点,如此该物块一定会滑动【解析】假设A点和B点所在位置的斜面倾角分别为θ1和θ2,如此θ1<θ2,物块静止在倾角为θ的斜面上时共受到三个力的作用:竖直向下的重力mg、垂直斜面向上的支持力N和平行于斜面向上的静摩擦力f,三力平衡,所以N=mg cos θ,f=mg sin θ,因为θ1<θ2,所以mg cos θ1>mg cos θ2,mg sin θ1<mg sin θ2,即N1>N2,f1<f2,选项A正确,B错误;两个位置的物块均处于静止状态,合外力均为零,选项C错误;将其中一物块放在B点上方的C点,物块所受的最大静摩擦力可能仍然大于物块重力沿该点切线方向的分力,此时物块静止,D错误.【答案】 A5.(2014·西安五校联考)如下列图,A、B两物体叠放在水平地面上,A物体质量m=20 kg,B物体质量M=30 kg.处于水平位置的轻弹簧一端固定于墙壁,另一端与A物体相连,弹簧处于自然状态,其劲度系数为250 N/m,A与B之间、B与地面之间的动摩擦因数均为μ=0.5.现有一水平推力F作用于物体B上缓慢地向墙壁移动,当移动0.2 m时,水平推力F的大小为(A、B之间的最大静摩擦力等于滑动摩擦力,g取10 m/s2)( )A.350 NB.300 NC.250 N D.200 N【解析】设A、B间没有相对滑动,如此弹簧的压缩量为x=0.2 m,此时弹簧的弹力大小为F=kx=50 N,而A与B间的最大静摩擦力为f A=μmg=100 N,所以A、B之间没有相对滑动,它们之间的摩擦力为静摩擦力,其大小为f1=50 N,B与地面间的摩擦力为滑动摩擦力,其大小为f2=μ(m+M)g=250 N,所以推力的大小为F=f1+f2=300 N,即B选项正确.【答案】 B课时提升练(四) 重力弹力摩擦力(限时:45分钟)A组对点训练——巩固根底知识题组一对力、重力概念的理解1.如下说法正确的答案是( )A.力是物体对物体的作用B.只有直接接触的物体间才有力的作用C.用脚踢出去的足球,在向前飞行的过程中,始终受到向前的力来维持它向前运动D.甲用力把乙推倒,说明甲对乙的作用力在先,乙对甲的作用力在后【解析】力的作用不一定要直接接触.譬如地球与物体之间的万有引力,电荷与电荷之间的作用力,都不需要直接接触,所以B错误;力的作用离不开物体,用脚踢出去的足球,在向前飞行的过程中,球没有受到向前的力来维持它向前运动,C错误;两个物体之间的相互作用力没有先后之分,所以D错误.【答案】 A2.关于物体受到的重力,如下说法中正确的答案是( )A.在“天上〞绕地球飞行的人造卫星不受重力作用B.物体只有落向地面时才受到重力作用C.将物体竖直向上抛出,物体在上升阶段所受的重力比落向地面时小D.物体所受重力的大小与物体的质量有关,与物体是否运动与怎样运动无关【解析】物体受到的重力是由于地球对物体的吸引而产生的,不管物体静止还是运动,也不管物体是上升还是下降,一切物体都受重力作用.在“天上〞绕地球飞行的人造卫星也要受重力作用,故A、B项错误;重力大小与物体的质量有关,与运动状态无关,选项C 错误,D正确.【答案】 D题组二弹力的理解与计算3. (多项选择)在日常生活与各项体育运动中,有弹力出现的情况比拟普遍,如图2­1­13所示的情况就是一个实例.当运动员踩压跳板使跳板弯曲到最低点时,如下说法正确的答案是( )图2­1­13A.跳板发生形变,运动员的脚没有发生形变B.运动员受到的支持力,是跳板发生形变而产生的C.此时跳板对运动员的支持力和运动员的重力等大D.此时跳板对运动员的支持力大于运动员的重力【解析】发生相互作用的物体均要发生形变,故A错误;发生形变的物体,为了恢复原状,会对与它接触的物体产生弹力的作用,B正确;在最低点,跳板对运动员的支持力大于运动员的重力,C错误、D正确.【答案】BD4.如图2­1­14所示,小车内有一固定光滑斜面,一个小球通过细绳与车顶相连,小车处于水平面上,细绳始终保持竖直.关于小球的受力情况,如下说法正确的答案是( )图2­1­14A.假设小车静止,绳对小球的拉力可能为零B.假设小车静止,斜面对小球的支持力一定为零C.假设小车向右运动,小球一定受两个力的作用D.假设小车向右运动,小球一定受三个力的作用【解析】假设小车静止,如此小球受力平衡,由于斜面光滑,不受摩擦力,小球受重力、绳子的拉力,重力和拉力都沿竖直方向;如果受斜面的支持力,如此没法达到平衡,因此在小车静止时,斜面对小球的支持力一定为零,绳子的拉力等于小球的重力,故A项错误,B项正确;假设小车向右匀速运动,小球受重力和绳子拉力两个力的作用;假设小车向右做减速运动,如此一定受重力和斜面的支持力,可能受绳子的拉力,也可能不受绳子的拉力,故C、D项都错误.【答案】 B5.一根很轻的弹簧,在弹性限度内,当它的伸长量为4.0 cm时,弹簧的弹力大小为8.0 N;当它的压缩量为1.0 cm时,该弹簧的弹力大小为( )A.2.0 N B.4.0 N C.6.0 N D.8.0 N【解析】F1=kx1,F2=kx2,代入x1=4.0 cm,F1=8.0 N,x2=1.0 cm,可解得F2=2.0 N,选项A正确.【答案】 A6.(多项选择)两个劲度系数分别为k1和k2的轻质弹簧a、b串接在一起,a弹簧的一端固定在墙上,如图2­1­15所示.开始时两弹簧均处于原长状态,现用水平力作用在b 弹簧的P 端向右拉动弹簧,a 弹簧的伸长量为L ,如此( )图2­1­15A .b 弹簧的伸长量也为LB .b 弹簧的伸长量为k 1L k 2C .P 端向右移动的距离为2LD .P 端向右移动的距离为(1+k 1k 2)L【解析】 两个劲度系数分别为k 1和k 2的轻质弹簧a 、b 串接在一起,两弹簧中的弹力相等,k 1L =k 2x ,解得b 弹簧的伸长量为x =k 1L k 2,选项A 错误,B 正确;P 端向右移动的距离为L +x =(1+k 1k 2)L ,选项C 错误,D 正确.【答案】 BD题组三 对摩擦力的理解7.(多项选择)卡车上放一木箱,车在水平路面上运动时,以下说法中正确的答案是( ) A .车启动时,木箱给卡车的摩擦力向后 B .车做匀速直线运动时,车给木箱的摩擦力向前 C .车做匀速直线运动时,车给木箱的摩擦力为零D .车突然制动时,木箱获得向前的摩擦力,使木箱向前滑动【解析】 车启动时,卡车与木箱均有向前的加速度,故卡车应给木箱一个向前的摩擦力,其反作用力应向后,故A 项正确;匀速运动时,水平方向不受力或合力为零,故B 项错误,C 项正确;车突然制动时,减速运动,故加速度向后,木箱获得的摩擦力也向后,木箱向前减速滑行,D 项错误.【答案】 AC8.如图2­1­16甲所示,粗糙的水平地面上有一斜劈,斜劈上一物块正沿斜面以速度v 0匀速下滑,斜劈保持静止,地面对斜劈的摩擦力为f 1;如图2­1­16乙所示,假设对该物块施加一平行于斜面向下的推力F 1,使其加速下滑,如此地面对斜劈的摩擦力为f 2;如图2­1­16丙所示,假设对该物块施加一平行于斜面向上的推力F 2,使其减速下滑,如此地面对斜劈的摩擦力为f 3.如下关于f 1、f 2、f 3的大小关系正确的答案是( )甲 乙 丙图2­1­16A .f 1>0B .f 2>f 3C.f2<f3D.f2=f3【解析】图甲中斜劈和物块都处于平衡状态,对整体,只有竖直方向的重力和支持力,地面对斜劈的摩擦力f1=0,假设有摩擦力,如此系统不能平衡,故A项错误;根据图甲的情景可知,在图乙、丙中,物块受到斜面作用的都是滑动摩擦力和支持力,合力与物块重力平衡即竖直向上,因此物块对斜面的作用力(摩擦力和压力的合力)总是竖直向下的,且与物块的重力等大,所以斜劈只受到了竖直方向的重力、地面支持力和物块的作用力,与图甲的受力情况一样,因此有f1=f2=f3=0,B、C错误,D项正确.【答案】 DB组深化训练——提升应考能力9.斜面体A置于地面上,物块B恰能沿A的斜面匀速下滑,如图2­1­17所示.现对正在匀速下滑的物块B进展如下四图中的操作,操作中斜面体A始终保持静止,如此如下说法正确的答案是( )图2­1­17A.(a)图中竖直向下的恒力F使物块B减速下滑B.(b)图中平行斜面向上的力F使斜面体A受到地面向右的静摩擦力C.(c)图中平行斜面向下的力F使斜面体A受到地面向左的静摩擦力D.(d)图中,在物块B上再轻放一物块C,物块B仍能沿斜面匀速下滑【解析】物块B恰能沿A的斜面匀速下滑,如此物块B与斜面体A间的动摩擦因数μ=tan θ.图(a)中,设竖直向下的恒力F与物块B的重力的合力为G′,如此滑动摩擦力μG′cos θ=G′sin θ,物块B仍匀速下滑,A错误;(b)(c)两图中,物块B下滑时所受滑动摩擦力与斜面支持力的合力仍竖直向上,故B对A的作用力竖直向下,斜面体只在竖直方向受到力的作用,由于A平衡如此水平方向不受地面的摩擦力,B、C错误;在B上放一物块C,等效于B的重力增大,斜面支持力和滑动摩擦力同时增大,合力仍为零,物块B仍沿斜面匀速下滑,D正确.【答案】 D10.质量为1 kg的小球套在与水平面成37°角的固定硬杆上,现用与杆的重力同平面且垂直于杆向上的力F拉小球,如图2­1­18所示,当力F=20 N时小球处于静止状态,设小球与杆间最大静摩擦力等于滑动摩擦力,sin 37°=0.6,co s 37°=0.8,取g=10 m/s2.如此( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单元小结练力及力的合成与分解的方法练一、单项选择题1.如图1所示,相隔一定距离的两个相同的圆柱体A、B固定在等高的水平线上,一细绳套在两圆柱体上,细绳下端悬挂一重物.绳和圆柱体之间无摩擦,当重物一定时,绳越长()图1A.绳对圆柱体A的作用力越小,作用力与竖直方向的夹角越小B.绳对圆柱体A的作用力越小,作用力与竖直方向的夹角越大C.绳对圆柱体A的作用力越大,作用力与竖直方向的夹角越小D.绳对圆柱体A的作用力越大,作用力与竖直方向的夹角越大答案 A2.如图2所示,用相同的弹簧测力计将同一个重物m,分别按甲、乙、丙三种方式悬挂起来,读数分别是F1、F2、F3、F4,已知θ=30°,则有()图2A.F4最大B.F3=F2C.F2最大D.F1比其他各读数都小答案 C解析由平衡条件可知:F2cos θ=mg,2F3cos θ=mg,F4=mg,F1=mg tan θ,因此可知选项A、B、D错误,正确选项为C.3.如图3所示,一光滑小球静止放置在光滑半球面的底端,利用竖直放置的光滑挡板水平向右缓慢地推动小球,则在小球运动的过程中(该过程小球未脱离球面),挡板对小球的推力F1、半球面对小球的支持力F2的变化情况正确的是()图3A .F 1增大、F 2减小B .F 1增大、F 2增大C .F 1减小、F 2减小D .F 1减小、F 2增大 答案 B解析 对小球受力分析,小球受重力mg 、挡板对小球向右的弹力F 1及指向圆心的半球面对小球的弹力F 2,三个力组成一个闭合三角形,设F 2与竖直方向的夹角为θ,则F 2=mgcos θ,F 1=mg tan θ,小球右移过程中,θ角增大,则F 1增大,F 2增大,B 正确.4.如图4为三种形式的吊车的示意图,OA 为可绕O 点转动的杆,重量不计,AB 为缆绳,当它们吊起相同重物时,杆OA 在三图中的受力F a 、F b 、F c 的关系是( )图4A .F a >F c =F bB .F a =F b >F cC .F a >F b >F cD .F a =F b =F c 答案 B解析 对题图(a),画出A 点受力分析图,可得杆OA 对A 点的作用力,由牛顿第三定律可得图(a)中杆OA 受力F a =2G cos 30°=3G .对题图(b),画出A 点受力分析图,由tan 30°=GF b,可得杆OA 对A 点的作用力,由牛顿第三定律可得图(b)中杆OA 受力F b =Gtan 30°=3G .对题图(c),画出A 点受力分析图,由cos 30°=F cG ,可得杆OA 对A 点的作用力,由牛顿第三定律可得图(c)中杆OA 受力F c =G cos 30°=3G2.所以F a =F b >F c ,选项B 正确.5.如图5所示为某新型夹砖机,它能用两支巨大的“手臂”将几吨砖夹起,大大提高了工作效率.已知该新型夹砖机能夹起质量为m 的砖,两支“手臂”对砖产生的最大压力为F max ,设最大静犘擦力等于滑动摩擦力,则“手臂”与砖之间的动摩擦因数至少为( )图5A.mg F maxB.mg 2F maxC.2mg F maxD.F max mg 答案 B解析 对砖进行受力分析,根据平衡条件得:2F f =mg ,即2μF max =mg ,解得:μ=mg 2F max ,故B 正确,A 、C 、D 错误.6.如图6所示,两根光滑水平细杆a 、b 平行且等高放置.一质量为m 、半径为r 的均匀细圆环套在两根细杆上静止,两杆之间的距离为3r .则每根杆承受的压力大小为( )图6A.12mg B .mg C.33mg D.23mg 答案 B解析 以圆环为研究对象,进行受力分析,圆环受到重力mg 、两细杆分别对圆环的支持力F 1、F 2,且F 1=F 2=F ,设F 与竖直方向的夹角为θ,则2F cos θ=mg ,cos θ=r 2-(32r )2r =12,解得F =mg .根据牛顿第三定律知每根杆承受的压力大小为mg ,B 正确.7.如图7所示,光滑斜面倾角为30°,轻绳一端通过两个滑轮与物块A 相连,另一端固定于天花板上,不计绳与滑轮的摩擦及滑轮的质量.已知物块A 的质量为m ,连接A 的轻绳与斜面平行,挂上物块B 后,滑轮两边轻绳的夹角为90°,A 、B 恰保持静止,则物块B 的质量为( )图7A.22m B.2m C .m D .2m 答案 A解析 设绳上的张力为F ,对斜面上的物块A 受力分析可知F =mg sin 30°=12mg对物块B 上面的滑轮受力分析如图m B g =F 合=2F =22mg所以m B =22m ,选项A 正确.8.如图8所示,重力为G 的小球用轻绳悬于O 点,用力F 拉住小球,使轻绳保持偏离竖直方向60°角且不变,当F 与竖直方向的夹角为θ时F 最小,则θ、F 的值分别为( )图8A .0°,GB .30°,32G C .60°,G D .90°,12G答案 B解析 分解小球重力,沿绳OA 的分力F OA 方向确定,另一分力F ′方向不确定,但由三角形定则可看出,另一分力F ′大小与θ角的大小有关.由数学知识可知,当F ′的方向与绳OA垂直时F ′最小,力F 最小,所以θ=30°,F min =G cos 30°=32G ,故B 正确.9.如图9所示,有5 000个质量均为m 的小球,将它们用长度相等的轻绳依次连接,再将其左端用细绳固定在天花板上,右端施加一水平力使全部小球静止.若连接天花板的细绳与水平方向的夹角为45°.则第2 011个小球与2 012个小球之间的轻绳与水平方向的夹角α 的正切值等于( )图9A.2 9895 000B.2 0115 000C.2 0112 089D.2 0892 011 答案 A解析 选取5 000个小球组成的整体为研究对象,对其进行受力分析,应用平行四边形定则知,水平力F =5 000 mg .选取2 012至5 000个小球组成的整体为研究对象,对其进行受力分析,应用平行四边形定则知,tan α=2 989mg F =2 9895 000,选项A 正确.二、多项选择题10.如图10所示,有一刚性方形容器被水平力F 压在竖直的墙面上处于静止状态.现缓慢地向容器内注水,直到注满为止,在此过程中容器始终保持静止,下列说法中正确的是( )图10A .容器受到的摩擦力逐渐增大B .容器受到的摩擦力不变C .水平力F 可能不变D .水平力F 必须逐渐增大 答案 AC解析 容器受到的摩擦力为静摩擦力,根据共点力平衡条件知,容器受到的静摩擦力等于容器和水的总重力,随着水的重力的增加,容器受到的摩擦力逐渐增大,选项A 正确,选项B 错误;如果一开始水平恒力F 足够大,容器与墙壁之间的最大静摩擦力大于容器注满水时的总重力,则水平力F 可能不变,选项C 正确,选项D 错误.11.如图11所示,小球A 的重力为G =20 N ,上端被竖直悬线挂于O 点,下端与水平桌面相接触,悬线对球A 、水平桌面对球A 的弹力大小可能为( )图11A .0,GB .G ,0 C.G 2,G 2 D.G 2,32G 答案 ABC12.如图12,建筑工人用恒力F 推运料车在水平地面上匀速前进,F 与水平方向成30°角,运料车和材料的总重量为G ,下列说法正确的是( )图12A .建筑工人受地面摩擦力方向水平向右B .建筑工人受地面摩擦力大小为32GC .运料车受地面摩擦力方向水平向右D .运料车对地面压力为F2+G答案 AD解析 本题考查相互作用的物体的受力分析.以工人为研究对象,车对人的力的水平分量方向向左,与之平衡的地面对工人的摩擦力水平向右,其大小为32F ,选项A 正确,选项B 错误.以运料车为研究对象,在竖直方向上,推力向下的分量F2和重力G 的合力与地面对车的支持力相平衡,又依据牛顿第三定律,作用力与反作用力等大反向,所以选项D 正确.而在水平方向上,运料车受到地面的摩擦力与推力F 的水平分量平衡,运料车受地面摩擦力方向水平向左,所以选项C 错误.13.如图13所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳固定于墙壁.开始时a 、b 均静止.弹簧处于伸长状态,两细绳均有拉力,a 所受的摩擦力F f a ≠0,b 所受的摩擦力F f b =0,现将右侧细绳剪断,则剪断瞬间( )图13A .F f a 大小不变B .F f a 方向改变C .F f b 仍然为零D .F f b 方向向右答案AD解析剪断右侧细绳瞬间,b木块仍受弹簧向左的拉力,故此时F f b不等于零,其方向水平向右,与弹簧拉力方向相反.a木块在剪断细绳瞬间与剪断前受力情况没有发生变化,故F f a的大小、方向均没有变化.综上所述,选项A、D正确.14.如图14所示,建筑装修中,工人用质量为m的磨石对斜壁进行打磨,当对磨石加竖直向上大小为F的推力时,磨石恰好沿斜壁向上匀速运动.已知磨石与斜壁之间的动摩擦因数为μ,斜面与竖直方向的夹角为θ,则磨石受到的摩擦力是()图14A.(F-mg)cos θB.(F-mg)sin θC.μ(F-mg)sin θD.μ(F-mg)答案AC解析根据题意,磨石所受的合力为零,磨石受到垂直于斜壁向下的弹力作用和沿斜壁向下的滑动摩擦力的作用.对磨石受力分析并根据平衡条件可求得,磨石受到的摩擦力F f=(F-mg)cos θ,磨石受到垂直于斜壁向下的弹力F N=(F-mg)sin θ,A正确.根据滑动摩擦力的计算公式还可求得F f=μF N=μ(F-mg)sin θ,C正确.。

相关文档
最新文档