高中数学 第三章 数系的扩充与复数的引入综合检测 新人教A版选修2-2
人教A版数学高二选修2-2 第三章《数系的扩充与复数的引入》综合测试

(2)设 在复平面上的对应点分别为 ,求 的面积.
解:(1)设 ,则 ,
由题意得 且 ,
解得 或 ,
因此 或 .
(2)当 时, , ,
所以得 ,
所以 .
当 时, , ,
所以得 ,
所以 .
15.设 为虚数,求证: 为纯虚数的充要条件是: .
证明: 为虚数, ,
则 为纯虚数
.
高中新课标数学选修(2-2)
A.实数
B.纯虚数
C.是虚数但不一定是纯虚数
D.可以是虚数也可以是实数
答案:A
二、填空题
7.已知 , , ,则实数 .
答案:
8.已知复数 , ,且 与 共轭复数的积是实数,则实数 的值为.
答案:
9.已知 是实系数一元二次方程 的一个根,则 , .
答案:1,
10.利用公式 ,把 分解成一次因式的积为.
第三章 数系的扩充与复数的引入测试题
一、选择题
1.对于实数 , ,下列结论正确的是( )
A. 是实数B. 是虚数
C. 是复数D.
答案:C
2.下列说法正确的是( )
①实数是复数;②虚数是复数;③实数集和虚数集的交集不是空集;④实数集与虚数集的并集等于复数集;⑤虚轴上的点表示的数都是纯虚数;⑥实轴上的点表示的数都是实数.
答案:
11.已知 , ,则 的值是.
答案:
12.对于任意两个复数 , ( 为实数),定义运算“ ”为: 。设非零复数 在复平面内对应的点分别为 , ,点 为坐标原点.如果 ,那么在 中, 的大小为.
答案:
三、解答题
13.已知 , , ,若 ,求 , 的值.
解: , ,
高中数学 第三章 数系的扩充与复数的引入综合检测 新人教A版选修2-2-新人教A版高二选修2-2数学

【成才之路】2015-2016学年高中数学 第三章 数系的扩充与复数的引入综合检测 新人教A 版选修2-2时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2014·某某理,2)已知i 是虚数单位,a 、b ∈R ,则“a =b =1”是“(a +b i)2=2i”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] 本题考查充分条件、必要条件及复数的运算,当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,(a +b i)2=a 2-b 2+2ab i =2i ,则a 2-b 2=0,2ab =1,解a =1,b =1或a =-1,b =-1,故a =1,b =1是(a +b i)2=2i 的充分不必要条件,选A.2.(2015·某某二模)设复数z =-1-i(i 为虚数单位),z 的共轭复数是z -,则2-z -z等于( )A .-1-2iB .-2+iC .-1+2iD .1+2i[答案] C[解析] 由题意可得2-z -z =2--1+i -1-i =3-i-1+i-1-i -1+i=-1+2i ,故选C.3.复数z =m -2i1+2i(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] z =m -2i1+2i=m -2i1-2i 1+2i 1-2i =15[(m -4)-2(m +1)i],其实部为15(m -4),虚部为-25(m +1),由⎩⎪⎨⎪⎧m -4>0,-2m +1>0.得⎩⎪⎨⎪⎧m >4,m <-1.此时无解.故复数在复平面上对应的点不可能位于第一象限.4.(2014·东北三省三校联考)已知复数z =-12+32i ,则z +|z |=( )A .-12-32iB .-12+32iC.12+32i D .12-32i [答案] D[解析] 因为z =-12+32i ,所以z +|z |=-12-32i +-122+322=12-32i. 5.若θ∈⎝ ⎛⎭⎪⎫3π4,5π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] B [解析] θ∈⎝⎛⎭⎪⎫3π4,5π4时, sin θ+cos θ<0,sin θ-cos θ>0,故对应点(cos θ+sin θ,sin θ-cos θ)在第二象限.[点评] 由于θ∈⎝ ⎛⎭⎪⎫3π4,5π4时,据选项知,此复数对应点只能在某一象限,∴取θ=π检验知,对应点在第二象限.6.(2015·某某市二模)已知复数z 满足(1-i)z =i 2015(其中i 为虚数单位),则z -的虚部为( )A.12 B .-12C.12i D .-12i[答案] B[解析] ∵2015=4×503+3, ∴i2015=i 3=-i.∴z =-i 1-i =12-12i.∴z 的虚部为-12.故选B.7.设z 的共轭复数为z -,若z +z -=4,z ·z -=8,则z -z等于( )A .iB .-iC .±1D .±i[答案] D[解析] 设z =a +b i(a ,b ∈R ),则z-=a -b i ,由条件可得⎩⎪⎨⎪⎧2a =4,a 2+b 2=8.解得⎩⎪⎨⎪⎧a =2,b =±2.因此⎩⎨⎧z =2+2i ,z -=2-2i ,或⎩⎨⎧z =2-2i ,z -=2+2i.所以z -z =2-2i 2+2i =1-i 1+i=1-i 21+i 1-i =-2i2=-i ,或z -z =2+2i 2-2i =1+i 1-i =1+i 21-i 1+i =2i 2=i , 所以z-z=±i.8.若关于x 的方程x 2+(1+2i)x +3m +i =0有实根,则实数m 等于( ) A.112B .112iC .-112D .-112i[答案] A[解析] 设方程的实数根为x =a (a 为实数), 则a 2+(1+2i)·a +3m +i =0,∴⎩⎪⎨⎪⎧a 2+a +3m =0,2a +1=0,∴⎩⎪⎨⎪⎧a =-12,m =112.故选A.9.已知复数z =(x -2)+y i(x 、y ∈R )在复平面内对应的向量的模为3,则y x的最大值是( )A.32B .33C.12 D . 3[答案] D[解析] 因为|(x -2)+y i|=3,所以(x -2)2+y 2=3,所以点(x ,y )在以C (2,0)为圆心,以3为半径的圆上,如图,由平面几何知识知-3≤y x≤ 3.10.(2014·某某某某中学模拟)设a ∈R ,i 是虚数单位,则“a =1”是“a +ia -i为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件[答案] A[解析] 当a =1时,1+i1-i=1+i 22=i 为纯虚数.当a +i a -i =a +i 2a 2+1=a 2-1+2a i a 2+1为纯虚数时, a 2=1即a =±1,故选A.11.已知复数a =3+2i ,b =4+x i(其中i 为虚数单位,x ∈R ),若复数a b∈R ,则实数x 的值为( )A .-6B .6 C.83 D .-83[答案] C [解析] a b =3+2i 4+x i =3+2i 4-x i 16+x 2=12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2·i∈R ,∴8-3x16+x2=0,∴x =83.12.设z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C.z 对应的点在实轴的下方 D .z 一定为实数 [答案] C[解析] ∵t 2+2t +2=(t +1)2+1>0,∴z 对应的点在实轴的上方. 又∵z 与z 对应的点关于实轴对称. ∴C 项正确.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2015·某某理,11)设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________.[答案] 3[解析] 由题易得a 2+b 2=3,故a 2+b 2=3;(a +b i)(a -b i)=a 2+b 2=3. 14.已知x +1x =-1,则x 2014+1x2014的值为________________.[答案] -1[解析] ∵x +1x=-1,∴x 2+x +1=0.∴x =-12±32i ,∴x 3=1.∵2014=3×671+1,∴x 2014=x ,∴x2014+1x2014=x +1x=-1.15.已知复数z 1=cos α+isin α,z 2=cos β+isin β,则复数z 1·z 2的实部是_____________[答案] cos(α+β)[解析] z 1·z 2=(cos α+isin α)(cos β+isin β) cos αcos β-sin αsin β+(cos αsin β+sin αcos β)i =cos(α+β)+sin(α+β)i 故z 1·z 2的实部为cos(α+β).16.设θ∈[0,2π],当θ=________________时,z =1+sin θ+i(cos θ-sin θ)是实数.[答案]π4或54π [解析] 本题主要考查复数的概念.z 为实数,则cos θ=sin θ,即tan θ=1.因为θ∈[0,2π],所以θ=π4或54π.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(2015·某某外国语学校高二期中)设复数z =lg(m 2-2m -2)+(m2+3m +2)i(m ∈R ),试求m 取何值时(1)z 是实数. (2)z 是纯虚数.(3)z 对应的点位于复平面的第一象限.[解析] (1)由m 2+3m +2=0且m 2-2m -2>0,解得m =-1,或m =-2,复数表示实数. (2)当实部等于零且虚部不等于零时,复数表示纯虚数. 由lg(m 2-2m -2)=0,且m 2+3m +2≠0, 求得m =3,故当m =3时,复数z 为纯虚数.(3)由lg(m 2-2m -2)>0,且m 2+3m +2>0,解得m <-2,或m >3,故当m <-2,或m >3时,复数z 对应的点位于复平面的第一象限.18.(本题满分12分)(2014·某某市高二期中)(1)已知复数z 在复平面内对应的点在第四象限,|z |=1,且z +z -=1,求z ;(2)已知复数z =5m21-2i -(1+5i)m -3(2+i)为纯虚数,某某数m 的值.[解析] (1)设z =a +b i(a 、b ∈R ),由题意得⎩⎪⎨⎪⎧a 2+b 2=1,2a =1.解得a =12,b =±32.∵复数z 在复平面内对应的点在第四象限,∴b =-32. ∴z =12-32i.(2)z =5m 21-2i -(1+5i)m -3(2+i)=(m 2-m -6)+(2m 2-5m -3)i ,依题意,m 2-m -6=0,解得m =3或-2.∵2m 2-5m -3≠0.∴m ≠3.∴m =-2.19.(本题满分12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .[解析] 设z =x +y i (x 、y ∈R ,y ≠0),∴x 2+y 2=1. 则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i=(x 2-y 2+3x )+y (2x +1)i. ∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧2x +1=0, ①x 2-y 2+3x <0, ②又x 2+y 2=1. ③ 由①②③得 ⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.20.(本题满分12分)设z =log 2(1+m )+ilog 12(3-m )(m ∈R ).(1)若z 在复平面内对应的点在第三象限,求m 的取值X 围; (2)若z 在复平面内对应的点在直线x -y -1=0上,求m 的值. [解析] (1)由已知,得 ⎩⎪⎨⎪⎧log 21+m <0, ①log 123-m <0, ②解①得-1<m <0. 解②得m <2.故不等式组的解集为{x |-1<m <0}, 因此m 的取值X 围是{x |-1<m <0}.(2)由已知得,点(log 2(1+m ),log 12(3-m ))在直线x -y -1=0上,即log 2(1+m )-log 12(3-m )-1=0,整理得log 2[(1+m )(3-m )]=1.从而(1+m )(3-m )=2,即m 2-2m -1=0,解得m =1±2,且当m =1±2时都能使1+m >0,且3-m >0.故m =1± 2. 21.(本题满分12分)满足z +5z是实数,且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ,若不存在,请说明理由.[解析] 存在.设虚数z =x +y i(x 、y ∈R ,且y ≠0). z +5z =x +y i +5x +y i =x +5x x 2+y 2+⎝ ⎛⎭⎪⎫y -5y x 2+y 2i.由已知得⎩⎪⎨⎪⎧y -5y x 2+y2=0,x +3=-y .∵y ≠0,∴⎩⎪⎨⎪⎧x 2+y 2=5,x +y =-3.解得⎩⎪⎨⎪⎧x =-1,y =-2,或⎩⎪⎨⎪⎧x =-2,y =-1.∴存在虚数z =-1-2i 或z =-2-i 满足以上条件.22.(本题满分14分)将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .(1)设复数z =a +b i(i 为虚数单位),求事件“z -3i 为实数”的概率;(2)求点P (a ,b )落在不等式组⎩⎪⎨⎪⎧a -b +2≥0,0≤a ≤4,b ≥0.表示的平面区域内(含边界)的概率.[解析] (1)z =a +b i(i 为虚数单位),z -3i 为实数,则a +b i -3i =a +(b -3)i 为实数,则b =3.依题意得b 的可能取值为1、2、3、4、5、6,故b =3的概率为16.即事件“z -3i 为实数”的概率为16.(2)连续抛掷两次骰子所得结果如下表:1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)不等式组所表示的平面区域如图中阴影部分所示(含边界). 由图知,点P (a ,b )落在四边形ABCD 内的结果有:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6),共18种.所以点P (a ,b )落在四边形ABCD 内(含边界)的概率为P =1836=12.。
高中数学人教A版选修22第三章数系的扩充与复数的引入练习题含答案详解

文档来源为:从网络收集整理.word版本可编辑.欢迎下载支持.第三章数系的扩充与复数的引入测试(人教实验A版选修2-2) 建议用时实际用时满分实际得分90分钟100分一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列命题中:①若∈R,则(+1)i是纯虚数;②若,∈R且>,则+>+;③若(-1)+(+3+2)i是纯虚数,则实数=±1;④两个虚数不能比较大小.其中,正确命题的序号是()A.①B.②C.③D.④2.若复数z=1+i,i为虚数单位,则(1+z)·z=()A.1+3i B.3+3iC.3-i D.33.i是虚数单位,计算i+i2+i3=()A.-1 B.1C.i-D.i4.若a,b∈R,i为虚数单位,且(a+i)i=b+i,则()A.a=1,b=1 B.a=-1,b=1C.a=-1,b=-1 D.a=1,b=-15.设i是虚数单位,复数1+a i2-i为纯虚数,则实数a为()A.2B.-2C.-12D.126.复数i1+2i(i是虚数单位)的实部是()A.25B.-25C.15D.-157.若=(+m+1)+(+m-4)i,m∈R,=3-2i,则m=1是=的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件8.复数z=1+i,z-为z的共轭复数,则z z--z-1=()A.-2i B.-iC.i D.2i9.已知复数z满足(1+i)z=1+a i(其中i是虚数单位,a∈R),则复数z对应的点不可能位于复平面内的()A.第一象限B.第二象限C.第三象限D.第四象限10. 设集合M={y|y=|cos2x-sin2x|,x∈R},N={x||x-1i|<2,i为虚数单位,x∈R},则M∩N为()A.(0,1)B.(0,1]C.[0,1) D.[0,1]二、填空题(本大题共4小题,每小题4分,共16分)11.若复数12iz=-(i为虚数单位),则z z z⋅+= .12.已知复数z1=-1+2i,z2=1-i,z3=3-4i,它们在复平面上对应的点分别为A,B,C,OCu u u r=λOAu u u r+μOBuuu r(λ,μ∈R),则λ+μ的值是________.13.使不等式m2-(m2-3m)i<(m2-4m+3)i+10成立的实数m= .14.如果i(,,0)z a b a b a =+∈≠R 且是虚数,则222,,,,,,,,z z z z z z z z z z ⋅中是虚数的有_______个,是实数的有 个,相等的有 组 三、解答题(本大题共5个小题,共44分.) 15.(6分) 证明:i i zz+-=1.16.(6分)若∈R ,试确定是什么实数时,等式32--1=(10--22)i 成立.17.(10分) 已知复数12z z ,满足121z z ==,且122z z -=,求证:122z z +=.18.(10分)设是虚数,zz 1+=ω是实数,且-1<ω<2.(1)求||的值及的实部的取值范围;(2)设z zM +-=11,求证:为纯虚数;(3)求2M -ω的最小值.19.(12分)证明:在复数范围内,方程(i 为虚数单位)无解.第三章数系的扩充与复数的引入测试(人教实验A版选修2-2)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题11. 12. 13. 14. 15.三、解答题16.17.18.19.第三章数系的扩充与复数的引入测试(人教实验A 版选修2-2) 答案一、选择题1. D 解析:由复数的有关概念逐个判定.对于复数a +b i(a ,b ∈R ),当a =0且b ≠0时为纯虚数.在①中,若a =-1,则(a +1)i 不是纯虚数,故①错误;在③中,若x =-1,也不是纯虚数,故③错误;a +i 3=a -i ,b +i 2=b -1,复数a -i 与实数b -1不能比较大小,故②错误;④正确.故应选D.2.A 解析: (1+z )·z =z +=1+i +=1+i +2i =1+3i.3.A 解析:由复数性质知:i 2=-1,故i +i 2+i 3=i +(-1)+(-i)=-1.4.D 解析:由(a +i)i =b +i ,得-1+a i =b +i ,根据两复数相等的充要条件得a =1,b =-1.5.A 解析: 法一:因为1+a i 2-i =(1+a i )(2+i )(2-i )(2+i )=2-a +(2a +1)i5为纯虚数,所以2-a =0,a =2.法二:因为1+a i 2-i =i (a -i )2-i 为纯虚数,所以a =2. 6.A 解析:i 1+2i =2+i 5,所以实部为25. 7. A 解析:因为z 1=z 2,所以⎩⎪⎨⎪⎧m 2+m +1=3,m 2+m -4=-2,解得m =1或m =-2,所以m =1是z 1=z 2的充分不必要条件. 8.B 解析:依题意得z z -z -1=(1+i)(1-i)-(1+i)-1=-i.9.B 解析:由(1+i)z =1+a i 得z ==,设在复平面内z 对应的点的坐标为(,),则=,=.法一:易知-=1,即复数z 对应的点在直线-=1上,直线不经过第二象限,故复数z 对应的点不可能位于复平面内的第二象限.法二:若复数z 对应的点在第一象限,则只要 >1,若在第二象限,需要<0,且>0,即 <-1且 >1,无解,故复数z 对应的点不可能在第二象限.10.C 解析:∵ =|cos 2-sin 2|=|cos 2|,且∈R ,∴ ∈[0,1],∴ =[0,1]. 在中,∈R 且|-1i|<2,∴ |+i|<2,∴2+1<2,解得-1<<1,∴=(-1,1).∴ ∩=[0,1). 二、填空题11.6-2i 解析:因为12i =+z ,所以1412i ⋅+=++-=z z z 6-2i.12 1 解析:由条件得OC u u u r =(3,-4),OA u u u r =(-1,2),OB uuu r=(1,-1),根据OC u u u r =λOA u u u r +μOB uuu r得(3,-4)=λ(-1,2)+μ(1,-1)=(-λ+μ,2λ-μ),∴⎩⎪⎨⎪⎧-λ+μ=3,2λ-μ=-4,解得⎩⎪⎨⎪⎧λ=-1,μ=2.∴λ+μ=1.复数与复平面内的点是一一对应的,复数和复平面内以原点为起点的向量也是一一对应的,因此复数加减法的几何意义可按平面向量加减法理解,利用平行四边形法则或三角形法则解决问题.13.3 解析:此题主要考查复数能比较大小的条件及方程组和不等式的解法.∵2-(2-3m)i <( 2-4+3)i +10, 且虚数不能比较大小,∴22210,-3=0,-4+3=0,m m m m m ⎧<⎪⎨⎪⎩解得10,=0=3,=3=1,m m m m m ⎧<⎪⎨⎪⎩或或,∴ 3.当=3时,原不等式成立. 14.4,5,3 解析:2,,,z z z z-=四个为虚数;22,,,,z z z z z z--⋅五个为实数;2,,z z z z z z z =--==⋅=三组相等.三、解答题15.解法一:设z =a +b i(a , b ∈R ),则i i z z +-=i ii i a b a b +---=(1)i (1)i a b a b +--+-2222(1)(1)a b a b +-+-解法二:∵ i z +=i +z=-i+z ,∴i i z z +- =-i i z z+-=-(i -)i z z -=1.16.解:由复数相等的充要条件,得⎩⎪⎨⎪⎧3x 2-a 2x -1=0,①10-x -2x 2=0.②由②得x =2或x =-52,代入①,得a =11或a =-715. 17. 证明:设复数12z z ,在复平面上对应的点为1Z ,2Z , 由条件知121222z z z z -==,所以以1OZ u u u u r ,2OZ u u u u r为邻边的平行四边形为正方形,而12z z +在复平面上对应的向量为正方形的一条对角线, 所以122z z +=.18.(1)解:设=+i (,),.因为ω是实数,0≠b ,所以,即|z |=1.因为ω=2,-1<ω<2, 所以.所以的实部的取值范围(-1,21). (2)证明:zzM +-=11=.1 ) 1 (2 1 ) 1 )( 1 ( ) 1 )( 1 ( 1 1 22 2 2 + -= + + - - - = - + + + - + - - = + + - - a b ib a b i b a b i a b i a b i a b i a b i a b i a 121< < - a 12 2= + b a) ( ) ( 1 2 2 2 2 iba bb b a a a b i a b i a + - + + + = + ++ = ω 0, ≠ ∈ b R(这里利用了(1)中122=+b a ) 因为 ∈(-1,21),0≠b ,所以M 为纯虚数. (3)解:2M -ω112)1(12)1(22222+--=+-+=++=a a a a a a a b a 3]11)1[(21212-+++=++-=a a a a . 因为∈(-1,21),所以+1>0,所以2M -ω≥2×2-3=1.当+1=11+a ,即=0时上式取等号, 所以2M -ω的最小值是1. 19.证明:原方程化简为,设z =x +y i(x 、y ),代入上述方程得根据上式可得整理得051282=+-x x .方程无实数解.原方程在复数范围内无解.,∴ < - = ∆ 0 16R ∈。
高中数学人教新课标A版 选修2-2 第三章 数系的扩充与复数的引入

高中数学人教新课标A版选修2-2 第三章数系的扩充与复数的引入一、单选题(共12题;共24分)1.(2分)若z̅(1+i)=1−i,则z=()A.1–i B.1+i C.–i D.i2.(2分)(1–i)4=()A.–4B.4C.–4i D.4i3.(2分)复数11−3i的虚部是()A.−310B.−110C.110D.3104.(2分)2−i1+2i=()A.1B.−1C.i D.−i 5.(2分)若z=1+2i+i3,则|z|=()A.0B.1C.√2D.26.(2分)复数z=−2+ii(其中i为虚数单位)在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限7.(2分)若z=1+i,则|z2–2z|=()A.0B.1C.√2D.2 8.(2分)在复平面内,复数z对应的点的坐标是(1,2),则i⋅z=().A.1+2i B.−2+i C.1−2i D.−2−i 9.(2分)已知a∈R,若a﹣1+(a﹣2)i(i为虚数单位)是实数,则a=()A.1B.﹣1C.2D.﹣2 10.(2分)下列命题中,正确的命题是()A.若z、1z2∈C,z1−z2>0,则z1>z2B.若z∈R,则z⋅z̅=|z|2不成立C.z1,z2∈C,z1⋅z2=0,则z1=0或z2=0D.z1、z2∈C,z12+z22=0,则z1=0且z2=011.(2分)若复数z满足z(2−i)=18+11i,则|z̅−4i|=()A.√13B.√15C.13D.1512.(2分)已知a是实数,a+i1−i是实数,则cosaπ3的值为()A.12B.−12C.0D.√3 2二、多选题(共4题;共12分)13.(3分)设复数z满足z=−1−2i,i为虚数单位,则下列命题正确的是() A.|z|=√5B.复数z在复平面内对应的点在第四象限C.z的共轭复数为−1+2iD.复数z在复平面内对应的点在直线y=−2x上14.(3分)已知复数z满足z̅⋅z+2iz̅=3+ai,a∈R,则实数a的值可能是()A.1B.-4C.0D.515.(3分)已知复数z=a+√3i在复平面内对应的点位于第二象限,且|z|=2则下列结论正确的是().A.z3=8B.z的虚部为√3C.z的共轭复数为1+√3i D.z2=416.(3分)已知复数z=i1−2i,则以下说法正确的是()A.复数z的虚部为i5B.z的共轭复数z̅=25−i5C.|z|=√55D.在复平面内与z对应的点在第二象限三、填空题(共4题;共4分)17.(1分)i是虚数单位,复数8−i2+i=.18.(1分)已知i是虚数单位,则复数z=(1+i)(2−i)的实部是.19.(1分)设复数z1,z2满足|z1|=|z2|=2,z1+z2=√3+i,则|z1−z2|=. 20.(1分)下列命题(i为虚数单位)中:①已知a,b∈R且a=b,则(a−b)+(a+b)i为纯虚数;②当z是非零实数时,|z+1z|≥2恒成立;③复数z=(1−i)3的实部和虚部都是-2;④如果|a+2i|<|−2+i|,则实数a的取值范围是−1<a<1;⑤复数z=1−i,则1z+z=32+12i;其中正确的命题的序号是.四、解答题(共6题;共60分)21.(5分)已知i虚数单位,z1=3−i1+i.(∈)求|z1|;(∈)若复数z2的虚部为2,且z1z2的虚部为0,求z2. 22.(10分)已知复数z满足(1+2i)z=4+3i(i是虚数单位).求:(1)(5分)z(2)(5分)|z2−z̅|.23.(10分)已知复数z=1−i(i是虚数单位).(1)(5分)求z2−z;(2)(5分)如图,复数z1,z2在复平面上的对应点分别是A,B,求z1+z2 z.24.(10分)已知复数z=(m2−3m+2)+(m−1)i(i为虚数单位).(1)(5分)若z是纯虚数,求实数m的值;(2)(5分)在复平面内,若z所对应的点在直线y=2x+1的上方,求实数m的取值范围. 25.(10分)设实部为正数的复数z,满足|z|=√10,且复数(2+i)z在复平面上对应的点在第二、四象限的角平分线上.(1)(5分)求复数z;(2)(5分)若z̅+m2(−1+i)+4mi(m∈R)为纯虚数,求实数m的值.26.(15分)已知复数z=3a+(3a−2)i,i为虚数单位,a∈R.(1)(5分)若z是实数,求实数a的值;(2)(5分)若|z|=√10,求实数a的值;(3)(5分)若z在复平面内对应的点位于第三象限,求实数a的取值范围.答案解析部分1.【答案】D【解析】【解答】因为z̅=1−i1+i=(1−i)2(1+i)(1−i)=−2i2=−i,所以z=i.故答案为:D【分析】先利用除法运算求得z̅,再利用共轭复数的概念得到z即可. 2.【答案】A【解析】【解答】(1−i)4=[(1−i)2]2=(1−2i+i2)2=(−2i)2=−4. 故答案为:A.【分析】根据指数幂的运算性质,结合复数的乘方运算性质进行求解即可. 3.【答案】D【解析】【解答】因为z=11−3i=1+3i(1−3i)(1+3i)=110+310i,所以复数z=11−3i的虚部为310.故答案为:D.【分析】利用复数的除法运算求出z即可. 4.【答案】D【解析】【解答】2−i1+2i=(2−i)(1−2i)(1+2i)(1−2i)=−5i5=−i故答案为:D【分析】根据复数除法法则进行计算.5.【答案】C【解析】【解答】因为z=1+2i+i3=1+2i−i=1+i,所以|z|=√12+12=√2.故答案为:C.【分析】先根据i2=−1将z化简,再根据向量的模的计算公式即可求出.6.【答案】A【解析】【解答】∵z=−2+ii=(−2+i)(−i)−i2=1+2i,∴复数z=−2+ii在复平面内对应的点的坐标为(1,2),在第一象限,故答案为:A.【分析】直接利用复数代数形式的乘除运算化简求出z的值,根据复数的几何意义可得结果.7.【答案】D【解析】【解答】由题意可得:z2=(1+i)2=2i,则z2−2z=2i−2(1+i)=−2.故|z2−2z|=|−2|=2.故答案为:D.【分析】由题意首先求得z2−2z的值,然后计算其模即可.8.【答案】B【解析】【解答】由题意得z=1+2i,∴iz=i−2.故答案为:B.【分析】先根据复数几何意义得z,再根据复数乘法法则得结果.9.【答案】C【解析】【解答】解:a∈R,若a﹣1+(a﹣2)i(i为虚数单位)是实数,可得a﹣2=0,解得a=2.故答案为:C.【分析】利用复数的虚部为0,求解即可.10.【答案】C【解析】【解答】A.当z1=2+i,z2=1+i时,z1−z2=1>0,此时z1,z2无法比较大小,故错误;B.当z=0时,z̅=z=0,所以z⋅z̅=|z|2=0,所以此时z⋅z̅=|z|2成立,故错误;C.根据复数乘法的运算法则可知:z1=0或z2=0,故正确;D.当z1=i,z2=1时,z12+z22=−1+1=0,此时z1≠0且z2≠0,故错误.故答案为:C.【分析】A.根据复数虚部相同,实部不同时,举例可判断结论是否正确;B.根据实数的共轭复数还是其本身判断z⋅z̅=|z|2是否成立;C.根据复数乘法的运算法则可知是否正确;D.考虑特殊情况:z1=i,z2=1,由此判断是否正确.11.【答案】C【解析】【解答】解:∵复数z满足z(2−i)=18+11iz=18+11i2−i=(18+11i)(2+i)(2−i)(2+i)=36+40i+11i25=5+8i∴z̅=5−8i,z̅−4i=5−8i−4i=5−12i ∴|z̅−4i|=|5−12i|=√52+(−12)2=13.故答案为:C.【分析】利用复数的运算法则、共轭复数的概念以及模的计算公式即可得出.12.【答案】A【解析】【解答】解: ∵ a+i 1−i =(a+i)(1+i)(1−i)(1+i)=a−12+a+12i 是实数,∴a+12=0,即 a =−1 .∴ cosaπ3=cos(−π3)=12. 故答案为:A .【分析】利用复数代数形式的乘除运算化简,由虚部为0求得 a 值,代入 cos aπ3 得答案. 13.【答案】A,C【解析】【解答】 |z|=√(−1)2+(−2)2=√5 ,A 符合题意;复数z 在复平面内对应的点的坐标为(−1,−2) ,在第三象限,B 不正确;z 的共轭复数为 −1+2i ,C 符合题意;复数z 在复平面内对应的点 (−1,−2) 不在直线 y =−2x 上,D 不正确. 故答案为:AC【分析】根据复数的模、复数对应点的坐标、共轭复数等知识,选出正确选项.14.【答案】A,B,C【解析】【解答】设 z =x +yi ,∴x 2+y 2+2i(x −yi)=3+ai , ∴{x 2+y 2+2y =3,2x =a,⇒y 2+2y +a 24−3=0 ,∴Δ=4−4(a 24−3)≥0 ,解得: −4≤a ≤4 ,∴实数 a 的值可能是 1,−4,0 . 故答案为:ABC.【分析】设 z =x +yi ,从而有 x 2+y 2+2i(x −yi)=3+ai ,利用消元法得到关于 y 的一元二次方程,利用判别式大于等于0,从而求得a 的范围,即可得答案.15.【答案】A,B【解析】【解答】解: ∵z =a +√3i ,且 |z|=2 ∴a 2+(√3)2=4 , a =±1复数 z =a +√3i 在复平面内对应的点位于第二象限 ∴a =−1 A: (−1+√3i)3=(−1)3+3(−1)2√3i +3(−1)(√3i)2+(√3i)3=8 B: z =−1+√3i 的虚部是 √3C: z =−1+√3i 的共轭复数为 z =−1−√3iD: (−1+√3i)2=(−1)2+2(−1)√3i+(√3i)2=−2−2√3i故答案为:AB.【分析】利用复数|z|=2的模长运算及z=a+√3i在复平面内对应的点位于第二象限求出a,再验算每个选项得解.16.【答案】C,D【解析】【解答】∵z=i1−2i=i(1+2i)(1−2i)(1+2i)=−25+15i,∴复数z的虚部为15,z的共轭复数z̅=−25−i5,|z|=√(−25)2+(15)2=√55,复平面内与z对应的点的坐标为(−25,15),在第二象限.故答案为:CD.【分析】利用复数的乘除运算可得z=−25+15i,根据复数的概念可判断A;根据共轭复数的概念可判断B;根据复数的模可判断C;根据复数的几何意义可判断D. 17.【答案】3-2i【解析】【解答】8−i2+i=(8−i)(2−i)(2+i)(2−i)=15−10i5=3−2i.故答案为:3-2i.【分析】将分子分母同乘以分母的共轭复数,然后利用运算化简可得结果.18.【答案】3【解析】【解答】∵复数z=(1+i)(2−i)∴z=2−i+2i−i2=3+i∴复数的实部为3.故答案为:3.【分析】根据复数的运算法则,化简即可求得实部的值.19.【答案】2√3【解析】【解答】∵|z1|=|z2|=2,可设z1=2cosθ+2sinθ⋅i,z2=2cosα+2sinα⋅i,∴z1+z2=2(cosθ+cosα)+2(sinθ+sinα)⋅i=√3+i,∴{2(cosθ+cosα)=√32(sinθ+sinα)=1,两式平方作和得:4(2+2cosθcosα+2sinθsinα)=4,化简得:cosθcosα+sinθsinα=−1 2∴|z1−z2|=|2(cosθ−cosα)+2(sinθ−sinα)⋅i|=√4(cosθ−cosα)2+4(sinθ−sinα)2=√8−8(cosθcosα+sinθsinα)=√8+4=2√3.故答案为:2√3.【分析】令z1=2cosθ+2sinθ⋅i,z2=2cosα+2sinα⋅i,根据复数的相等可求得cosθcosα+ sinθsinα=−12,代入复数模长的公式中即可得到结果.20.【答案】②③④【解析】【解答】对于①,a,b∈R且a=b,若a=b=0时,则(a−b)+(a+b)i不是纯虚数,①错误;对于②,当z是非零实数时,根据基本不等式的性质知|z+1z|⩾2恒成立,②正确;对于③,复数z=(1−i)3=−2−2i,∴z的实部和虚部都是−2,③正确;对于④,如果|a+2i|<|−2+i|,则a2+4<4+1,解得−1<a<1,所以实数a的取值范围是−1<a<1,④正确;对于⑤,复数z=1−i,则1z+z=11−i+(1−i)=32−12i,∴⑤错误.综上,正确的命题的序号是②③④.故答案为:②③④.【分析】①当a=b=0时,(a−b)+(a+b)i=0不是纯虚数;②根据基本不等式的性质知|z+1z|⩾2恒成立;③化简复数z,得z的实部和虚部都是-2;④根据模长公式得关于a的不等式,求解即可;⑤根据复数代数运算法则,化简计算即可.21.【答案】解:(∈)z1=3−i1+i=(3−i)(1−i)(1−i)(1+i)=2−4i2=1−2i,所以|z1|=√22+12=√5,(∈)设z2=a+2i(a∈R),则z1z2=(2+i)(a+2i)=(2a−2)+(a+4)i,因为z1z2的虚部为0,所以,a+4=0,即a=−4.所以z2=−4+2i.【解析】【分析】(∈)利用复数的四则运算求出z1后可求其模.(∈)设z2=a+2i(a∈R),利用复数的乘法计算出 z 1z 2 后再根据虚部为0求出 a ,从而可得 z 2 .22.【答案】(1)解:由题 z =4+3i 1+2i =(4+3i)(1−2i)(1+2i)(1−2i)=10−5i5=2−i .即 z =2−i (2)解:由(1) z =2−i ,故 z 2−z ̅=(2−i)2−(2+i)=1−5i ,故 |z 2−z̅|=√12+(−5)2=√26 .即 |z 2−z̅|=√26【解析】【分析】(1)易得 z =4+3i1+2i,再利用复数的除法运算即可.(2)由(1)分别求得 z 2,z ̅ 再计算 z 2−z̅ 求模长即可. 23.【答案】(1)解: ∵z =1−i ,∴z 2−z =(1−i)2−(1−i)=1−2i +i 2−1+i =−1−i(2)解: ∵z 1=2i , z 2=2+i ,∴ z 1+z 2z =2i+2+i 1−i =2+3i 1−i =(2+3i)(1+i)(1−i)(1+i)=−12+52i【解析】【分析】(1)把 z =1−i 代入 z 2−z ,再由复数代数形式的乘除运算化简得答案;(2)由图形求得 z 1 , z 2 ,代入 z 1+z2z,再由复数代数形式的乘除运算化简得答案.24.【答案】(1)解: ∵z 是纯虚数, ∴{m 2−3m +2=0m −1≠0, 解得 {m =1或m =2m ≠1, ∴ m =2(2)解:z 所对应的点是 (m 2−3m +2,m −1) ,∵ z 所对应的点在直线 y =2x +1 的上方,即 m −1>2(m 2−3m +2)+1 , 化简得 2m 2−7m +6<0 ,即 (m −2)(2m −3)<0 , ∴32<m <2 . 【解析】【分析】(1)由复数的分类求解;(2)写出对应点的坐标,点在直线 y =2x +1 上方,就是点的坐标适合不等式 y >2x +1 代入后不等式可得.25.【答案】(1)解:设 z =a +bi , a,b ∈R , a >0 .由题意: a 2+b 2=10 .①(2+i)(a +bi)=2a −b +(a +2b)i , 得 2a −b +a +2b =0 , 3a +b =0 ,②①②联立,解得 a =1 , b =−3 得 z =1−3i .(2)解:由(1)可得z̅=1+3i所以z̅+m2(−1+i)+4mi=(−m2+1)+(m2+4m+3)i由题意可知{−m2+1=0m2+4m+3≠0解得m=±1且m≠−1且m≠−3所以m=1【解析】【分析】(1)设z=a+bi(a,b∈R且a>0),由条件可得a2+b2=10①,a=−3b②.由①②联立的方程组得a、b的值,即可得到z的值;(2)根据实部为0,虚部不为0即可求解m.26.【答案】(1)解:由题意3a−2=0,a=2 3;(2)解:由已知|z|=√(3a)2+(3a−2)2=√10,解得a=1或a=−13.(3)解:复数z对应点坐标为(3a,3a−2),它在第三象限,则{3a<03a−2<0,解得a< 0.∴a的范围是(−∞,0).【解析】【分析】(1)根据复数的分类求解;(2)由复数模的运算计算;(3)写出对应点坐标,由点所在象限得出不等式,解之可得.。
人教A版高中数学选修2-2作业:第3章 数系的扩充与复数的引入3.1.1 课后

第三章 3.1 3.1.1一、选择题1.以2i -5的虚部为实部,以5i +2i 2的实部为虚部的新复数是( A ) A .2-2iB .2+iC .-5+5iD .5+5i解析 ∵2i -5的虚部为2,5i +2i 2的实部为-2,∴新复数为2-2i.故选A . 2.若2+a i =b -i ,其中a ,b ∈R ,i 是虚数单位,则a 2+b 2=( D ) A .0B .2C .52D .5解析 ∵2+a i =b -i ,a ,b ∈R ,∴b =2,a =-1,∴a 2+b 2=5.故选D . 3.已知复数cos θ+isin θ和sin θ+icos θ相等,则θ的值为( D ) A .π4B .π4或5π4C .2k π+π4(k ∈Z )D .k π+π4(k ∈Z )解析 由复数相等的充要条件知⎩⎪⎨⎪⎧cos θ=sin θ,sin θ=cos θ,得θ=k π+π4(k ∈Z ),故选D .4.复数4-3a -a 2i 与复数a 2+4a i 相等,则实数a 的值为( C ) A .1B .1或-4C .-4D .0或-4解析 由复数相等的充要条件得⎩⎪⎨⎪⎧4-3a =a 2,-a 2=4a ,解得a =-4.5.已知a ,b ∈R ,则a =b 是(a -b )+(a +b )i 为纯虚数的( C ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析 (a -b )+(a +b )i 为纯虚数⇔⎩⎪⎨⎪⎧a +b ≠0,a -b =0⇔a =b ≠0,即a =b ≠0是该复数为纯虚数的充要条件,所以a =b 是该复数为纯虚数的必要不充分条件.6.已知M ={1,2,m 2-3m -1+(m 2-5m -6)i},N ={-1,3},M ∩N ={3},则实数m 的值为( B )A .-2B .-1C .1D .2解析 ∵M ∩N ={3},∴m 2-3m -1+(m 2-5m -6)i =3,∴⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 二、填空题7.复数1-i 的虚部的平方是__1__. 解析 1-i 的虚部为-1,虚部的平方为1.8.已知复数z =(m 2-m )+(m 2-1)i(m ∈R ),若z 是实数,则m 的值为__±1__;若z 是虚数,则m 的取值范围是__(-∞,-1)∪(-1,1)∪(1,+∞)__;若z 是纯虚数,则m 的值为__0__.解析 z =(m 2-m )+(m 2-1)i ,若z 是实数,则m 2-1=0,解得m =±1; 若z 是虚数,则m 2-1≠0,解得m ≠±1;若z 是纯虚数,则⎩⎪⎨⎪⎧m 2-m =0,m 2-1≠0,解得m =0.9.已知z 1=-4a +1+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R ,z 1>z 2,则a 的值为__0__.解析 由z 1>z 2,得⎩⎪⎨⎪⎧2a 2+3a =0,a 2+a =0,-4a +1>2a ,即⎩⎪⎨⎪⎧a =0或a =-32,a =0或a =-1,a <16,解得a =0.三、解答题10.若方程x 2+mx +2x i =-1-m i 有实根,求实数m 的值,并求出此实根.解析 设实根为x 0,代入方程,并由复数相等的充要条件,得⎩⎪⎨⎪⎧x 20+mx 0=-1,2x 0=-m ,消去m ,得x 0=±1,所以m =±2.因此,当m =-2时,原方程的实根为x =1; 当m =2时,原方程的实根为x =-1.11.实数m 分别为何值时,复数z =2m 2+m -3m +3+(m 2-3m -18)i 为(1)实数;(2)虚数;(3)纯虚数.解析 (1)若z 为实数,则⎩⎪⎨⎪⎧m 2-3m -18=0,m +3≠0,解得m =6.所以当m =6时,z 为实数.(2)若z 为虚数,则m 2-3m -18≠0,且m +3≠0, 所以当m ≠6且m ≠-3时,z 为虚数. (3)若z 为纯虚数,则⎩⎪⎨⎪⎧2m 2+m -3=0,m +3≠0,m 2-3m -18≠0,解得m =-32或m =1.所以当m =-32或m =1时,z 为纯虚数.12.如果log 2(m +n )-(m 2-3m )i<1,求自然数m ,n 的值. 解析 ∵log 2(m +n )-(m 2-3m )i<1,∴⎩⎪⎨⎪⎧ log 2(m +n )<1,m 2-3m =0,解得⎩⎪⎨⎪⎧0<m +n <2,m =0或m =3,∵m ,n 是自然数,∴m =0,n =1.由Ruize收集整理。
高中数学选修2-2章末检测3:第三章 数系的扩充与复数的引入

章末检测一、选择题1.i 是虚数单位,若集合S ={-1,0,1},则( ) A .i ∈S B .i 2∈S C .i 3∈SD.2i∈S 2.z 1=(m 2+m +1)+(m 2+m -4)i ,m ∈R ,z 2=3-2i ,则“m =1”是“z 1=z 2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.设z 1,z 2为复数,则下列四个结论中正确的是( )A .若z 21+z 22>0,则z 21>-z 22B .|z 1-z 2|=(z 1+z 2)2-4z 1z 2C .z 21+z 22=0⇔z 1=z 2=0D .z 1-z 1是纯虚数或零4.已知i 是虚数单位,m ,n ∈R ,且m +i =1+n i ,则m +n i m -n i 等于( )A .-1B .1C .-iD .i5.已知a 是实数,a -i1+i 是纯虚数,则a 等于( )A .1B .-1 C. 2D .-26.若(x -i)i =y +2i ,x ,y ∈R ,则复数x +y i 等于( ) A .-2+i B .2+i C .1-2iD .1+2i7.已知2+a i ,b +i 是实系数一元二次方程x 2+px +q =0的两根,则p ,q 的值为( ) A .p =-4,q =5 B .p =4,q =5 C .p =4,q =-5D .p =-4,q =-58.i 为虚数单位,设复数z 满足|z |=1,则⎪⎪⎪⎪⎪⎪z 2-2z +2z -1+i 的最大值为( ) A.2-1B .2-2C.2+1D .2+29.实数x ,y ,θ有以下关系:x +y i =3+5cos θ+i(-4+5sin θ)(其中i 是虚数单位),则x 2+y 2的最大值为( )A .30B .15C .25D .10010.设复数z 满足|z |<1且⎪⎪⎪⎪z +1z =52,则|z |等于( ) A.45 B.34 C.23 D.1211.如果关于x 的方程2x 2+3ax +a 2-a =0至少有一个模等于1的根,那么实数a 的值( ) A .不存在 B .有一个 C .有三个 D .有四个12.已知f (n )=i n -i -n (n ∈N *),则集合{f (n )}的元素个数是( ) A .2 B .3 C .4 D .无数个二、填空题13.复平面内,若z =m 2(1+i)-m (4+i)-6i 所对应的点在第二象限,则实数m 的取值范围是________.14.已知a ,b ∈R ,i 是虚数单位.若(a +i)(1+i)=b i ,则a +b i =________. 15.已知|z 1|=2,|z 2|=3,|z 1+z 2|=4,则z 1z 2=__________.16.复数|z |=1,若存在负数a 使得z 2-2az +a 2-a =0,则a =________. 三、解答题17.计算:(1)i 1+i ÷(1+3i)2;(2)⎝ ⎛⎭⎪⎫1+i 1-3i 3.18.设z 是虚数,m =z +1z 是实数,且-1<m <2.(1)求|z |的值及z 的实部的取值范围.(2)设u =1-z1+z ,求证:u 为纯虚数.(3)结合(2)求m -u 2的最小值.[答案]精析1.B2.A [因为z 1=z 2,所以⎩⎪⎨⎪⎧m 2+m +1=3,m 2+m -4=-2,解得m =1或m =-2,所以m =1是z 1=z 2的充分不必要条件.]3.D [举例说明:若z 1=4+i ,z 2=2-2i ,则z 21=15+8i ,z 22=-8i ,z 21+z 22>0,但z 21与-z 22都是虚数,不能比较大小,故A 错;因为|z 1-z 2|2不一定等于(z 1-z 2)2,故|z 1-z 2|与(z 1+z 2)2-4z 1z 2不一定相等,B 错;若z 1=2+i ,z 2=1-2i ,则z 21=3+4i ,z 22=-3-4i ,z 21+z 22=0,但z 1=z 2=0不成立,故C 错;设z 1=a +b i(a ,b ∈R ),则z 1=a -b i ,故z 1-z 1=2b i ,当b =0时是零,当b ≠0时,是纯虚数.故D 正确.]4.D [由m +i =1+n i(m ,n ∈R ),∴m =1且n =1.则m +n i m -n i =1+i 1-i=(1+i )22=i.]5.A [a -i 1+i =(a -i )(1-i )(1+i )(1-i )=(a -1)-(a +1)i2是纯虚数,则a -1=0,a +1≠0,解得a =1.]6.B [∵(x -i)i =y +2i ,x i -i 2=y +2i , ∴y =1,x =2,∴x +y i =2+i.]7.A [由条件知2+a i ,b +i 是共轭复数,则a =-1,b =2,即实系数一元二次方程x 2+px +q =0的两个根是2±i ,所以p =-[(2+i)+(2-i)]=-4,q =(2+i)(2-i)=5.]8.C [|z 2-2z +2z -1+i|=|z -(1+i)|,故只需求x 2+y 2=1上的点到(1,1)的最大距离,其值为1+ 2.]9.D [由复数相等知⎩⎪⎨⎪⎧x =3+5cos θ,y =-4+5sin θ,则x 2+y 2=50-50sin(θ-φ)≤100(其中φ为辅助角). ∴x 2+y 2的最大值为100.]10.D [因为⎪⎪⎪⎪z +1z =|z z +1||z |=52,即|z |2+1=52|z |,所以|z |=12.] 11.C [(1)当根为实数时,将x =1代入原方程得a 2+2a +2=0,此方程无实数解;将x =-1代入原方程得a 2-4a +2=0,解得a =2±2,都符合要求.(2)当根为虚数时,Δ=a (a +8)<0,∴-8<a <0.此时有x 1·x 2=|x 1|2=|x 2|2=1=a 2-a2,所以可得a 2-a -2=0,解得a =-1,或a =2(舍去).故共有三个.] 12.B [f (n )有三个值0,2i ,-2i.] 13.(3,4)[解析] ∵z =m 2-4m +(m 2-m -6)i 所对应的点在第二象限,∴⎩⎪⎨⎪⎧m 2-4m <0,m 2-m -6>0,解得3<m <4.14.1+2i[解析] 由(a +i)(1+i)=b i 得a -1+(a +1)i =b i ,即a -1=0,a +1=b ,解得a =1,b =2,所以a +b i =1+2i. 15.16±156i [解析] 由题意,z 1z 1=4,z 2z 2=9,(z 1+z 2)(z 1+z 2)=z 1z 1+z 2z 2+z 1z 2+z 2z 1=4+9+9z 1z 2+4z 2z 1=16,所以9z 1z 2+4z 2z 1=3,令z 1z 2=t ,则9t +4t =3,即9t 2-3t +4=0,所以t =16±15i 6,即z 1z 2=16±15i 6. 16.1-52[解析] 由z 2-2az +a 2-a =0,得(z -a )2=a . 又a 为负数,所以z -a 为纯虚数.设z -a =b i ,则z =a +b i ,所以(b i)2=a ,故a =-b 2. 又|z |=1,所以a 2+b 2=1,所以a 2-a -1=0.故a =1±52.由a 为负数,所以a =1-52.17.解 (1)i1+i ÷(1+3i)2=i (1-i )(1+i )(1-i )÷[(1+3i)(1+3i)] =i -i 22÷(1+3i 2+23i)=1+i 2÷(-2+23i)=(1+i )(-4-43i )(-4+43i )(-4-43i ) =-4-43i -4i -43i 264=4(-1+3)-4(1+3)i 64=-1+316-1+316i.(2)方法一 ⎝ ⎛⎭⎪⎫1+i 1-3i 3=⎣⎢⎡⎦⎥⎤(1+i )(1+3i )(1-3i )(1+3i )3=⎝ ⎛⎭⎪⎫1+3i +i +3i 243=[(1-3)+(1+3)i]343= (1-3)3+3(1-3)2(1+3)i +3(1-3)(1+3)2i 2+(1+3)3i 364=16-16i 64=1-i 4.方法二 ⎝ ⎛⎭⎪⎫ 1+i 1-3i 3=(1+i )3(1-3i )3=1+3i +3i 2+i 31-33i -9+33i =-2+2i -8=1-i 4.18.(1)解 ∵z 是虚数,∴可设z =x +y i ,x ,y ∈R ,且y ≠0, ∴m =z +1z =x +y i +1x +y i =x +y i +x -y i x 2+y2=x +x x 2+y 2+⎝ ⎛⎭⎪⎫y -y x 2+y 2i.∵m 是实数,且y ≠0, ∴y -yx 2+y2=0,∴x 2+y 2=1,∴|z |=1,此时m =2x . ∵-1<m <2,∴-1<2x <2,从而有-12<x <1.∴|z |=1,z 的实部的取值范围是⎝⎛⎭⎫-12,1. (2)证明 结合(1)可知u =1-z 1+z =1-(x +y i )1+(x +y i )=(1-x -y i )(1+x -y i )(1+x )2+y 2=-y(1+x )i. 又∵x ∈⎝⎛⎭⎫-12,1,y ≠0, ∴-y1+x≠0,∴u 为纯虚数.(3)解 m -u 2=2x -⎝ ⎛⎭⎪⎫-y 1+x i 2=2x +⎝ ⎛⎭⎪⎫y 1+x 2=2x +1-x 2(1+x )2=2x +1-x 1+x =2x -1+21+x=2(x +1)+21+x-3.∵-12<x <1,∴1+x >0,∴2(x +1)+21+x-3≥22(x +1)·21+x-3=1.当且仅当2(x +1)=21+x ,即x =0(x =-2舍去)时,等号成立.故m -u 2的最小值为1,此时z =±i.。
高中数学 第三章 数系的扩充与复数的引入 习题课—复数运算的综合问题课后提升训练(含解析)新人教A版

第三章数系的扩充与复数的引入习题课——复数运算的综合问题课后篇巩固提升1.若复数z 满足|z-1+i |=3,则复数z 对应的点的轨迹围成图形的面积等于() A.3 B.9 C.6π D.9π,复数z 对应的点的轨迹是以(1,-1)为圆心,以3为半径的圆,其面积等于π×32=9π.2.已知a ,b ∈R ,且2+a i,b+3i 是一个实系数一元二次方程的两个根,则a ,b 的值分别是() A .a=-3,b=2 B .a=3,b=-2 C .a=-3,b=-2 D .a=3,b=2,这两个复数一定是互为共轭复数,故a=-3,b=2.3.设x ,y ∈R ,i 为虚数单位,(x+i)x=4+2y i,则|x +4x i 1+i|=() A.√10B.√5C.2D.√2(x+i)x=4+2y i,x ,y ∈R ,∴x 2+x i =4+2y i,可得x 2=4,x=2y ,解得x=2,y=1,或x=-2,y=-1,则|x+4y i |=|2+4i |=√22+42=2√5,或|x+4y i |=|-2-4i |=√(-2)2+(-4)2=2√5.又|1+i |=√2,∴|x +4x i 1+i|=|x +4x i||1+i|=√5√2=√10,故选A .4.关于x 的方程3x 2-x2x-1=(10-x-2x 2)i 有实根,则实数a 的值等于.x=m ,则原方程可变为3m 2-x2m-1=(10-m-2m 2)i,所以{3x 2-x 2x -1=0,10-x -2x 2=0,解得a=11或a=-715.或-7155.关于复数z 的方程|z|+2z=13+6i 的解是.z=x+y i(x ,y ∈R ),则有√x 2+x 2+2x+2y i =13+6i,于是{√x 2+x 2+2x =13,2x =6,解得{x =4,x =3或{x =403,x =3.因为13-2x=√x 2+x 2≥0,所以x ≤132,故x=403舍去,故z=4+3i .4+3i6.已知z ∈C ,且|z+1|=|z-i |,则|z+i |的最小值等于.|z+1|=|z-i |表示以(-1,0),(0,1)为端点的线段的垂直平分线,而|z+i |=|z-(-i)|表示直线上的点到(0,-1)的距离,数形结合知其最小值为√22.7.已知复数z=3+i2-i ,z 1=2+m i . (1)若|z+z 1|=5,某某数m 的值;(2)若复数az+2i 在复平面上对应的点在第二象限,某某数a 的取值X 围.z=3+i 2-i=(3+i)(2+i)(2-i)(2+i)=5+5i 5=1+i .因为|z+z 1|=|1+i +2+m i |=|3+(m+1)i |=√32+(x +1)2=5,所以9+(m+1)2=25. 解得m=-5或m=3.(2)az+2i =a (1+i)+2i =a+(a+2)i,在复平面上对应的点在第二象限,所以{x <0,x +2>0,解得-2<a<0.8.已知关于x 的方程x 2-(6+i)x+9+a i =0(a ∈R )有实数根b. (1)某某数a ,b 的值.(2)若复数z 满足|x -a-b i |-2|z|=0,当z 为何值时,|z|有最小值?并求出|z|的最小值.因为b 是方程x 2-(6+i)x+9+a i =0(a ∈R )的实根,所以(b 2-6b+9)+(a-b )i =0,故{x 2-6x +9=0,x =x ,解得a=b=3. (2)设z=m+n i(m ,n ∈R ),由|x -3-3i |=2|z|,得(m-3)2+(n+3)2=4(m 2+n 2), 即(m+1)2+(n-1)2=8,所以Z 点的轨迹是以O 1(-1,1)为圆心,以2√2为半径的圆.如图,当Z 点在直线OO 1上时,|z|有最大值或最小值. 因为|OO 1|=√2,半径r=2√2,所以当z=1-i 时,|z|有最小值,且|z|min =√2.。
人教A版选修2-2数学:第三章《数系的扩充与复数的引入》综合测试2(新人教A版选修2—2).docx

高中新课标数学选修(2-2)第三章测试题一、选择题1.0a =是复数()z a bi a b =+∈R ,为纯虚数的( )A.充分条件但不是必要条件 B.必要条件但不是充分条件 C.充要条件D.既不是充分也不必要条件 答案:B2.若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3 B.2C.1D.1-答案:D3.复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠ B.2a ≠且1a ≠ C.0a = D.2a =或0a =答案:D4.设1z ,2z 为复数,则下列四个结论中正确的是( )A.若22120z z +>,则2212z z >-B.12z z -C.22121200z z z z +=⇔== D.11z z -是纯虚数或零 答案:D5.设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数 答案:D6.若1i +是实系数方程20x bx c ++=的一个根,则方程的另一个根为( ) A.1i - B.1i -+ C.1i -- D.i 答案:A7.已知复数1cos z i θ=-,2sin z i θ=+,则12z z ·的最大值为( )A.32 D.3答案:A 8.已知m ∈R ,若6()64m mi i +=-,则m 等于( )A.2-B.C.D.4答案:B9.在复平面内,复数12ω=-+对应的向量为OA u u u r ,复数2ω对应的向量为OB u u u r .那么向量AB u u u r对应的复数是( )A.1 B.1- D.答案:D10.在下列命题中,正确命题的个数为( ) ①两个复数不能比较大小;②123z z z ∈C ,,,若221221()()0z z z z -+-=,则13z z =; ③若22(1)(32)x x x i -+++是纯虚数,则实数1x =±; ④z 是虚数的一个充要条件是z z +∈R ;⑤若a b ,是两个相等的实数,则()()a b a b i -++是纯虚数; ⑥z ∈R 的一个充要条件是z z =.A.0 B.1 C.2 D.3 答案:B11.复数()a bi a b +∈R ,等于它共轭复数的倒数的充要条件是( ) A.2()1a b += B.221a b += C.221a b -= D.2()1a b -=答案:B12.复数z 满足条件:21z z i +=-,那么z 对应的点的轨迹是( ) A.圆 B.椭圆 C.双曲线 D.抛物线 答案:A 二、填空题13.若复数cos sin z i θθ=-·所对应的点在第四象限,则θ为第 象限角. 答案:一14.复数z i =与它的共轭复数z 对应的两个向量的夹角为 . 答案:60°15.已知2z i =-,则32452z z z -++= . 答案:2 16.定义运算a b ad bc c c =-,则符合条件2132i z zi-=+的复数z = . 答案:7455i -三、解答题17.已知复数(2)()x yi x y -+∈R ,的模为3,求yx的最大值. 解:23x yi -+=∵,22(2)3x y -+=∴,故()x y ,在以(20)C ,为圆心,3为半径的圆上,yx表示圆上的点()x y ,与原点连线的斜率. 如图,由平面几何知识,易知yx的最大值为3. 18.已知1z i a b =+,,为实数. (1)若234z z ω=+-,求ω;(2)若2211z az bi z z ++=--+,求a ,b 的值.解:(1)2(1)3(1)41i i i ω=++--=--, 2ω=∴;(2)由条件,得()(2)1a b a ii i+++=-,()(2)1a b a i i +++=+∴,121a b a +=⎧⎨+=⎩,,∴解得12a b =-⎧⎨=⎩,.19.已知2211z x x i =++,22()z x a i =+,对于任意x ∈R ,均有12z z >成立,试求实数a 的取值范围. 解:12z z >∵, 42221()x x x a ++>+∴,22(12)(1)0a x a -+->∴对x ∈R 恒成立.当120a -=,即12a =时,不等式成立; 当120a -≠时,21201124(12)(1)0a a a a ->⎧⇒-<<⎨---<⎩, 综上,112a ⎛⎤∈- ⎥⎝⎦,. 20.已知()z i z ω=+∈C ,22z z -+是纯虚数,又221116ωω++-=,求ω. 解:设()z a bi a b =+∈R ,2(2)2(2)z a bi z a bi--+=+++∴2222(4)4(2)a b bia b +-+=++. 22z z -+∵为纯虚数, 22400a b b ⎧+-=⎨≠⎩,.∴222211(1)(1)(1)(1)a b i a b i ωω++-=++++-++∴2222(1)(1)(1)(1)a b a b =++++-++ 222()44a b b =+++844b =++ 124b =+.12416b +=∴.1b =∴.把1b =代入224a b +=,解得a =.z i =∴.2i ω=∴.21.复数3(1)()1i a bi z i++=-且4z =,z 对应的点在第一象限内,若复数0z z ,,对应的点是正三角形的三个顶点,求实数a ,b 的值.解:2(1)(1)()2()221i i z a bi i i a bi a bi i++=+=+=---···,由4z =,得224a b +=. ①∵复数0,z ,z 对应的点是正三角形的三个顶点,z z z =-∴,把22z a bi =--代入化简,得1b =. ② 又Z ∵点在第一象限内,0a <∴,0b <.由①②,得1a b ⎧=⎪⎨=-⎪⎩.故所求a =1b =-.22.设z 是虚数1z z ω=+是实数,且12ω-<<.(1)求z 的值及z 的实部的取值范围.(2)设11zzμ-=+,求证:μ为纯虚数; (3)求2ωμ-的最小值.(1)解:设0z a bi a b b =+∈≠R ,,,, 则1a bi a bi ω=+++2222a b a b i a b a b ⎛⎫⎛⎫=++- ⎪ ⎪++⎝⎭⎝⎭.因为ω是实数,0b ≠,所以221a b +=,即1z =.于是2a ω=,即122a -<<,112a -<<.所以z 的实部的取值范围是112⎛⎫- ⎪⎝⎭,;(2)证明:2222111211(1)1z a bi a b bi bi z a bi a b a μ------====-++++++.因为112a ⎛⎫∈- ⎪⎝⎭,,0b ≠,所以μ为纯虚数;(3)解:22222122(1)(1)b a a a a a ωμ--=+=+++1222111a a a a a -=-=-+++12(1)31a a ⎡⎤=++-⎢⎥+⎣⎦因为112a ⎛⎫∈- ⎪⎝⎭,,所以10a +>,故223ωμ-·≥431-=. 当111a a +=+,即0a =时,2ωμ-取得最小值1. 高中新课标数学选修(2-2)第三章测试题一、选择题1.实数x ,y 满足(1)(1)2i x i y ++-=,则xy 的值是( ) A.1 B.2C.2-D.1-答案:A2.复数cos z i θ=,[)02πθ∈,的几何表示是( ) A.虚轴B.虚轴除去原点C.线段PQ ,点P ,Q 的坐标分别为(01)(01)-,,, D.(C)中线段PQ ,但应除去原点 答案:C3.z ∈C ,若{}22(1)1M z z z =-=-|,则( )A.{}M =实数B.{}M =虚数C.{}{}M实数复数苘D.{}M ϕ=答案:A4.已知复数1z a bi =+,21()z ai a b =-+∈R ,,若12z z <,则( ) A.1b <-或1b > B.11b -<< C.1b > D.0b >答案:B5.已知复数z 满足2230z z --=的复数z 的对应点的轨迹是( ) A.1个圆 B.线段C.2个点D.2个圆答案:A6.设复数()z z ∈C 在映射f 下的象是zi ·,则12i -+的原象为( ) A.2i - B.2i + C.2i -+ D.13i +-答案:A7.设A ,B 为锐角三角形的两个内角,则复数(cot tan )(tan cot )z B A B A i =-+-对应的点位于复平面的( )A.第一象限 B.第二象限C.第三象限D.第四象限答案:B8.已知()22f z i z z i +=++,则(32)f i +=( ) A.9i B.93i +C.9i -D.93i --答案:B 9.复数2()12miA Bi m AB i-=+∈+R ,,,且0A B +=,则m =( )B.23 C.23-D.2答案:C10.(32)(1)i i +-+表示( ) A.点(32),与点(11),之间的距离 B.点(32),与点(11)--,之间的距离 C.点(32),与原点的距离 D.点(31),与点(21),之间的距离 答案:A11.已知z ∈C ,21z -=,则25z i ++的最大值和最小值分别是( )11 B.3和1C.和3答案:A12.已知1z ,2z ∈C ,12z z +=1z =2z =12z z -=( )A.1 B.12C.2答案:D 二、填空题13.若()1()f z z z =-∈C ,已知123z i =+,25z i =-,则12z f z ⎛⎫= ⎪ ⎪⎝⎭.答案:19172626i - 14.“复数z ∈R ”是“11z z=”的 . 答案:必要条件,但不是充分条件 15.A ,B 分别是复数1z ,2z 在复平面上对应的两点,O 为原点,若1212z z z z +=-,则AOB △为 . 答案:直角16.若n 是整数,则6(1)(1)nn i i -+-=· . 答案:8±或8i ±三、解答题17.已知复数3z z -对应的点落在射线(0)y x x =-≤上,1z +=z . 解:设()z a bi a b =+∈R ,,则33324z z a bi a bi a bi -=+-+=+, 由题意得4120ba b ⎧=-⎪⎨⎪>⎩,,①又由1z +=22(1)2a b ++=, ② 由①,②解得21a b =-⎧⎨=⎩,,2z i =-+∴.18.实数m 为何值时,复数216(815)55m z m i m i m m -⎛⎫=++++ ⎪++⎝⎭.(1)为实数; (2)为虚数; (3)为纯虚数;(4)对应点在第二象限.解:226(815)5m m z m m i m +-=++++.(1)z 为实数28150m m ⇔++=且50m +≠,解得3m =-; (2)z 为虚数2815050m m m ⎧++≠⇔⎨+≠⎩,,解得3m ≠-且5m ≠-;(3)z 为纯虚数226058150m m m m m ⎧+-=⎪⇔+⎨⎪++≠⎩,,解得2m =;(4)z 对应的点在第二象限226058150m m m m m ⎧+-<⎪⇔+⎨⎪++>⎩,,解得5m <-或32m -<<.19.设O 为坐标原点,已知向量1OZ u u u u r ,2OZ u u u u r分别对应复数12z z ,,且213(10)5z a i a =+-+,22(25)1z a i a=+--,a ∈R .若12z z +可以与任意实数比较大小,求1OZ u u u u r ,2OZ u u u u r 的值.解:213(10)5z a i a =--+,则31232[(10)(25)]51z z a a i a a+=++-+-+-的虚部为0, 22150a a +-=∴.解得5a =-或3a =. 又50a +≠∵,3a =∴.则138z i =+,21z i =-+,1318OZ ⎛⎫= ⎪⎝⎭u u u u r ,,2(11)OZ =-u u u u r ,. 1258OZ OZ =u u u u r u u u u r ∴·.20.已知z 是复数,2z i +与2zi-均为实数,且复数2()z ai +在复平面上对应的点在第一象限,求实数a 的取值范围.解:设()z x yi x y =+∈R ,,2(2)z i x y i +=++为实数,2y =-∴.211(22)(4)2255z x i x x i i i -==++---为实数, 4x =∴,则42z i =-.22()(124)8(2)z ai a a a i +=+-+-∵在第一象限, 212408(2)0a a a ⎧+->⎨->⎩,,∴解得26a <<. 21.已知关于x 的方程2(6)90()x i x ai a -+++=∈R 有实数根b . (1)求实数a ,b 的值;(2)若复数z 满足2z a bi z --=,求z 为何值时,z 有最小值并求出最小值. 解:(1)将b 代入题设方程,整理得2(69)()0b b a b i -++-=, 则2690b b -+=且0a b -=,解得3a b ==;(2)设()z x yi x y =+∈R ,,则2222(3)(3)4()x y x y -++=+, 即22(1)(1)8x y ++-=.∴点Z 在以(11)-,为圆心,22为半径的圆上, 画图可知,1z i =-时,min 2z =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【成才之路】2015-2016学年高中数学 第三章 数系的扩充与复数的引入综合检测 新人教A 版选修2-2时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.(2014·浙江理,2)已知i 是虚数单位,a 、b ∈R ,则“a =b =1”是“(a +b i)2=2i”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件[答案] A[解析] 本题考查充分条件、必要条件及复数的运算,当a =b =1时,(a +b i)2=(1+i)2=2i ,反之,(a +b i)2=a 2-b 2+2ab i =2i ,则a 2-b 2=0,2ab =1,解a =1,b =1或a =-1,b =-1,故a =1,b =1是(a +b i)2=2i 的充分不必要条件,选A.2.(2015·衡阳二模)设复数z =-1-i(i 为虚数单位),z 的共轭复数是z -,则2-z -z等于( )A .-1-2iB .-2+iC .-1+2iD .1+2i[答案] C[解析] 由题意可得2-z -z =2- -1+i -1-i = 3-i -1+i-1-i -1+i =-1+2i ,故选C.3.复数z =m -2i1+2i(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] A[解析] z =m -2i 1+2i = m -2i 1-2i 1+2i 1-2i =15[(m -4)-2(m +1)i],其实部为15(m -4),虚部为-25(m +1),由⎩⎪⎨⎪⎧m -4>0,-2 m +1 >0.得⎩⎪⎨⎪⎧m >4,m <-1.此时无解.故复数在复平面上对应的点不可能位于第一象限.4.(2014·东北三省三校联考)已知复数z =-12+32i ,则z +|z |=( )A .-12-32iB .-12+32iC.12+32i D .12-32i [答案] D[解析] 因为z =-12+32i ,所以z +|z |=-12-32i +-12 2+ 32 2=12-32i. 5.若θ∈⎝ ⎛⎭⎪⎫3π4,5π4,则复数(cos θ+sin θ)+(sin θ-cos θ)i 在复平面内所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] B [解析] θ∈⎝⎛⎭⎪⎫3π4,5π4时, sin θ+cos θ<0,sin θ-cos θ>0,故对应点(cos θ+sin θ,sin θ-cos θ)在第二象限. [点评] 由于θ∈⎝⎛⎭⎪⎫3π4,5π4时,据选项知,此复数对应点只能在某一象限,∴取θ=π检验知,对应点在第二象限.6.(2015·石家庄市二模)已知复数z 满足(1-i)z =i 2015(其中i 为虚数单位),则z -的虚部为( )A.12 B .-12C.12i D .-12i[答案] B[解析] ∵2015=4×503+3, ∴i2015=i 3=-i.∴z =-i 1-i =12-12i.∴z 的虚部为-12.故选B.7.设z 的共轭复数为z -,若z +z -=4,z ·z -=8,则z -z等于( )A .iB .-iC .±1D .±i[答案] D[解析] 设z =a +b i(a ,b ∈R ),则z-=a -b i ,由条件可得⎩⎪⎨⎪⎧2a =4,a 2+b 2=8.解得⎩⎪⎨⎪⎧a =2,b =±2.因此⎩⎨⎧z =2+2i ,z -=2-2i ,或⎩⎨⎧z =2-2i ,z -=2+2i.所以z -z =2-2i 2+2i =1-i 1+i = 1-i 2 1+i 1-i =-2i 2=-i ,或z -z =2+2i 2-2i =1+i 1-i = 1+i 2 1-i 1+i =2i 2=i , 所以z-z=±i.8.若关于x 的方程x 2+(1+2i)x +3m +i =0有实根,则实数m 等于( ) A.112B .112iC .-112D .-112i[答案] A[解析] 设方程的实数根为x =a (a 为实数), 则a 2+(1+2i)·a +3m +i =0,∴⎩⎪⎨⎪⎧a 2+a +3m =0,2a +1=0,∴⎩⎪⎨⎪⎧a =-12,m =112.故选A.9.已知复数z =(x -2)+y i(x 、y ∈R )在复平面内对应的向量的模为3,则y x的最大值是( )A.32B .33C.12 D . 3[答案] D[解析] 因为|(x -2)+y i|=3,所以(x -2)2+y 2=3,所以点(x ,y )在以C (2,0)为圆心,以3为半径的圆上,如图,由平面几何知识知-3≤yx≤ 3.10.(2014·河北衡水中学模拟)设a ∈R ,i 是虚数单位,则“a =1”是“a +ia -i为纯虚数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分又不必要条件[答案] A[解析] 当a =1时,1+i 1-i = 1+i22=i 为纯虚数.当a +i a -i = a +i 2a 2+1=a 2-1+2a i a 2+1为纯虚数时, a 2=1即a =±1,故选A.11.已知复数a =3+2i ,b =4+x i(其中i 为虚数单位,x ∈R ),若复数a b∈R ,则实数x 的值为( )A .-6B .6 C.83 D .-83[答案] C [解析] a b =3+2i 4+x i = 3+2i 4-x i 16+x 2=12+2x 16+x 2+⎝ ⎛⎭⎪⎫8-3x 16+x 2·i∈R ,∴8-3x16+x2=0,∴x =83.12.设z =(2t 2+5t -3)+(t 2+2t +2)i ,t ∈R ,则以下结论正确的是( ) A .z 对应的点在第一象限 B .z 一定不为纯虚数 C.z 对应的点在实轴的下方 D .z 一定为实数 [答案] C[解析] ∵t 2+2t +2=(t +1)2+1>0,∴z 对应的点在实轴的上方. 又∵z 与z 对应的点关于实轴对称. ∴C 项正确.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.(2015·重庆理,11)设复数a +b i(a ,b ∈R )的模为3,则(a +b i)(a -b i)=________.[答案] 3[解析] 由题易得a 2+b 2=3,故a 2+b 2=3;(a +b i)(a -b i)=a 2+b 2=3. 14.已知x +1x =-1,则x 2014+1x2014的值为________________.[答案] -1[解析] ∵x +1x=-1,∴x 2+x +1=0.∴x =-12±32i ,∴x 3=1.∵2014=3×671+1,∴x 2014=x ,∴x2014+1x=x +1x=-1.15.已知复数z 1=cos α+isin α,z 2=cos β+isin β,则复数z 1·z 2的实部是_____________[答案] cos(α+β)[解析] z 1·z 2=(cos α+isin α)(cos β+isin β) cos αcos β-sin αsin β+(cos αsin β+sin αcos β)i =cos(α+β)+sin(α+β)i 故z 1·z 2的实部为cos(α+β).16.设θ∈[0,2π],当θ=________________时,z =1+sin θ+i(cos θ-sin θ)是实数.[答案]π4或54π [解析] 本题主要考查复数的概念.z 为实数,则cos θ=sin θ,即tan θ=1.因为θ∈[0,2π],所以θ=π4或54π.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分12分)(2015·长春外国语学校高二期中)设复数z =lg(m 2-2m -2)+(m2+3m +2)i(m ∈R ),试求m 取何值时(1)z 是实数. (2)z 是纯虚数.(3)z 对应的点位于复平面的第一象限.[解析] (1)由m 2+3m +2=0且m 2-2m -2>0,解得m =-1,或m =-2,复数表示实数. (2)当实部等于零且虚部不等于零时,复数表示纯虚数. 由lg(m 2-2m -2)=0,且m 2+3m +2≠0, 求得m =3,故当m =3时,复数z 为纯虚数.(3)由lg(m 2-2m -2)>0,且m 2+3m +2>0,解得m <-2,或m >3,故当m <-2,或m >3时,复数z 对应的点位于复平面的第一象限.18.(本题满分12分)(2014·洛阳市高二期中)(1)已知复数z 在复平面内对应的点在第四象限,|z |=1,且z +z -=1,求z ;(2)已知复数z =5m21-2i -(1+5i)m -3(2+i)为纯虚数,求实数m 的值.[解析] (1)设z =a +b i(a 、b ∈R ),由题意得⎩⎪⎨⎪⎧a 2+b 2=1,2a =1.解得a =12,b =±32.∵复数z 在复平面内对应的点在第四象限,∴b =-32. ∴z =12-32i.(2)z =5m 21-2i -(1+5i)m -3(2+i)=(m 2-m -6)+(2m 2-5m -3)i ,依题意,m 2-m -6=0,解得m =3或-2.∵2m 2-5m -3≠0.∴m ≠3.∴m =-2.19.(本题满分12分)虚数z 满足|z |=1,z 2+2z +1z<0,求z .[解析] 设z =x +y i (x 、y ∈R ,y ≠0),∴x 2+y 2=1. 则z 2+2z +1z =(x +y i)2+2(x +y i)+1x +y i=(x 2-y 2+3x )+y (2x +1)i. ∵y ≠0,z 2+2z +1z<0,∴⎩⎪⎨⎪⎧2x +1=0, ①x 2-y 2+3x <0, ②又x 2+y 2=1. ③ 由①②③得 ⎩⎪⎨⎪⎧x =-12,y =±32.∴z =-12±32i.20.(本题满分12分)设z =log 2(1+m )+ilog 12(3-m )(m ∈R ).(1)若z 在复平面内对应的点在第三象限,求m 的取值范围; (2)若z 在复平面内对应的点在直线x -y -1=0上,求m 的值. [解析] (1)由已知,得 ⎩⎪⎨⎪⎧log 2 1+m <0, ①log 123-m <0, ②解①得-1<m <0. 解②得m <2.故不等式组的解集为{x |-1<m <0}, 因此m 的取值范围是{x |-1<m <0}.(2)由已知得,点(log 2(1+m ),log 12(3-m ))在直线x -y -1=0上,即log 2(1+m )-log 12(3-m )-1=0,整理得log 2[(1+m )(3-m )]=1.从而(1+m )(3-m )=2,即m 2-2m -1=0,解得m =1±2,且当m =1±2时都能使1+m >0,且3-m >0.故m =1± 2. 21.(本题满分12分)满足z +5z是实数,且z +3的实部与虚部是相反数的虚数z 是否存在?若存在,求出虚数z ,若不存在,请说明理由.[解析] 存在.设虚数z =x +y i(x 、y ∈R ,且y ≠0). z +5z =x +y i +5x +y i =x +5x x 2+y 2+⎝ ⎛⎭⎪⎫y -5y x 2+y 2i.由已知得⎩⎪⎨⎪⎧y -5y x 2+y2=0,x +3=-y .∵y ≠0,∴⎩⎪⎨⎪⎧x 2+y 2=5,x +y =-3.解得⎩⎪⎨⎪⎧x =-1,y =-2,或⎩⎪⎨⎪⎧x =-2,y =-1.∴存在虚数z =-1-2i 或z =-2-i 满足以上条件.22.(本题满分14分)将一颗质地均匀的正方体骰子(六个面的点数分别为1、2、3、4、5、6)先后抛掷两次,记第一次出现的点数为a ,第二次出现的点数为b .(1)设复数z =a +b i(i 为虚数单位),求事件“z -3i 为实数”的概率;(2)求点P (a ,b )落在不等式组⎩⎪⎨⎪⎧a -b +2≥0,0≤a ≤4,b ≥0.表示的平面区域内(含边界)的概率.[解析] (1)z =a +b i(i 为虚数单位),z -3i 为实数,则a +b i -3i =a +(b -3)i 为实数,则b =3.依题意得b 的可能取值为1、2、3、4、5、6,故b =3的概率为16.即事件“z -3i 为实数”的概率为16.(2)连续抛掷两次骰子所得结果如下表:不等式组所表示的平面区域如图中阴影部分所示(含边界). 由图知,点P (a ,b )落在四边形ABCD 内的结果有:(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(2,4)、(3,1)、(3,2)、(3,3)、(3,4)、(3,5)、(4,1)、(4,2)、(4,3)、(4,4)、(4,5)、(4,6),共18种.所以点P (a ,b )落在四边形ABCD 内(含边界)的概率为P =1836=12.。