必修2第二章《立体几何》单元测试题
必修2立体几何单元测试题及答案知识分享

立体几何单元测验题一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为A .152πB .10πC .15πD .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误的是A .ααα⊂⇒∈∈∈∈lB l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥⊂⊥⇒⊥IC .,l A l A αα⊄∈⇒∉D .βαβα与不共线,,且⇒∈∈C B A C B A C B A ,,,,,,重合 3.直线c b a ,,相交于一点,经过这3条直线的平面有A .0个B .1个C .3个D .0个或1个 4.下列说法正确的是A .平面α和平面β只有一个公共点B .两两相交的三条直线共面C .不共面的四点中,任何三点不共线D .有三个公共点的两平面必重合5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点,N M ,分别是BD AC 和的中点,则a MN 和的位置关系为A .异面直线B .平行直线C .相交直线D .平行直线或异面直线6.已知正方形ABCD ,沿对角线ABC AC ∆将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( )A .090 B .060 C .045 D .030 7.已知异面直线b a ,分别在平面βα,内,且βαI c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是A B .2S C . D .4SMD'DCBA1A 9.直线l 在平面α外,则A .α//lB .α与l 相交C .α与l 至少有一个公共点D .α与l 至多有一个公共点10.如图,BD AB BD M AC M AB BD AC AB ,,平面,平面,⊥⊥⊂===1与平面M 成030角,则D C 、间的距离为( ) A .1 B .2 C .2 D .311.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A .平行B .相交C .平行或相交D .垂直相交 12.已知平面α及α外一条直线l ,下列命题中 (1)若l 垂直于α内的两条平行线,则α⊥l ;(2)若l 垂直于α内的所有直线,则α⊥l ;(3)若l 垂直于α内的两条相交直线,则α⊥l ;(4)若l 垂直于α内的任意一条直线,则α⊥l ;正确的有A .0 个B .1 个C .2个D .3个 13.与空间四点等距离的平面有A .7个B .2个C .9个D .7个或无穷多个 14.如果球的内接正方体的表面积为24,那么球的体积等于 A. B.C .D .315.直三棱柱111111ABC A B C AC AB AA AC A B-==中,,异面直线与 060所成的角为,则CAB ∠等于A . 090 B . 060 C .045 D .030姓名 班级 座位号二、解答题:(本大题共三个小题,共40分,要求写出求解过程) 16.(12分)在空间四边形ABCD 中,F E 、分别为BC AB 、中点。
必修二立体几何单元测试题

立体几何单元测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面四个命题:①分别在两个平面内的两直线是异面直线;②若两个平面平行,则其中一个平面内的任何一条直线必平行于另一个平面;③如果一个平面内的两条直线平行于另一个平面,则这两个平面平行;④如果一个平面内的任何一条直线都平行于另一个平面,则这两个平面平行.其中正确的命题是( )A.①②B.②④C.①③ D.②③答案:B2.棱台的一条侧棱所在的直线与不含这条侧棱的侧面所在平面的位置关系是( ) A.平行B.相交C.平行或相交D.不相交解析:由棱台的定义知,各侧棱的延长线交于一点,所以选B.答案:B3.一直线l与其外三点A,B,C可确定的平面个数是( )A.1个B.3个C.1个或3个D.1个或3个或4个解析:当A、B、C共线且与l平行或相交时,确定一个平面;当A、B、C共线且与l 异面时,可确定3个平面;当A、B、C三点不共线时,可确定4个平面.答案:D4.若三个平面两两相交,有三条交线,则下列命题中正确的是( )A.三条交线为异面直线B.三条交线两两平行C.三条交线交于一点D.三条交线两两平行或交于一点答案:D5.如图,在△ABC中,∠BAC=90°,PA⊥面ABC,AB=AC,D是BC的中点,则图中直角三角形的个数是( )A.5 B.8C.10 D.6解析:这些直角三角形是:△PAB,△PAD,△PAC,△BAC,△BAD,△CAD,△PBD,△PCD.共8个.答案:B6.下列命题正确的有( )①若△ABC在平面α外,它的三条边所在直线分别交α于P、Q、R,则P、Q、R三点共线.②若三条平行线a、b、c都与直线l相交,则这四条直线共面.③三条直线两两相交,则这三条直线共面.A.0个B.1个C.2个D.3个解析:易知①与②正确,③不正确.答案:C7.若平面α⊥平面β,α∩β=l,且点P∈α,P∉l,则下列命题中的假命题是( ) A.过点P且垂直于α的直线平行于βB.过点P且垂直于l的直线在α内C.过点P且垂直于β的直线在α内D.过点P且垂直于l的平面垂直于β答案:B8.如右图,在棱长为2的正方体ABCD-A1B1C1D1中,O是底面ABCD的中心,M、N分别是棱DD1、D1C1的中点,则直线OM( )A.与AC、MN均垂直相交B.与AC垂直,与MN不垂直C.与MN垂直,与AC不垂直D.与AC、MN均不垂直解析:易证AC⊥面BB1D1D,OM⊂面BB1D1D,∴AC⊥OM.计算得OM2+MN2=ON2=5,∴OM⊥MN.答案:A9.(2010·江西高考)如图,M是正方体ABCD-A1B1C1D1的棱DD1的中点,给出下列四个命题:①过M点有且只有一条直线与直线AB,B1C1都相交;②过M点有且只有一条直线与直线AB,B1C1都垂直;③过M点有且只有一个平面与直线AB,B1C1都相交;④过M点有且只有一个平面与直线AB,B1C1都平行.其中真命题是( )A.②③④ B.①③④C.①②④ D.①②③解析:将过点M的平面CDD1C1绕直线DD1旋转任意非零的角度,所得平面与直线AB,B1C1都相交,故③错误,排除A,B,D.答案:C10.已知平面α外不共线的三点A、B、C到α的距离相等,则正确的结论是( ) A.平面ABC必平行于αB.平面ABC必不垂直于αC.平面ABC必与α相交D.存在△ABC的一条中位线平行于α或在α内解析:排除A、B、C,故选D.答案:D11.(2009·广东高考)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是( )A.①和② B.②和③C.③和④ D.②和④答案:D12.(2009·海南、宁夏高考)如图,正方体ABCD —A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点 E 、F ,且EF =12,则下列结论错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A —BEF 的体积为定值D .△AEF 的面积与△BEF 的面积相等 解析:易证AC ⊥平面BB 1D 1D ,∴AC ⊥BE . ∵EF 在直线B 1D 1上,易知B 1D 1∥面ABCD ,∴EF ∥面ABCD , V A -BEF =13×12×12×1×22=224. ∴A、B 、C 选项都正确,由排除法即选D. 答案:D二、填空题(本大题共4小题,每小题5分,满分20分.把答案填在题中横线上) 13.已知A 、B 、C 、D 为空间四个点,且A 、B 、C 、D 不共面,则直线AB 与CD 的位置关系是________.解析:如图所示:由图知,AB 与CD 为异面直线.答案:异面14.在空间四边形ABCD 的边AB 、BC 、CD 、DA 上分别取点E 、F 、G 、H ,如果EH 、FG 相交于一点M ,那么M 一定在直线________上.答案:BD15.如下图所示,以等腰直角三角形ABC 斜边BC 上的高AD 为折痕.使△ABD 和△ACD 折成互相垂直的两个平面,则:(1)BD 与CD 的关系为________. (2)∠BAC =________. 解析:(1)AB =AC ,AD ⊥BC , ∴BD ⊥AD ,CD ⊥AD ,∴∠BDC 为二面角的平面角,∠BDC =90°, ∴BD ⊥DC .(2)设等腰直角三角形的直角边长为a ,则斜边长为2a . ∴BD =CD =22a . ∴折叠后BC =⎝ ⎛⎭⎪⎫22a 2+⎝ ⎛⎭⎪⎫22a 2=a . ∴折叠后△ABC 为等边三角形.∴∠BAC =60°. 答案:(1)BD ⊥CD (2)60°16.在正方体ABCD —A ′B ′C ′D ′中,过对角线BD ′的一个平面交AA ′于E ,交CC ′于F ,则①四边形BFD ′E 一定是平行四边形. ②四边形BFD ′E 有可能是正方形.③四边形BFD ′E 在底面ABCD 内的投影一定是正方形. ④平面BFD ′E 有可能垂直于平面BB ′D .以上结论正确的为__________.(写出所有正确结论的编号) 解析:如图所示:∵BE =FD ′,ED ′=BF ,∴四边形BFD ′E 为平行四边形.∴①正确.②不正确(∠BFD ′不可能为直角).③正确(其射影是正方形ABCD ).④正确.当E 、F 分别是AA ′、CC ′中点时正确.答案:①③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)如下图,已知ABCD 是矩形,E 是以CD 为直径的半圆周上一点,且面CDE ⊥面ABCD .求证:CE ⊥平面ADE . 证明:⎭⎪⎬⎪⎫面ABCD ⊥面CED ABCD 为矩形⎭⎪⎬⎪⎫⇒AD ⊥面CDE ⇒AD ⊥CE点E 在直径为CD 的半圆上⇒CE ⊥ED 又AD ∩ED =D⇒CE ⊥面ADE .18.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形. 已知:如图,三棱锥S —ABC ,SC ∥截面EFGH ,AB ∥截面EFGH . 求证:截面EFGH 是平行四边形. 证明:∵SC ∥截面EFGH ,SC ⊄平面EFGH ,SC ⊂平面ASC ,且平面ASC ∩平面EFGH =GH , ∴SC ∥GH .同理可证SC ∥EF ,∴GH ∥EF . 同理可证HE ∥GF .∴四边形EFGH 是平行四边形.19.(12分)已知正方体ABCD —A 1B 1C 1D 1的棱长为a ,M 、N 分别为A 1B 和AC 上的点,A 1M =AN =23a ,如图.(1)求证:MN ∥面BB 1C 1C ;(2)求MN的长.解:(1)证明:作NP⊥AB于P,连接∥BC,∴APAB=ANAC=A1MA1B,∴MP∥AA1∥BB1,∴面MPN∥面BB1C1C.MN⊂面MPN,∴MN∥面BB1C1C.(2)NPBC=ANAC=23a2a=13,NP=13a,同理MP=23a.又MP∥BB1,∴MP⊥面ABCD,MP⊥PN.在Rt△MPN中MN=49a2+19a2=53a.20.(12分)(2009·浙江高考)如图,DC⊥平面ABC,EB∥DC,AC=BC=EB=2DC=2,∠ACB =120°,P,Q分别为AE,AB的中点.(1)证明:PQ∥平面ACD;(2)求AD与平面ABE所成角的正弦值.解:(1)证明:因为P,Q分别为AE,AB的中点,所以PQ∥EB.又DC∥EB,因此PQ∥DC,又PQ⊄平面ACD,从而PQ∥平面ACD.(2)如图,连接CQ ,DP ,因为Q 为AB 的中点,且AC =BC ,所以CQ ⊥AB . 因为DC ⊥平面ABC ,EB ∥DC , 所以EB ⊥平面ABC ,因此CQ ⊥EB . 故CQ ⊥平面ABE .由(1)有PQ ∥DC ,又PQ =12EB =DC ,所以四边形CQPD 为平行四边形,故DP ∥CQ , 因此DP ⊥平面ABE ,∠DAP 为AD 和平面ABE 所成的角, 在Rt△DPA 中,AD =5,DP =1, sin∠DAP =55, 因此AD 和平面ABE 所成角的正弦值为55.21.(12分)如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点. 求证:(1)直线EF ∥面ACD . (2)平面EFC ⊥平面BCD . 证明:(1)在△ABD 中, ∵E 、F 分别是AB 、BD 的中点, ∴EF ∥AD .又AD ⊂平面ACD ,EF ⊄平面ACD , ∴直线EF ∥面ACD .(2)在△ABD 中,∵AD ⊥BD ,EF ∥AD ,∴EF ⊥BD . 在△BCD 中,∵CD =CB ,F 为BD 的中点, ∴CF ⊥BD .∵CF ∩EF =F ,∴BD ⊥平面EFC , 又∵BD ⊂平面BCD ,∴平面EFC ⊥平面BCD .22.(12分)(2010·安徽文)如图,在多面体ABCDEF 中,四边形ABCD 是正方形,AB =2EF =2,EF ∥AB ,EF ⊥FB ,∠BFC =90°,BF =FC ,H 为BC 的中点.(1)求证:FH ∥平面EDB ; (2)求证:AC ⊥平面EDB ; (3)求四面体B —DEF 的体积.解:(1)证明:设AC 与BD 交于G ,则G 为AC 中点,连接EG ,GH ,由于H 为BC 中点,故GH 綊12AB .又∵EF 綊12AB ,∴EF 綊GH ,∴四边形EFHG 为平行四边形,∴EG ∥FH ,而EG ⊂平面EDB ,FH ⊄平面EDB , ∴FH ∥平面EDB .(2)证明:由于四边形ABCD 为正方形,∴AB ⊥BC , ∵EF ∥AB ,∴EF ⊥BC ,而EF ⊥FB , ∴EF ⊥平面BFC , ∴EF ⊥FH ,∴AB ⊥FH .∵BF =FC ,H 为BC 中点,∴FH ⊥BC , ∴FH ⊥平面ABCD ,∴FH ⊥AC ,∵FH ∥EG ,∴AC ⊥EG . ∵AC ⊥BD ,EG ∩BD =G ,∴AC ⊥平面EDB . (3)∵EF ⊥FB ,∠BFC =90°,∴BF ⊥平面CDEF , ∴BF 是四面体B —DEF 的高, ∵BC =AB =2,∴BF =FC = 2. ∴V B -DEF =13×12×1×2×2=13.。
SL高中数学必修2第二章 立体几何 检测题

必修2第二章立体几何检测题(时间90分钟,总分120分)一、选择题(本大题共10个小题,每小题5分,共50分)1.设m,n是两条不同的直线,α、β是两个不同的平面,则下列命题不正确的是( ) A.若m⊥n,m⊥α,n⊄α,则n∥αB.若m⊥β,α⊥β,则m∥α或m⊂αC.若m⊥n,m⊥α,n⊥β,则α⊥βD.若m∥α,α⊥β,则m⊥β解析:对于选项D,当直线m位于平面β内且与平面α、β的交线平行时,直线m∥α,显然m与平面β垂直.因此选项D不正确.答案:D2.若直线a与平面α不垂直,那么平面α内与直线a垂直的直线有( ) A.0条B.1条C.无数条D.不确定解析:平面α内与a垂直的有无数条直线.答案:C3.在正方体ABCD—A1B1C1D1中,异面直线AA1与BC1所成的角为( )A.60° B.45°C.30° D.90°解析:∵AA1∥BB1,∴异面直线AA1与BC1所成角即为∠B1BC1,为45°.答案:B4.如图所示,在正方体ABCD—A1B1C1D1中,若E是A1C1的中点,则直线CE垂直于( ) A.AC B.BD C.A1D D.A1D1解析:CE⊂平面ACC1A1,而BD⊥AC,BD⊥AA1,∴BD⊥平面ACC1A1,∴BD⊥CE.答案:B5.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中为真命题的是( )A.①和②B.②和③C.③和④D.②和④解析:①错,只有一个平面内有两条相交直线与另一个面平行时,才能得出这两个面互相平行.③错,比如a⊥α,b⊂α,c⊂α,显然有a⊥b,a⊥c,但b与c也可能相交.故②④正确.答案:D6.已知α—l—β是一个大小确定的二面角,若a,b是空间两条直线,则能使a与b所成的角为定值的一个条件是( )A.a∥α,且b∥βB.a∥α,且b⊥βC.a⊥α,且b∥βD.a⊥α,且b⊥β解析:由于直线与平面平行时,直线在空间的方向不确定,所以当一条直线确定,而另一条直线的方向可以变化时,它们所成的角也可能发生变化,所以排除A、B、C,选D.答案:D7.在空间中,设m,n为两条不同的直线,α,β为两个不同的平面,给定下列条件:①α⊥β且m⊂β;②α∥β且m⊥β;③α⊥β且m∥β;④m⊥n且n∥α.其中可以判定m⊥α的有( )A.1个B.2个C.3个D.4个解析:只有②可推出m⊥α.答案:A8.下图所示的四个正方体中,能得出AB⊥CD的是( )解析:B中AB与CD成60°角,C中AB与CD成45°角,D中AB与CD所成角的正切值为2,A中设CD所在的正方形另一对角线为BE,易证CD⊥面ABE,故应选A.答案:A9.如图,四边形ABCD中,AD∥BC,AD=AB,∠BCD=45°,∠BAD=90°,将△ABD 沿BD折起,使平面ABD⊥平面BCD,构成四面体ABCD,则在四面体ABCD中,下列结论正确的是( )A.平面ABD⊥平面ABC B.平面ADC⊥平面BDCC.平面ABC⊥平面BDC D.平面ADC⊥平面ABC解析:易知:△BCD中,∠DBC=45°,∴∠BDC=90°,又平面ABD⊥平面BCD,而CD⊥BD,∴CD⊥平面ABD,∴AB⊥CD,而AB⊥AD,∴AB⊥平面ACD,∴平面ABC⊥平面ACD.答案:D10.已知:平面α⊥平面β,α∩β=l,在l上取线段AB=4,AC、BD分别在平面α和平面β内,且AC⊥AB,DB⊥AB,AC=3,BD=12,则CD的长度( )A.13 B.151 C.12 3 D.15解析:如图,连AD.∵α⊥β,∴AC⊥β,DB⊥α,在Rt△ABD中,AD=AB2+BD2=42+122=160.在Rt△CAD中,CD=AC2+AD2=32+160=13.答案:A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中横线上) 11.已知PA垂直于平行四边形ABCD所在平面,若PC⊥BD,平行四边形ABCD一定是___.解析:如图,∵PA⊥平面ABCD,∴PA⊥BD.∵PC⊥BD,∴BD⊥平面PAC,∴AC⊥BD.答案:菱形12.长方体ABCD-A1B1C1D1中,MN在平面BCC1B1内,MN⊥BC于M,则MN与AB的位置关系是______.解析:由平面BCC1B1⊥面ABCD知MN⊥面ABCD.∴MN⊥AB.答案:垂直13.如图,四棱锥S—ABCD的底面为正方形,SD⊥底面ABCD,则下列结论①AC⊥SB②AB∥平面SCD③SA与平面ABD所成的角等于SC与平面ABD所成的角④AB与SC所成的角等于DC与SA所成的角.其中,正确结论的序号是________.解析:易知结论①②正确,③中,SA与平面ABD所成的角就是∠SAD,SC与平面ABD所成的角就是∠SCD,易知这两个角相等.④中,AB与SC所成的角等于∠SCD,而DC与SA 所成的角是∠SAB,这两个角不相等.答案:①②③14.将正方形ABCD沿对角线BD折成直二面角A—BD—C,有如下三个结论.①AC⊥BD;②△ACD是等边三角形;③AB与平面BCD成60°的角;说法正确的命题序号是________.解析:如图所示,①取BD中点E,连接AE,CE,则BD⊥AE,BD⊥CE,而AE∩CE=E,∴BD⊥平面AEC,AC⊂平面AEC,故AC⊥BD,故①正确.②设正方形的边长为a,则AE=CE=2 2 a.由①知∠AEC=90°是直二面角A—BD—C的平面角,且∠AEC=90°,∴AC=a,∴△ACD是等边三角形,故②正确.③由题意及①知,AE⊥平面BCD,故∠ABE是AB与平面BCD所成的角,而∠ABE=45°,所以③不正确.答案:①②三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明,证明过程或演算步骤)15.(本小题满分12分)(2011·江苏高考)如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB=AD,∠BAD=60°,E,F分别是AP,AD的中点.求证:(1)直线EF∥平面PCD;(2)平面BEF⊥平面PAD.证明:(1)在△PAD中,因为E,F分别为AP,AD的中点,所以EF∥PD.又因为EF⊄平面PCD,PD⊂平面PCD,所以直线EF∥平面PCD.(2)连接BD.因为AB=AD,∠BAD=60°,所以△ABD为正三角形.因为F是AD的中点,所以BF⊥AD.因为平面PAD⊥平面ABCD,BF⊂平面ABCD,平面PAD∩平面ABCD=AD,所以BF⊥平面PAD.又因为BF⊂平面BEF,所以平面BEF⊥平面PAD.16.(本小题满分12分)(2011·烟台调研)如图,在矩形ABCD中,AD⊥平面ABE,AE=EB =BC,F为CE上的点,且BF⊥平面ACE.(1)求证:AE⊥平面BCE;(2)求证:AE∥平面BFD.证明:(1)∵AD⊥平面ABE,AD∥BC∴BC⊥平面ABE,则AE⊥BC又∵BF⊥平面ACE,∴AE⊥BF∴AE⊥平面BCE.(2)依题意可知:G是AC的中点,∵BF⊥平面ACE,∴CE⊥BF.又BC=BE,∴F是EC的中点.在△AEC中,连接FG,则FG∥AE.又AE⊄平面BFD,FG⊂平面BFD,∴AE∥平面BFD.17.(本小题满分12分)底面是平行四边形的四棱锥P—ABCD,点E在PD上,且PE∶ED=2∶1.,问:在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.解:如图所示,连接BD交AC于点O,连接OE,过点B作OE的平行线交PD于点G,过点G作GF∥CE交PC于点F,连接BF.∵BG∥OE,BG⊄平面AEC,OE⊂平面AEC,∴BG∥平面AEC.同理GF∥平面AEC,又BG∩GF=G,∴平面BFG∥平面AEC,BF⊂平面BFG.∴BF∥平面AEC.下面求点F 在PC 上的具体位置: ∵BG ∥OE ,O 是BD 的中点, ∴E 是GD 的中点.又∵PE ∶ED =2∶1,∴G 是PE 的中点. 而GF ∥CE ,∴F 为PC 的中点.综上可知,存在点F ,当点F 是PC 的中点时,BF ∥平面AEC .18.(本小题满分14分)(2011·浙江金华)如图1所示的等边△ABC 的边长为2a ,CD 是AB 边上的高,E 、F 分别是AC 、BC 边的中点.现将△ABC 沿CD 折叠成如图2所示的直二面角A —DC —B .(1)试判断折叠后直线AB 与平面DEF 的位置关系,并说明理由; (2)求四面体A —DBC 的外接球体积与四棱锥D —ABFE 的体积之比. 解:(1)如图所示,∵E 、F 分别为AC 、BC 的中点, ∴AB ∥EF ,∵AB ⊄平面DEF ,EF ⊂平面DEF , ∴AB ∥平面DEF .(2)以DA ,DB ,DC 为棱补成一个长方体,则四面体A —DBC 的外接球即为长方体的外接球.设球的半径为R ,则a 2+a 2+3a 2=(2R )2, ∴R 2=54a 2,于是球的体积V 1=43πR 3=556πa 3.又V A —BDC =13S △BDC ·AD =36a 3,V E —DFC =13S △DFC ·12AD =324a 3, ∴V 1V D -ABFE =V 1V A —BDC -V E —DFC =2015π9. 如有侵权请联系告知删除,感谢你们的配合!。
高一数学(必修二)立体几何初步单元测试卷及答案

高一数学(必修二)立体几何初步单元测试卷及答案一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.如图所示,己知正方形O A B C ''''的边长为1,它是水平放置的一个平面图形的直观图,则其原图形的周长为( )A.8B.22C.4D.223+2.下列说法正确的是( ) A.三点确定一个平面B.圆心和圆上两个点确定一个平面C.如果两个平面相交有一个交点,则必有无数个公共点D.如果两条直线没有交点,则这两条直线平行3.正方体1111ABCD A B C D -中,P ,Q ,R 分别是AB ,AD ,11B C 的中点,那么正方体中过P ,Q ,R 的截面图形是( ) A.三角形B.四边形C.五边形D.六边形4.某圆柱的高为2,其正视图如图所示,圆柱上下底面圆周及侧面上的点A ,B ,D ,F ,C 在正视图中分别对应点A ,B ,E ,F ,C ,且3AE EF =,2BF BC =,异面直线AB ,CD 所成角的正弦值为45,则该圆柱的外接球的表面积为( )A.20πB.16πC.12πD.10π5.在《九章算术·商功》中将正四面形棱台体(棱台的上、下底面均为正方形)称为方亭.在方亭1111ABCD A B C D -中,1124AB A B ==,四个侧面均为全等的等腰梯形且面积之和为122( ) 282B.283142D.1436.异面直线是指( ) A.空间中两条不相交的直线B.分别位于两个不同平面内的两条直线C.平面内的一条直线与平面外的一条直线D.不同在任何一个平面内的两条直线7.如图,在正方体1111ABCD A B C D -中,E ,F 分别是11A D ,11B C 的中点,则与直线CF 互为异面直线的是( )A.1CCB.11B CC.DED.AE8.下列说法中正确的是( ) A.三点确定一个平面 B.四边形一定是平面图形 C.梯形一定是平面图形D.两个不同平面α和β有不在同一条直线上的三个公共点二、多选题(本题共4小题,每小题5分,共20分。
必修2立体几何单元测试题及答案

立体几何单元测验题一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为A .152πB .10πC .15πD .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误的是A .ααα⊂⇒∈∈∈∈lB l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥⊂⊥⇒⊥C .,l A l A αα⊄∈⇒∉D .βαβα与不共线,,且⇒∈∈C B A C B A C B A ,,,,,,重合3.直线c b a ,,相交于一点,经过这3条直线的平面有A .0个B .1个C .3个D .0个或1个 4.下列说法正确的是A .平面α和平面β只有一个公共点B .两两相交的三条直线共面C .不共面的四点中,任何三点不共线D .有三个公共点的两平面必重合5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点,N M ,分别是BD AC 和的中点,则a MN 和的位置关系为A .异面直线B .平行直线C .相交直线D .平行直线或异面直线6.已知正方形ABCD ,沿对角线ABC AC ∆将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( )A .090 B .060 C .045 D .030 7.已知异面直线b a ,分别在平面βα,内,且βα c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是A B .2S C . D .4SMD'DCBA1A 9.直线l 在平面α外,则A .α//lB .α与l 相交C .α与l 至少有一个公共点D .α与l 至多有一个公共点10.如图,BD AB BD M AC M AB BD AC AB ,,平面,平面,⊥⊥⊂===1与平面M 成030角,则D C 、间的距离为( ) A .1 B .2 C .2 D .311.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A .平行B .相交C .平行或相交D .垂直相交 12.已知平面α及α外一条直线l ,下列命题中 (1)若l 垂直于α内的两条平行线,则α⊥l ;(2)若l 垂直于α内的所有直线,则α⊥l ;(3)若l 垂直于α内的两条相交直线,则α⊥l ;(4)若l 垂直于α内的任意一条直线,则α⊥l ;正确的有A .0 个B .1 个C .2个D .3个 13.与空间四点等距离的平面有A .7个B .2个C .9个D .7个或无穷多个 14.如果球的内接正方体的表面积为24,那么球的体积等于 A. B.C .D .315.直三棱柱111111ABC A B C AC AB AA AC A B-==中,,异面直线与 060所成的角为,则CAB ∠等于A . 090 B . 060 C .045 D .030姓名 班级 座位号二、解答题:(本大题共三个小题,共40分,要求写出求解过程) 16.(12分)在空间四边形ABCD 中,F E 、分别为BC AB 、中点。
最新人教版高中数学必修2第二章《立体几何初步》单元检测

数学人教B 必修2第一章 立体几何初步单元检测(时间:90分钟,满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法中正确的是( ). A .棱柱的侧面可以是三角形B .由6个大小一样的正方形所组成的图形是正方体的展开图C .正方体各条棱长都相等D .棱柱的各条棱长都相等2.如图,将装有水的长方体水槽固定底面一边后倾斜一个小角度,则倾斜后水槽中的水形成的几何体是( ).A .棱柱B .棱台C .棱柱与棱锥的组合体D .不能确定3.将一个等腰梯形绕着它的较长的底边所在的直线旋转一周,所得的几何体包括( ).A .一个圆台、两个圆锥B .两个圆台、一个圆柱C .两个圆台、一个圆柱D .一个圆柱、两个圆锥 4.给出下列四个命题:①三点确定一个平面;②一条直线和一个点确定一个平面;③若四点不共面,则每三点一定不共线;④三条平行线确定三个平面.正确的结论个数为( ).A .1B .2C .3D .45.如图所示是由一些同样的正方体块搭成的几何体的三视图,那么构成这个几何体的小正方体个数是( ).A .11B .10C .9D .86.表面积为16π的球的内接正方体的体积为( ).A .8B .169 C .9D .16 7.已知直线l ⊥平面α,直线m 平面β,有下面四个命题:①α∥βl⊥m;②α⊥βl∥m;③l∥mα⊥β;④l⊥mα∥β.其中正确的命题是().A.①与②B.①与③C.②与④D.③与④8.如图所示,梯形A1B1C1D1是一个平面图形ABCD的直观图(斜二测),若A1D1∥O′y′,A1B1∥C1D1,A1B1=23C1D1=2,A1D1=1,则四边形ABCD的面积是().A.10 B.5 C.D.9.如图,四边形BCDE是一个正方形,AB⊥平面BCDE,则图中互相垂直的平面共有().A.4组B.5组C.6组D.7组10.棱锥被平行于底面的平面所截,当截面分别平分棱锥的侧棱、侧面积、体积时,相应的截面面积分别为S1,S2,S3,则().A.S1<S2<S3B.S3<S2<S1C.S2<S1<S3D.S1<S3<S2二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,DD1的中点,则过D,E,F三点的截面截正方体所得截面形状是________.12.(2011·江苏镇江一中高一期末)给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中正确的命题有__________个.13.圆台的上下底面半径分别为1,2,母线与底面的夹角为60°,则圆台的侧面积为__________.14.一圆台上底半径为5 cm,下底半径为10 cm,母线AB长为20 cm,其中A在上底面上,B在下底面上,从AB中点M拉一条绳子,绕圆台的侧面一周转到B点,则这条绳子最短为__________.15.设a,b是两条不同直线,α,β是两个不同平面,给出下列四个命题:①若a⊥b,a⊥α,bα,则b∥α;②若a∥α,α⊥β,则a⊥β;③若a⊥β,α⊥β,则a∥α或aα;④若a⊥b,a⊥α,b⊥β,则α⊥β.其中正确命题的序号是__________.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(10分)一个多面体的直观图和三视图如图所示,其中M,G分别是AB,DF的中点.(1)求证:CM⊥平面FDM;(2)在线段AD上(含A,D端点)确定一点P,使得GP∥平面FMC,并给出证明.AB,四边形ABED是边长为a的正方形,17.(15分)如图,在△ABC中,AC=BC=2平面ABED⊥平面ABC,若G,F分别是EC,BD的中点.(1)求证:GF∥平面ABC;(2)求证:平面EBC⊥平面ACD;(3)求几何体ADEBC的体积V.参考答案1. 答案:C 根据棱柱的定义可知,棱柱的侧面都是平行四边形,侧棱长相等,但是侧棱和底面内的棱长不一定相等,而正方体的所有棱长都相等.2. 答案:A3. 答案:D4. 答案:A ①中不共线的三点确定一个平面;②中一条直线和直线外一点确定一个平面;③中若四点不共面,则每三点一定不共线,故③正确;④中不共面的三条平行线确定三个平面.5. 答案:D6. 答案:C7. 答案:B8. 答案:B 平面图形还原如图所示.CD =C 1D 1=3,AD =2A 1D 1=2,AB =A 1B 1=2,∠ADC =90°. ∴S ABCD =12(2+3)×2=5. 9. 答案:B10. 答案:A 由截面性质可知,设底面积为S .2112114S S S S ⎛⎫=⇒= ⎪⎝⎭; 222112S S S S =⇒=;3321S S =⇒=. 可知S 1<S 2<S 3,故选A.11. 答案:矩形 取A 1B 1的中点G ,则截面应为DD 1GE ,易证为矩形. 12. 答案:2 ②④两个命题为真命题.13. 答案:6π 由已知母线长为2,则S 侧=π(r +r ′)l =π(1+2)×2=6π.14. 答案:50 cm 画出圆台的侧面展开图,并还原成圆锥展开的扇形可得. 15. 答案:①③④16. 答案:解:由三视图可得直观图为直三棱柱且底面ADF 中AD ⊥DF ,DF =AD =12DC =a . (1)证明:∵FD ⊥平面ABCD ,CM 平面ABCD , ∴FD ⊥CM ,在矩形ABCD 中,∵CD =2a ,AD =a ,M 为AB中点,DM CM ==,∴CM ⊥DM .∵FD 平面FDM ,DM 平面FDM ,且FD ∩DM =D , ∴CM ⊥平面FDM . (2)点P 在A 点处.证明:取DC 中点S ,连接AS ,GS ,GA ,∵G 是DF 的中点,GS ∥FC ,AS ∥CM , ∴平面GSA ∥平面FMC .而GA 平面GSA , ∴GA ∥平面FMC ,即GP ∥平面FMC .17. 答案:解:(1)证法一:如图,取BE 的中点H ,连接HF ,GH .∵G ,F 分别是EC 和BD 的中点, ∴HG ∥BC ,HF ∥DE .又∵四边形ADEB 为正方形, ∴DE ∥AB ,从而HF ∥AB .∴HF ∥平面ABC ,HG ∥平面ABC ,且HF ∩HG =H , ∴平面HGF ∥平面ABC .∵GF 平面HGF ,∴GF ∥平面ABC .证法二:如图,取BC 的中点M ,AB 的中点N ,连接GM ,FN ,MN .∵G ,F 分别为EC 和BD 的中点, ∴GM ∥BE ,且GM =12BE ,NF ∥DA ,且NF =12DA . 又∵四边形ADEB 为正方形,∴BE ∥AD ,BE =AD . ∴GM ∥NF 且GM =NF .∴四边形MNFG为平行四边形.∴GF∥MN. 又MN平面ABC,GF平面ABC,∴GF∥平面ABC.(2)证明:∵ADEB为正方形,∴EB⊥AB.又∵平面ABED⊥平面ABC,∴BE⊥平面ABC.∴BE⊥AC.又∵CA2+CB2=AB2,∴AC⊥BC.∴AC⊥平面BCE.从而平面EBC⊥平面ACD.(3)连接CN,∵AC=BC,∴CN⊥AB,且1122 CN AB a==.又平面ABED⊥平面ABC,∴CN⊥平面ABED.∵C-ABED是四棱锥,∴V C-ABED=13S ABED·CN=23111326a a a⋅=.。
必修2立体几何单元测试题及答案

立体几何单元测验题一、选择题:把每小题的正确答案填在第二页的答题卡中,每小题4分,共60分 1.一个圆锥的底面圆半径为3,高为4,则这个圆锥的侧面积为A .152πB .10πC .15πD .20π 2.C B A ,,表示不同的点,l a ,表示不同的直线,βα,表示不同的平面,下列推理错误的是A .ααα⊂⇒∈∈∈∈lB l B A l A ,,, B .,,,AB l l AB l αβαβαβ=⊥⊂⊥⇒⊥IC .,l A l A αα⊄∈⇒∉D .βαβα与不共线,,且⇒∈∈C B A C B A C B A ,,,,,,重合 3.直线c b a ,,相交于一点,经过这3条直线的平面有A .0个B .1个C .3个D .0个或1个 4.下列说法正确的是A .平面α和平面β只有一个公共点B .两两相交的三条直线共面C .不共面的四点中,任何三点不共线D .有三个公共点的两平面必重合5. 直线b a 与是一对异面直线,a B A 是直线,上的两点,b D C 是直线,上的两点,N M ,分别是BD AC 和的中点,则a MN 和的位置关系为A .异面直线B .平行直线C .相交直线D .平行直线或异面直线6.已知正方形ABCD ,沿对角线ABC AC ∆将折起,设AD 与平面ABC 所成的角为α,当α最大时,二面角D AC B --等于( )A .090 B .060 C .045 D .030 7.已知异面直线b a ,分别在平面βα,内,且βαI c =,直线c A .同时与b a ,相交 B .至少与b a ,中的一条相交 C .至多与b a ,中的一条相交 D .只能与b a ,中的一条相交 8.一个平面多边形的斜二侧图形的面积是S ,则这个多边形的面积是A B .2S C . D .4SMD'DCBA1A 9.直线l 在平面α外,则A .α//lB .α与l 相交C .α与l 至少有一个公共点D .α与l 至多有一个公共点10.如图,BD AB BD M AC M AB BD AC AB ,,平面,平面,⊥⊥⊂===1与平面M 成030角,则D C 、间的距离为( ) A .1 B .2 C .2 D .311.如果在两个平面内分别有一条直线,这两条直线互相平行,那么这两个平面的位置关系一定是A .平行B .相交C .平行或相交D .垂直相交 12.已知平面α及α外一条直线l ,下列命题中 (1)若l 垂直于α内的两条平行线,则α⊥l ;(2)若l 垂直于α内的所有直线,则α⊥l ;(3)若l 垂直于α内的两条相交直线,则α⊥l ;(4)若l 垂直于α内的任意一条直线,则α⊥l ;正确的有A .0 个B .1 个C .2个D .3个 13.与空间四点等距离的平面有A .7个B .2个C .9个D .7个或无穷多个 14.如果球的内接正方体的表面积为24,那么球的体积等于 A. B.C .D .315.直三棱柱111111ABC A B C AC AB AA AC A B-==中,,异面直线与 060所成的角为,则CAB ∠等于A . 090 B . 060 C .045 D .030姓名 班级 座位号二、解答题:(本大题共三个小题,共40分,要求写出求解过程) 16.(12分)在空间四边形ABCD 中,F E 、分别为BC AB 、中点。
高一数学必修2立体几何单元考试卷

其中正确结论的序号是
三、解答题: (本题共 3 小题,共 35 分) 11.已知某几何体的俯视图是如图 5 所示的矩形,正视图(或称主视图)是一个底边长为 8、
高为 4 的等腰三角形,侧视图(或称左视图)是一个底边长为 6、高为 4 的等腰三角形。 (1)求该几何体的体积 V; (2)求该几何体的侧面积 S.
3. 用一个与球心距离为 1 的平面去截球,所得的截面面积为π ,则球的体积为()
8������ 8 2������ 32 ������ A. B. C.8 2������D. 3 3 3
4.底面边长为 2 的正四棱锥 V-ABCD 中,侧棱长为 5,则二面角 V-AB-C 的度数为() A.30°B.60°C.90°D.120° 5.下列命题正确的是( )
13.(1)证明:∵ A1 在平面 BCD 上的射影 O 在 CD 上, ∴ A1O⊥平面 BCD,又 BC⊂平面 BCD ∴ BC⊥A1O 又 BC⊥CO,A10∩CO=O ∴ BC⊥平面 A1CD, 又 A1D⊂平面 A1CD, ∴BC⊥A1D
(2)证明:∵
∴ 由(1)知 ∴ ∴ 平面
为矩形 ,
高一必修(2)立体几何单元考答题卷
班级:姓名:座号: 一、选择题: (本题共 6 小题,每小题 6 分,共 36 分)
题号 答案
1
2
3
4
5
6
二、填空题: (本题共 4 题,每小题 6 分共 24 分)
7. 8. 9. 10.
三、解答题: (本题共 3 小题,共 35 分)
11.(本题满分 10 分)
9.如图,已知圆锥 SO 的母线 SA 的长度为 2,一只蚂蚁从点 B 绕着圆锥侧面 爬回点 B 的最短距离为 2,则圆锥 SO 的底面半径为 10.三棱锥 S—ABC 中,∠SBA=∠SCA=90°,△ABC 是斜边 AB=a 的等
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修2第二章 单元测试题
学号 姓名 成绩
一、选择题(本大题共10小题,每小题5分,共50分)
1、线段AB 在平面α内,则直线AB 与平面α的位置关系是
A 、A
B α⊂ B 、AB α⊄
C 、由线段AB 的长短而定
D 、以上都不对 2、下列说法正确的是
A 、三点确定一个平面
B 、四边形一定是平面图形
C 、梯形一定是平面图形
D 、平面α和平面β有不同在一条直线上的三个交点 3、垂直于同一条直线的两条直线一定
A 、平行
B 、相交
C 、异面
D 、以上都有可能 4、在正方体1111ABCD A BC D -中,下列几种说法正确的是
A 、11AC AD ⊥
B 、11D
C AB ⊥ C 、1AC 与DC 成45
角 D 、11AC 与1BC 成60
角 5、若直线l //平面α,直线a α⊂,则l 与a 的位置关系是
A 、l //α
B 、l 与a 异面
C 、l 与a 相交
D 、l 与a 没有公共点 6、下列命题中:(1)、平行于同一直线的两个平面平行;(2)、平行于同一平面的两个平面平行;(3)、垂直于同一直线的两直线平行;(4)、垂直于同一平面的两直线平行.其中正确的个数有 A 、1 B 、2 C 、3 D 、4
7、在空间四边形ABCD 各边AB BC CD DA 、、、上分别取E F G H 、、、四点,如果与
EF GH 、能相交于点P ,那么 A 、点必P 在直线AC 上 B 、点P 必在直线BD 上
C 、点P 必在平面ABC 内
D 、点P 必在平面ABC 外 8、a ,b ,c 表示直线,M 表示平面,给出下列四个命题:①若a ∥M ,b ∥M ,则a ∥b ;②若b ⊂M , a ∥b ,则a ∥M ;③若a ⊥c ,b ⊥c ,则a ∥b ;④若a ⊥M ,b ⊥M ,则a ∥b .其中正确命题的个数有
A 、0个
B 、1个
C 、2个
D 、3个 9、已知二面角AB αβ--的平面角是锐角θ,α内一点C 到β的距离为3,点C 到棱AB 的距离为4,那么tan θ的值等于 A 、
34
B 、
35
C
D
10、如图:直三棱柱ABC —A 1B 1C 1的体积为V ,点P 、Q 分别在侧棱AA 1和
CC 1上,AP=C 1Q ,则四棱锥B —APQC 的体积为
A 、
2V B 、3V C 、4V D 、5
V
Q
P
C'
B'
A'C B
A
B 1
C 1
A 1
D 1
B
A
C
D
二、填空题(本大题共4小题,每小题5分,共20分);
11、设b a ,是两条直线,βα,是两个平面,则下列命题成立的是 ;
(1),,//;(2)//,;(3),//;(4),,a b a b b a a a a a b a b αααααββαββααβαβ
⊥⊥⊄⊥⊥⊥⊥⊥⊥⊥⊥则则则则
12、正方体1111ABCD A BC D -中,平面11AB D 和平面1BC D 的位置关系为 ; 13、已知PA 垂直平行四边形ABCD 所在平面,若PC BD ⊥,平行则四边形ABCD 一定是 ;
14、如图,在直四棱柱A 1B 1C 1 D 1-ABCD 中,当底面四边形ABCD 满足条
件_________时,有A 1 B ⊥B 1 D 1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.)
三、解答题(本大题共3小题,每小题10分,共30分)
15、已知E 、F 、G 、H 为空间四边形ABCD 的边AB 、BC 、CD 、DA 上的点,且EH∥FG. 求证:EH ∥BD . (12分)
16、已知正方体ABCD —A 1B 1C 1D 1,O 是底ABCD 对角线的交点.
求证:(1)C 1O//面AB 1D 1; (2 )1A C ⊥面AB 1D 1.
D 1
O
D
B
A
C 1B 1
A 1
C H
G F E D B A
C
17、已知△BCD 中,∠BCD =90°,BC =CD =1,AB ⊥平面BCD ,
∠ADB =60°,E 、F 分别是AC 、AD 上的动点,且
(01).AE AF
AC AD
λλ==<< (Ⅰ)求证:不论λ为何值,总有平面BEF ⊥平面ABC ; (Ⅱ)当λ为何值时,平面BEF ⊥平面ACD ? (14分)
参考答案: 一、
ACDDD B(AC)BDB 二、 11. 1 4 12. 平行 13. 菱形
14. AC 垂直BD 三、 15. 略 16. 略 17. (II )
7
6 F
E
D
B
A
C。