人教版高中数学选修22试题四套带答案整理

合集下载

高二数学选修2-2综合测试卷新课标人教版

高二数学选修2-2综合测试卷新课标人教版

高二数学选修2-2综合测试卷一、选择题1、设)(x f 为可导函数,且满足12)1()1(lim 0-=--®xx f f x ,则过曲线)(x f y =上点))1(,1(f 处的切线斜率为 ( ))A 2B -1C 1D -22、若复数i m m m m z )23()232(22+-+--=是纯虚数,则实数m 的值为A 1或2B 21-或2 C 21-D 23、设)(,)(3bx a f x x f -=的导数是(的导数是( ))A )(3bx a -B 2)(32bx a b -- C 2)(3bx a b - D 2)(3bx a b --4、点P 在曲线323+-=x x y 上移动时,过点P 的切线的倾斜角的取值范围是(的切线的倾斜角的取值范围是( )) A ],0[p B ),43[)2,0(p p pÈ C ]43,2[]2,0[p ppÈ D ),43[]2,0[p p pÈ 5、已知0,,¹Îb a R b a 且,则在①ab b a ³+222;②2³+ba ab ;③2)2(b a a b +£;④2)2(222b a ba +£+这四个式子中,恒成立的个数是(这四个式子中,恒成立的个数是( ))A 1个B 2个C 3个D 4个6、利用数学归纳法证明“*),12(312)()2)(1(N n n n n n n nÎ-´×××´´´=+×××++ ”时,从“k n =”变到”变到 ““1+=k n ”时,左边应增乘的因式是(”时,左边应增乘的因式是( )) A 12+k B112++k k C1)22)(12(+++k k k D132++k k7、若函数2)(3-+=ax x x f 在区间),1(+¥内是增函数,则实数a 的取值范围是(的取值范围是( )) A ),3(+¥ B ),3[+¥- C ),3(+¥- D )3,(--¥ 8、当n 取遍正整数时,nnii -+表示不同值得个数是A 1B 2C 3D 49、函数12)(2++=ax ax x f 在[-3[-3,,2]2]上有最大值上有最大值4。

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)

高中数学选修2-2综合测试题(全册含答案)1.复数就像平面上的点,有实部和虚部。

2.复数就像向量,有大小和方向。

3.复数就像计算机中的复数类型,有实部和虚部。

4.复数就像两个数字的有序对,有序对的第一个数字是实部,第二个数字是虚部。

改写:关于复数的四种类比推理,可以用不同的比喻来描述复数的实部和虚部。

一种比喻是将复数看作平面上的点,实部和虚部分别对应点的横坐标和纵坐标;另一种比喻是将复数看作向量,实部和虚部分别对应向量的大小和方向;还可以将复数看作计算机中的复数类型,实部和虚部分别对应类型中的两个数;最后一种比喻是将复数看作有序对,实部和虚部分别对应有序对的第一个数字和第二个数字。

①复数的加减法运算可以类比多项式的加减法运算法则。

②由向量a的性质|a|²=a²,可以类比得到复数z的性质:|z|²=z²。

③方程ax²+bx+c=0 (a,b,c∈R,且a≠0)有两个不同的实数根的条件是b²-4ac>0,类比可得方程ax²+bx+c=0 (a,b,c∈C且a≠0)有两个不同的复数根的条件是b²-4ac>0.④由向量加法的几何意义,可以类比得到复数加法的几何意义。

其中类比得到的结论正确的是:A。

①③B。

②④C。

②③D。

①④2.删除明显有问题的段落。

3.填空题:11.若复数z满足z+i=0,则|z|=1.12.直线y=kx+1与曲线y=x³+ax+b相切于点A(1,3),则2a+b的值为4.13.第n个正方形数是n²。

14.++=AA′BB′CC′;+++=AA′BB′CC′DD′。

4.解答题:15.1) F(x)的单调区间为(-∞。

0)和(2.+∞)。

2) F(x)在[1,5]上的最小值为-5,最大值为9.16.因为AD⊥BC,所以AB²=AD²+DB²。

又因为AB⊥AC,所以AC²=AD²+DC²。

最新人教版高中数学选修2-2各章检测试卷(全册 共3章 附答案)

最新人教版高中数学选修2-2各章检测试卷(全册 共3章 附答案)
则kAB= ,
由图象知0<f′(3)<kAB<f′(2).
答案:B
6.设x=-2与x=4是函数f(x)=x3+ax2+bx的两个极值点,则常数a-b的值为()
A.21 B.-21
C.27 D.-27
解析:因为f′(x)=3x2+2ax+b,
所以 ⇒
所以a-b=-3+24=21.故选A.
答案:A
7.函数f(x)=x2-ln2x的单调递减区间是()
答案:B
9.由函数y=-x的图象,直线x=1,x=0,y=0所围成的图形的面积可表示为()
A. (-x)dxB. |-x|dx
C. -1xdxD.- xdx
解析:由定积分的几何意义可知所求图形的面积为S= |-x|dx.
答案:B
10.一物体在力F(x)=4x-1(单位:N)的作用下,沿着与力F相同的方向,从x=1处运动到x=3处(单位:m),则力F所作的功为()
最新人教版高中数学选修
一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.下列各式正确的是()
A.(sina)′=cosa(a为常数)
B.(cosx)′=sinx
C.(sinx)′=cosx
D.(x-5)′=- x-6
解析:由导数公式知选项A中(sina)′=0;选项B中(cosx)′=-sinx;选项D中(x-5)′=-5x-6.
A.10 J B.14 J
C.7 J D.28 J
解析:W= F(x)dx
= (4x-1)dx=(2x2-x)
=(2·32-3)-(2·12-1)=14 J.
答案:B
11.若两曲线y=x2与y=cx3(c>0)围成图形的面积是 ,则c等于()

人教版高中数学选修22试题四套带答案整理

人教版高中数学选修22试题四套带答案整理
(1)z为实数?z为纯虚数?
(2)A位于第三象限?
6.(12分)某商品每件成本9元,售价30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比。已知商品单价降低2元时,一星期多卖出24件。
(1)将一个星期的商品销售利润表示成x的函数;
13.函数g(x)=ax3+2(1-a)x2-3ax在区间 内单调递减,则a的取值范围是________.
14.现有12名同学分别到三个企业进行社会调查,若每个企业4人,则不同的分配方案共有
种。(只列式)
三、解答题(共6题,70分)
15.(10分)已知复数 在复平面内表示的点为A,实数m取什么值时,
从而最大体积V=V′(x)=9×12-6×13(m3),此时长方体的长为2 m,高为1.5 m.
答:当长方体的长为2 m时,宽为1 m,高为1.5 m时,体积最大,最大体积为3 m3。
21、解:(1)

所以函数 的单调递减区间为(- ,-1)和(3,+ )(2)
因为
所以
因为在(-1,3)上 >0,所以 在[-1,2]上单调递增,
9. (n∈N*);10. ;11. ;
12.1+a+a2;13.(-∞,-1];14.
13、【解析】∵g(x)在区间-∞, 内单调递减,
∴g′(x)=3ax2+4(1-a)x-3a在 上的函数值非正,
由于a<0,对称轴x= >0,故只需g′ = + a(1-a)-3a≤0,注意到a<0,
∴a2+4(1-a)-9≥0,得a≤-1或a≥5(舍去).
一、选择题(共8题,每题5分)
1.复数 在复平面内的对应点在()

人教版高中数学选修22同步章节训练题及答案全册汇编

人教版高中数学选修22同步章节训练题及答案全册汇编

人教A版高中数学选修1-2同步训练目录1.1.1 变化率问题同步练习1.1.2 导数的概念同步练习1.1.3 导数的几何意义同步练习1.2.1 几个常用的函数的导数同步练习1.2.2 根本初等函数的导数公式及导数运算法那么1 同步练习1.2.2 根本初等函数的导数公式及导数运算法那么2 同步练习1.3.1 函数的单调性与导数同步练习1.3.2 函数的极值与导数同步练习1.3.3 函数的最值与导数同步练习1.4 生活中的优化问题举例同步练习1.5.1-2 曲边梯形的面积与汽车行驶的路程同步练习1.5.3 定积分的概念同步练习1.6 微积分根本定理同步练习1.7 定积分的简单应用同步练习第一章导数及其应用综合检测第一章章末综合训练2.1.1.1 归纳推理同步练习2.1.1.2 类比推理同步练习2.1.2 演绎推理同步练习2.2.1 综合法与分析法同步练习2.2.2 反证法同步练习2.3 数学归纳法同步练习第二章推理与证明综合检测第二章章末综合训练3.1.1 数系的扩充与复数的概念同步练习3.1.2 复数的几何意义同步练习3.2.1 复数代数形式的加减运算及其几何意义同步练习3.2.2 复数代数形式的乘除运算同步练习第三章数系的扩充与复数的引入综合检测第三章章末综合训练选修2-2 综合检测选修2-2 1.1 第1课时 变化率问题一、选择题1.在平均变化率的定义中,自变量x 在x 0处的增量Δx ( )A .大于零B .小于零C .等于零D .不等于零[答案] D[解析] Δx 可正,可负,但不为0,故应选D.2.设函数y =f (x ),当自变量x 由x 0变化到x 0+Δx 时,函数的改变量Δy 为() A .f (x 0+Δx ) B .f (x 0)+ΔxC .f (x 0)·ΔxD .f (x 0+Δx )-f (x 0)[答案] D[解析] 由定义,函数值的改变量Δy =f (x 0+Δx )-f (x 0),故应选D.3.函数f (x )=-x 2+x ,那么f (x )从-1到-0.9的平均变化率为( )A .3B .0.29C .2.09D .2.9[答案] D[解析] f (-1)=-(-1)2+(-1)=-2.f (-0.9)=-(-0.9)2+(-0.9)=-1.71.∴平均变化率为f (-0.9)-f (-1)-0.9-(-1)=-1.71-(-2)0.1=2.9,故应选D.4.函数f (x )=x 2+4上两点A ,B ,x A =1,x B =1.3,那么直线AB 的斜率为() A .2 B .2.3C .2.09D .2.1[答案] B[解析] f (1)=5,f (1.3)=5.69.∴k AB =f (1.3)-f (1)1.3-1=5.69-50.3=2.3,故应选B.5.函数f (x )=-x 2+2x ,函数f (x )从2到2+Δx 的平均变化率为( )A .2-ΔxB .-2-ΔxC .2+ΔxD .(Δx )2-2·Δx[答案] B[解析] ∵f (2)=-22+2×2=0,∴f (2+Δx )=-(2+Δx )2+2(2+Δx )=-2Δx -(Δx )2,∴f (2+Δx )-f (2)2+Δx -2=-2-Δx ,故应选B. 6.函数y =x 2+1的图象上一点(1,2)及邻近一点(1+Δx,2+Δy ),那么Δy Δx等于( ) A .2B .2xC .2+ΔxD .2+(Δx )2 [答案] C[解析] Δy Δx =f (1+Δx )-f (1)Δx=[(1+Δx )2+1]-2Δx=2+Δx .故应选C. 7.质点运动规律S (t )=t 2+3,那么从3到3.3内,质点运动的平均速度为( )A .6.3B .36.3C .3.3D .9.3[答案] A[解析] S (3)=12,S (3.3)=13.89,∴平均速度v =S (3.3)-S (3)3.3-3=1.890.3=6.3,故应选A. 8.在x =1附近,取Δx =0.3,在四个函数①y =x 、②y =x 2、③y =x 3、④y =1x中,平均变化率最大的是( )A .④B .③C .②D .① [答案] B[解析] Δx =0.3时,①y =x 在x =1附近的平均变化率k 1=1;②y =x 2在x =1附近的平均变化率k 2=2+Δx =2.3;③y =x 3在x =1附近的平均变化率k 3=3+3Δx +(Δx )2=3.99;④y =1x 在x =1附近的平均变化率k 4=-11+Δx =-1013.∴k 3>k 2>k 1>k 4,故应选B.9.物体做直线运动所经过的路程s 可以表示为时间t 的函数s =s (t ),那么物体在时间间隔[t 0,t 0+Δt ]内的平均速度是( )A .v 0B.Δt s (t 0+Δt )-s (t 0)C.s (t 0+Δt )-s (t 0)ΔtD.s (t )t [答案] C[解析] 由平均变化率的概念知C 正确,故应选C.10.曲线y =14x 2和这条曲线上的一点P ⎝⎛⎭⎫1,14,Q 是曲线上点P 附近的一点,那么点Q 的坐标为( )A.⎝⎛⎭⎫1+Δx ,14(Δx )2 B.⎝⎛⎭⎫Δx ,14(Δx )2 C.⎝⎛⎭⎫1+Δx ,14(Δx +1)2 D.⎝⎛⎭⎫Δx ,14(1+Δx )2 [答案] C[解析] 点Q 的横坐标应为1+Δx ,所以其纵坐标为f (1+Δx )=14(Δx +1)2,故应选C. 二、填空题11.函数y =x 3-2,当x =2时,Δy Δx=________. [答案] (Δx )2+6Δx +12[解析] Δy Δx =(2+Δx )3-2-(23-2)Δx =(Δx )3+6(Δx )2+12Δx Δx=(Δx )2+6Δx +12.12.在x =2附近,Δx =14时,函数y =1x的平均变化率为________. [答案] -29[解析] Δy Δx =12+Δx -12Δx =-14+2Δx=-29. 13.函数y =x 在x =1附近,当Δx =12时的平均变化率为________. [答案] 6-2[解析] Δy Δx =1+Δx -1Δx =11+Δx +1=6-2. 14.曲线y =x 2-1上两点A (2,3),B (2+Δx,3+Δy ),当Δx =1时,割线AB 的斜率是________;当Δx =0.1时,割线AB 的斜率是________.[答案] 5 4.1[解析] 当Δx =1时,割线AB 的斜率k 1=Δy Δx =(2+Δx )2-1-22+1Δx =(2+1)2-221=5. 当Δx =0.1时,割线AB 的斜率k 2=Δy Δx =(2+0.1)2-1-22+10.1=4.1. 三、解答题15.函数f (x )=2x +1,g (x )=-2x ,分别计算在区间[-3,-1],[0,5]上函数f (x )及g (x )的平均变化率.[解析] 函数f (x )在[-3,-1]上的平均变化率为f (-1)-f (-3)-1-(-3)=[2×(-1)+1]-[2×(-3)+1]2=2. 函数f (x )在[0,5]上的平均变化率为f (5)-f (0)5-0=2. 函数g (x )在[-3,-1]上的平均变化率为g (-1)-g (-3)-1-(-3)=-2. 函数g (x )在[0,5]上的平均变化率为g (5)-g (0)5-0=-2. 16.过曲线f (x )=2x2的图象上两点A (1,2),B (1+Δx,2+Δy )作曲线的割线AB ,求出当Δx =14时割线的斜率.[解析] 割线AB 的斜率k =(2+Δy )-2(1+Δx )-1=Δy Δx=2(1+Δx )2-2Δx =-2(Δx +2)(1+Δx )2=-7225. 17.求函数y =x 2在x =1、2、3附近的平均变化率,判断哪一点附近平均变化率最大?[解析] 在x =2附近的平均变化率为k 1=f (1+Δx )-f (1)Δx =(1+Δx )2-1Δx=2+Δx ; 在x =2附近的平均变化率为k 2=f (2+Δx )-f (2)Δx =(2+Δx )2-22Δx=4+Δx ; 在x =3附近的平均变化率为k 3=f (3+Δx )-f (3)Δx =(3+Δx )2-32Δx=6+Δx . 对任意Δx 有,k 1<k 2<k 3,∴在x =3附近的平均变化率最大.18.(2021·杭州高二检测)路灯距地面8m ,一个身高为1.6m 的人以84m/min 的速度在地面上从路灯在地面上的射影点C 处沿直线离开路灯.(1)求身影的长度y 与人距路灯的距离x 之间的关系式;(2)求人离开路灯的第一个10s 内身影的平均变化率.[解析] (1)如下图,设人从C 点运动到B 处的路程为x m ,AB 为身影长度,AB 的长度为y m ,由于CD ∥BE ,那么AB AC =BE CD, 即yy +x =1.68,所以y =f (x )=14x . (2)84m/min =1.4m/s ,在[0,10]内自变量的增量为x 2-x 1=1.4×10-1.4×0=14,f (x 2)-f (x 1)=14×14-14×0=72.所以f (x 2)-f (x 1)x 2-x 1=7214=14. 即人离开路灯的第一个10s 内身影的平均变化率为14.选修2-2 1.1 第2课时 导数的概念一、选择题1.函数在某一点的导数是( )A .在该点的函数值的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f ′(x 0)是当Δx 无限趋近于0时,Δy Δx无限趋近的常数,故应选C. 2.如果质点A 按照规律s =3t 2运动,那么在t 0=3时的瞬时速度为( )A .6B .18C .54D .81[答案] B[解析] ∵s (t )=3t 2,t 0=3,∴Δs =s (t 0+Δt )-s (t 0)=3(3+Δt )2-3·32=18Δt +3(Δt )2∴Δs Δt=18+3Δt . 当Δt →0时,Δs Δt→18,故应选B. 3.y =x 2在x =1处的导数为( )A .2xB .2C .2+ΔxD .1 [答案] B[解析] ∵f (x )=x 2,x =1,∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2∴Δy Δx =2+Δx 当Δx →0时,Δy Δx→2 ∴f ′(1)=2,故应选B.4.一质点做直线运动,假设它所经过的路程与时间的关系为s (t )=4t 2-3(s (t )的单位:m ,t 的单位:s),那么t =5时的瞬时速度为( )A .37B .38C .39D .40[答案] D[解析] ∵Δs Δt =4(5+Δt )2-3-4×52+3Δt =40+4Δt ,∴s ′(5)=li m Δt →0 ΔsΔt =li m Δt →0 (40+4Δt )=40.故应选D.5.函数y =f (x ),那么以下说法错误的选项是( )A .Δy =f (x 0+Δx )-f (x 0)叫做函数值的增量B.Δy Δx =f (x 0+Δx )-f (x 0)Δx 叫做函数在x 0到x 0+Δx 之间的平均变化率C .f (x )在x 0处的导数记为y ′D .f (x )在x 0处的导数记为f ′(x 0)[答案] C[解析] 由导数的定义可知C 错误.故应选C.6.函数f (x )在x =x 0处的导数可表示为y ′|x =x 0,即( )A .f ′(x 0)=f (x 0+Δx )-f (x 0)B .f ′(x 0)=li m Δx →0[f (x 0+Δx )-f (x 0)]C .f ′(x 0)=f (x 0+Δx )-f (x 0)ΔxD .f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx[答案] D[解析] 由导数的定义知D 正确.故应选D.7.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于() A .4a B .2a +bC .bD .4a +b[答案] D[解析] ∵Δy Δx =a (2+Δx )2+b (2+Δx)+c -4a -2b -cΔx=4a +b +a Δx ,∴y ′|x =2=li m Δx →0 Δy Δx =li m Δx →0 (4a +b +a ·Δx )=4a +b .故应选D.8.如果一个函数的瞬时变化率处处为0,那么这个函数的图象是( )A .圆B .抛物线C .椭圆D .直线[答案] D [解析] 当f (x )=b 时,f ′(x )=0,所以f (x )的图象为一条直线,故应选D.9.一物体作直线运动,其位移s 与时间t 的关系是s =3t -t 2,那么物体的初速度为( )A .0B .3C .-2D .3-2t[答案] B[解析] ∵Δs Δt =3(0+Δt )-(0+Δt )2Δt=3-Δt , ∴s ′(0)=li m Δt →0 Δs Δt =3.故应选B. 10.设f (x )=1x ,那么li m x →a f (x )-f (a )x -a等于( ) A .-1aB.2a C .-1a 2 D.1a 2 [答案] C[解析] li m x →a f (x )-f (a )x -a =li m x →a 1x -1a x -a=li m x →aa -x (x -a )·xa =-li m x →a 1ax =-1a 2. 二、填空题11.函数y =f (x )在x =x 0处的导数为11,那么li m Δx →0f (x 0-Δx )-f (x 0)Δx=________; li m x →x 0 f (x )-f (x 0)2(x 0-x )=________. [答案] -11,-112[解析] li m Δx →0 f (x 0-Δx )-f (x 0)Δx=-li m Δx →0 f (x 0-Δx )-f (x 0)-Δx=-f ′(x 0)=-11;li m x →x 0 f (x )-f (x 0)2(x 0-x )=-12li m Δx →0 f (x 0+Δx )-f (x 0)Δx =-12f ′(x 0)=-112. 12.函数y =x +1x在x =1处的导数是________. [答案] 0 [解析] ∵Δy =⎝ ⎛⎭⎪⎫1+Δx +11+Δx -⎝⎛⎭⎫1+11 =Δx -1+1Δx +1=(Δx )2Δx +1, ∴Δy Δx =Δx Δx +1.∴y ′|x =1=li m Δx →0 Δx Δx +1=0. 13.函数f (x )=ax +4,假设f ′(2)=2,那么a 等于______.[答案] 2[解析] ∵Δy Δx =a (2+Δx )+4-2a -4Δx=a , ∴f ′(1)=li m Δx →0 Δy Δx=a .∴a =2. 14.f ′(x 0)=li m x →x 0f (x )-f (x 0)x -x 0,f (3)=2,f ′(3)=-2,那么li m x →3 2x -3f (x )x -3的值是________.[答案] 8[解析] li m x →3 2x -3f (x )x -3=li m x →3 2x -3f (x )+3f (3)-3f (3)x -3=lim x →3 2x -3f (3)x -3+li m x →3 3(f (3)-f (x ))x -3. 由于f (3)=2,上式可化为li m x →3 2(x -3)x -3-3li m x →3 f (x )-f (3)x -3=2-3×(-2)=8. 三、解答题15.设f (x )=x 2,求f ′(x 0),f ′(-1),f ′(2).[解析] 由导数定义有f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx=li m Δx →0 (x 0+Δx )2-x 20Δx =li m Δx →0 Δx (2x 0+Δx )Δx=2x 0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s 2,枪弹从枪口射出时所用时间为1.6×10-3s ,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s =12at 2 ∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2 ∴Δs Δt =at 0+12a Δt , ∴li m Δt →0Δs Δt =li m Δt →0 ⎝⎛⎭⎫at 0+12a Δt =at 0, a =5.0×105m/s 2,t 0=1.6×10-3s ,∴at 0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y =f (x )=x 2+3的图象上取一点P (1,4)及附近一点(1+Δx,4+Δy ),求(1)Δy Δx(2)f ′(1).[解析] (1)Δy Δx =f (1+Δx )-f (1)Δx=(1+Δx )2+3-12-3Δx=2+Δx . (2)f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0(2+Δx )=2. 18.函数f (x )=|x |(1+x )在点x 0=0处是否有导数?假设有,求出来,假设没有,说明理由.[解析] f (x )=⎩⎪⎨⎪⎧x +x 2 (x ≥0)-x -x 2 (x <0)Δy =f (0+Δx )-f (0)=f (Δx )=⎩⎪⎨⎪⎧Δx +(Δx )2 (Δx >0)-Δx -(Δx )2 (Δx <0) ∴lim x →0+Δy Δx =lim Δx →0+ (1+Δx )=1, lim Δx →0- Δy Δx =lim Δx →0-(-1-Δx )=-1, ∵lim Δx →0-Δy Δx ≠lim Δx →0+ Δy Δx ,∴Δx →0时,Δy Δx 无极限. ∴函数f (x )=|x |(1+x )在点x 0=0处没有导数,即不可导.(x →0+表示x 从大于0的一边无限趋近于0,即x >0且x 趋近于0)选修2-2 1.1 第3课时 导数的几何意义一、选择题1.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在 [答案] B[解析] 切线x +2y -3=0的斜率k =-12,即f ′(x 0)=-12<0.故应选B. 2.曲线y =12x 2-2在点⎝⎛⎭⎫1,-32处切线的倾斜角为( ) A .1B.π4C.54π D .-π4 [答案] B[解析] ∵y ′=li m Δx →0 [12(x +Δx )2-2]-(12x 2-2)Δx=li m Δx →0 (x +12Δx )=x ∴切线的斜率k =y ′|x =1=1.∴切线的倾斜角为π4,故应选B. 3.在曲线y =x 2上切线的倾斜角为π4的点是( ) A .(0,0)B .(2,4) C.⎝⎛⎭⎫14,116D.⎝⎛⎭⎫12,14 [答案] D[解析] 易求y ′=2x ,设在点P (x 0,x 20)处切线的倾斜角为π4,那么2x 0=1,∴x 0=12,∴P ⎝⎛⎭⎫12,14.4.曲线y =x 3-3x 2+1在点(1,-1)处的切线方程为( )A .y =3x -4B .y =-3x +2C .y =-4x +3D .y =4x -5 [答案] B[解析]y′=3x2-6x,∴y′|x=1=-3.由点斜式有y+1=-3(x-1).即y=-3x+2.5.设f(x)为可导函数,且满足limx→0f(1)-f(1-2x)2x=-1,那么过曲线y=f(x)上点(1,f(1))处的切线斜率为()A.2B.-1C.1D.-2[答案] B[解析]limx→0f(1)-f(1-2x)2x=limx→0f(1-2x)-f(1)-2x=-1,即y′|x=1=-1,那么y=f(x)在点(1,f(1))处的切线斜率为-1,应选B.6.设f′(x0)=0,那么曲线y=f(x)在点(x0,f(x0))处的切线()A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴斜交[答案] B[解析]由导数的几何意义知B正确,故应选B.7.曲线y=f(x)在x=5处的切线方程是y=-x+8,那么f(5)及f′(5)分别为() A.3,3 B.3,-1C.-1,3 D.-1,-1[答案] B[解析]由题意易得:f(5)=-5+8=3,f′(5)=-1,故应选B.8.曲线f(x)=x3+x-2在P点处的切线平行于直线y=4x-1,那么P点的坐标为() A.(1,0)或(-1,-4) B.(0,1)C.(-1,0) D.(1,4)[答案] A[解析]∵f(x)=x3+x-2,设x P=x0,∴Δy=3x20·Δx+3x0·(Δx)2+(Δx)3+Δx,∴ΔyΔx=3x20+1+3x0(Δx)+(Δx)2,∴f′(x0)=3x20+1,又k=4,∴3x 20+1=4,x 20=1.∴x 0=±1, 故P (1,0)或(-1,-4),故应选A.9.设点P 是曲线y =x 3-3x +23上的任意一点,P 点处的切线倾斜角为α,那么α的取值范围为( )A.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫23π,π B.⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫56π,π C.⎣⎡⎭⎫23π,πD.⎝⎛⎦⎤π2,56π [答案] A[解析] 设P (x 0,y 0),∵f ′(x )=li m Δx →0 (x +Δx )3-3(x +Δx )+23-x 3+3x -23Δx=3x 2-3,∴切线的斜率k =3x 20-3,∴tan α=3x 20-3≥- 3. ∴α∈⎣⎡⎭⎫0,π2∪⎣⎡⎭⎫23π,π.故应选A. 10.(2021·福州高二期末)设P 为曲线C :y =x 2+2x +3上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,π4],那么点P 横坐标的取值范围为( ) A .[-1,-12] B .[-1,0] C .[0,1]D .[12,1] [答案] A[解析] 考查导数的几何意义.∵y ′=2x +2,且切线倾斜角θ∈[0,π4], ∴切线的斜率k 满足0≤k ≤1,即0≤2x +2≤1,∴-1≤x ≤-12. 二、填空题11.函数f (x )=x 2+3,那么f (x )在(2,f (2))处的切线方程为________.[答案] 4x -y -1=0[解析] ∵f (x )=x 2+3,x 0=2∴f (2)=7,Δy =f (2+Δx )-f (2)=4·Δx +(Δx )2∴Δy Δx=4+Δx .∴li m Δx →0 Δy Δx =4.即f ′(2)=4. 又切线过(2,7)点,所以f (x )在(2,f (2))处的切线方程为y -7=4(x -2)即4x -y -1=0.12.假设函数f (x )=x -1x,那么它与x 轴交点处的切线的方程为________. [答案] y =2(x -1)或y =2(x +1)[解析] 由f (x )=x -1x=0得x =±1,即与x 轴交点坐标为(1,0)或(-1,0). ∵f ′(x )=li m Δx →0 (x +Δx )-1x +Δx-x +1x Δx=li m Δx →0 ⎣⎢⎡⎦⎥⎤1+1x (x +Δx )=1+1x 2. ∴切线的斜率k =1+11=2. ∴切线的方程为y =2(x -1)或y =2(x +1).13.曲线C 在点P (x 0,y 0)处有切线l ,那么直线l 与曲线C 的公共点有________个.[答案] 至少一[解析] 由切线的定义,直线l 与曲线在P (x 0,y 0)处相切,但也可能与曲线其他局部有公共点,故虽然相切,但直线与曲线公共点至少一个.14.曲线y =x 3+3x 2+6x -10的切线中,斜率最小的切线方程为________.[答案] 3x -y -11=0[解析] 设切点P (x 0,y 0),那么过P (x 0,y 0)的切线斜率为,它是x 0的函数,求出其最小值.设切点为P (x 0,y 0),过点P 的切线斜率k ==3x 20+6x 0+6=3(x 0+1)2+3.当x 0=-1时k 有最小值3,此时P 的坐标为(-1,-14),其切线方程为3x -y -11=0.三、解答题15.求曲线y =1x-x 上一点P ⎝⎛⎭⎫4,-74处的切线方程.[解析] ∴y ′=lim Δx →0⎝ ⎛⎭⎪⎫1x +Δx -1x -(x +Δx -x )Δx =lim Δx →0 -Δx x (x +Δx )-Δx x +Δx +x Δx=lim Δx →0 ⎝ ⎛⎭⎪⎪⎫-1x (x +Δx )-1x +Δx +x =-1x 2-12x . ∴y ′|x =4=-116-14=-516, ∴曲线在点P ⎝⎛⎭⎫4,-74处的切线方程为: y +74=-516(x -4). 即5x +16y +8=0.16.函数f (x )=x 3-3x 及y =f (x )上一点P (1,-2),过点P 作直线l .(1)求使直线l 和y =f (x )相切且以P 为切点的直线方程;(2)求使直线l 和y =f (x )相切且切点异于点P 的直线方程y =g (x ).[解析] (1)y ′=li m Δx →0 (x +Δx )3-3(x +Δx )-3x 3+3x Δx=3x 2-3. 那么过点P 且以P (1,-2)为切点的直线的斜率k 1=f ′(1)=0,∴所求直线方程为y =-2.(2)设切点坐标为(x 0,x 30-3x 0),那么直线l 的斜率k 2=f ′(x 0)=3x 20-3,∴直线l 的方程为y -(x 30-3x 0)=(3x 20-3)(x -x 0)又直线l 过点P (1,-2),∴-2-(x 30-3x 0)=(3x 20-3)(1-x 0),∴x 30-3x 0+2=(3x 20-3)(x 0-1), 解得x 0=1(舍去)或x 0=-12.故所求直线斜率k =3x 20-3=-94, 于是:y -(-2)=-94(x -1),即y =-94x +14. 17.求证:函数y =x +1x图象上的各点处的切线斜率小于1. [解析] y ′=li m Δx →0 f (x +Δx )-f (x )Δx=li m Δx →0⎝ ⎛⎭⎪⎫x +Δx +1x +Δx -⎝⎛⎭⎫x +1x Δx=li m Δx →0 x ·Δx (x +Δx )-Δx (x +Δx )·x ·Δx =li m Δx →0 (x +Δx )x -1(x +Δx )x=x 2-1x 2=1-1x 2<1, ∴y =x +1x图象上的各点处的切线斜率小于1. 18.直线l 1为曲线y =x 2+x -2在点(1,0)处的切线,l 2为该曲线的另一条切线,且l 1⊥l 2.(1)求直线l 2的方程;(2)求由直线l 1、l 2和x 轴所围成的三角形的面积.[解析] (1)y ′|x =1=li m Δx →0 (1+Δx )2+(1+Δx )-2-(12+1-2)Δx=3, 所以l 1的方程为:y =3(x -1),即y =3x -3.设l 2过曲线y =x 2+x -2上的点B (b ,b 2+b -2),y ′|x =b =li m Δx →0 (b +Δx )2+(b +Δx )-2-(b 2+b -2)Δx=2b +1,所以l 2的方程为:y -(b 2+b -2)=(2b +1)·(x -b ),即y =(2b +1)x -b 2-2.因为l 1⊥l 2,所以3×(2b +1)=-1,所以b =-23,所以l 2的方程为:y =-13x -229.(2)由⎩⎪⎨⎪⎧ y =3x -3,y =-13x -229,得⎩⎨⎧ x =16,y =-52,即l 1与l 2的交点坐标为⎝⎛⎭⎫16,-52. 又l 1,l 2与x 轴交点坐标分别为(1,0),⎝⎛⎭⎫-223,0. 所以所求三角形面积S =12×⎪⎪⎪⎪-52×⎪⎪⎪⎪1+223=12512.选修2-2 1.2 第1课时 几个常用的函数的导数一、选择题1.以下结论不正确的选项是( )A .假设y =0,那么y ′=0B .假设y =5x ,那么y ′=5C .假设y =x -1,那么y ′=-x -2[答案] D2.假设函数f (x )=x ,那么f ′(1)等于( )A .0B .-12C .2D.12[答案] D[解析] f ′(x )=(x )′=12x , 所以f ′(1)=12×1=12,故应选D. 3.抛物线y =14x 2在点(2,1)处的切线方程是( ) A .x -y -1=0B .x +y -3=0C .x -y +1=0D .x +y -1=0[答案] A[解析] ∵f (x )=14x 2, ∴f ′(2)=li m Δx →0 f (2+Δx )-f (2)Δx=li m Δx →0 ⎝⎛⎭⎫1+14Δx =1. ∴切线方程为y -1=x -2.即x -y -1=0.4.f (x )=x 3,那么f ′(2)=( )A .0B .3x 2C .8D .12[答案] D[解析] f ′(2)=lim Δx →0 (2+Δx )3-23Δx=lim Δx →0 6Δx 2+12ΔxΔx =lim Δx →0 (6Δx +12)=12,应选D.5.f (x )=x α,假设f ′(-1)=-2,那么α的值等于( )A .2B .-2C .3D .-3[答案] A[解析] 假设α=2,那么f (x )=x 2,∴f ′(x )=2x ,∴f ′(-1)=2×(-1)=-2适合条件.故应选A.6.函数y =(x +1)2(x -1)在x =1处的导数等于( )A .1B .2C .3D .4[答案] D[解析] ∵y =x 3+x 2-x -1∴Δy Δx =(1+Δx )3+(1+Δx )2-(1+Δx )-1Δx=4+4Δx +(Δx )2,∴y ′|x =1=li m Δx →0 Δy Δx =li m Δx →0[4+4·Δx +(Δx )2]=4.故应选D.7.曲线y =x 2在点P 处切线斜率为k ,当k =2时的P 点坐标为() A .(-2,-8) B .(-1,-1)C .(1,1) D.⎝⎛⎭⎫-12,-18[答案] C[解析] 设点P 的坐标为(x 0,y 0),∵y =x 2,∴y ′=2x .∴k ==2x 0=2,∴x 0=1,∴y 0=x 20=1,即P (1,1),故应选C.8.f (x )=f ′(1)x 2,那么f ′(0)等于( )A .0B .1C .2D .3[答案] A [解析] ∵f (x )=f ′(1)x 2,∴f ′(x )=2f ′(1)x ,∴f ′(0)=2f ′(1)×0=0.故应选A.9.曲线y =3x 上的点P (0,0)的切线方程为( )A .y =-xB .x =0C .y =0D .不存在[答案] B[解析] ∵y =3x∴Δy =3x +Δx -3x=x +Δx -x(3x +Δx )2+3x (x +Δx )+(3x )2=Δx(3x +Δx )2+3x (x +Δx )+(3x )2∴ΔyΔx =1(3x +Δx )2+3x (x +Δx )+(3x )2∴曲线在P (0,0)处切线的斜率不存在,∴切线方程为x =0.10.质点作直线运动的方程是s =4t ,那么质点在t =3时的速度是() A.14433 B.14334C.12334D.13443[答案] A[解析] Δs =4t +Δt -4t =t +Δt -t4t +Δt +4t=t +Δt -t (4t +Δt +4t )(t +Δt +t ) =Δt (4t +Δt +4t )(t +Δt +t )∴li m Δt →0 Δs Δt =124t ·2t =144t 3, ∴s ′(3)=14433 .故应选A. 二、填空题11.假设y =x 表示路程关于时间的函数,那么y ′=1可以解释为________.[答案] 某物体做瞬时速度为1的匀速运动[解析] 由导数的物理意义可知:y ′=1可以表示某物体做瞬时速度为1的匀速运动.12.假设曲线y =x 2的某一切线与直线y =4x +6平行,那么切点坐标是________.[答案] (2,4)[解析] 设切点坐标为(x 0,x 20),因为y ′=2x ,所以切线的斜率k =2x 0,又切线与y =4x +6平行,所以2x 0=4,解得x 0=2,故切点为(2,4).13.过抛物线y =15x 2上点A ⎝⎛⎭⎫2,45的切线的斜率为______________. [答案] 45[解析] ∵y =15x 2,∴y ′=25x ∴k =25×2=45. 14.(2021·江苏,8)函数y =x 2(x >0)的图像在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,假设a 1=16,那么a 1+a 3+a 5的值是________.[答案] 21[解析] ∵y ′=2x ,∴过点(a k ,a 2k )的切线方程为y -a 2k =2a k (x -a k ),又该切线与x 轴的交点为(a k +1,0),所以a k +1=12a k ,即数列{a k }是等比数列,首项a 1=16,其公比q =12,∴a 3=4,a 5=1,∴a 1+a 3+a 5=21.三、解答题15.过点P (-2,0)作曲线y =x 的切线,求切线方程.[解析] 因为点P 不在曲线y =x 上,故设切点为Q (x 0,x 0),∵y ′=12x, ∴过点Q 的切线斜率为:12x 0=x 0x 0+2,∴x 0=2, ∴切线方程为:y -2=122(x -2), 即:x -22y +2=0. 16.质点的运动方程为s =1t 2,求质点在第几秒的速度为-264. [解析] ∵s =1t2, ∴Δs =1(t +Δt )2-1t2 =t 2-(t +Δt )2t 2(t +Δt )2=-2t Δt -(Δt )2t 2(t +Δt )2∴li m Δt →0 Δs Δt =-2t t 2·t 2=-2t 3.∴-2t 3=-264,∴t =4. 即质点在第4秒的速度为-264. 17.曲线y =1x. (1)求曲线在点P (1,1)处的切线方程;(2)求曲线过点Q (1,0)处的切线方程;(3)求满足斜率为-13的曲线的切线方程. [解析] ∵y =1x ,∴y ′=-1x2. (1)显然P (1,1)是曲线上的点.所以P 为切点,所求切线斜率为函数y =1x在P (1,1)点导数. 即k =f ′(1)=-1.所以曲线在P (1,1)处的切线方程为y -1=-(x -1),即为y =-x +2.(2)显然Q (1,0)不在曲线y =1x 上. 那么可设过该点的切线的切点为A ⎝⎛⎭⎫a ,1a , 那么该切线斜率为k =f ′(a )=-1a2. 那么切线方程为y -1a =-1a2(x -a ).① 将Q (1,0)坐标代入方程:0-1a =-1a2(1-a ). 解得a =12,代回方程①整理可得: 切线方程为y =-4x +4.(3)设切点坐标为A ⎝⎛⎭⎫a ,1a ,那么切线斜率为k =-1a 2=-13,解得a =±3,那么A ⎝⎛⎭⎫3,33,A ′⎝⎛⎭⎪⎫-3,3-3.代入点斜式方程得y -33=-13(x -3)或y +33=-13(x +3).整理得切线方程为y =-13x +233或y =-13x -233. 18.求曲线y =1x与y =x 2在它们交点处的两条切线与x 轴所围成的三角形的面积. [解析] 两曲线方程联立得⎩⎪⎨⎪⎧ y =1x ,y =x 2,解得⎩⎪⎨⎪⎧x =1y =1.∴y ′=-1x2,∴k 1=-1,k 2=2x |x =1=2, ∴两切线方程为x +y -2=0,2x -y -1=0,所围成的图形如上图所示.∴S =12×1×⎝⎛⎭⎫2-12=34.选修2-2 1.2.2 第1课时 根本初等函数的导数公式及导数运算法那么一、选择题1.曲线y =13x 3-2在点⎝⎛⎭⎫-1,-73处切线的倾斜角为( ) A .30°B .45°C .135°D .60°[答案] B[解析] y ′|x =-1=1,∴倾斜角为45°.2.设f (x )=13x 2-1x x ,那么f ′(1)等于( ) A .-16B.56 C .-76D.76 [答案] B3.假设曲线y =x 4的一条切线l 与直线x +4y -8=0垂直,那么l 的方程为( )A .4x -y -3=0B .x +4y -5=0C .4x -y +3=0D .x +4y +3=0 [答案] A[解析] ∵直线l 的斜率为4,而y ′=4x 3,由y ′=4得x =1而x =1时,y =x 4=1,故直线l 的方程为:y -1=4(x -1)即4x -y -3=0.4.f (x )=ax 3+9x 2+6x -7,假设f ′(-1)=4,那么a 的值等于( )A.193B.163C.103D.133[答案] B[解析] ∵f ′(x )=3ax 2+18x +6,∴由f ′(-1)=4得,3a -18+6=4,即a =163. ∴选B.5.物体的运动方程是s =14t 4-4t 3+16t 2(t 表示时间,s 表示位移),那么瞬时速度为0的时刻是( )A .0秒、2秒或4秒B .0秒、2秒或16秒C .2秒、8秒或16秒D .0秒、4秒或8秒 [答案] D[解析] 显然瞬时速度v =s ′=t 3-12t 2+32t =t (t 2-12t +32),令v =0可得t =0,4,8.应选D.6.(2021·新课标全国卷文,4)曲线y =x 3-2x +1在点(1,0)处的切线方程为( )A .y =x -1B .y =-x -1C .y =2x -2D .y =-2x -2 [答案] A[解析] 此题考查了导数的几何意义,切线方程的求法,在解题时应首先验证点是否在曲线上,然后通过求导得出切线的斜率,题目定位于简单题.由题可知,点(1,0)在曲线y =x 3-2x +1上,求导可得y ′=3x 2-2,所以在点(1,0)处的切线的斜率k =1,切线过点(1,0),根据直线的点斜式可得过点(1,0)的曲线y =x 3-2x +1的切线方程为y =x -1,应选A.7.假设函数f (x )=e x sin x ,那么此函数图象在点(4,f (4))处的切线的倾斜角为( ) A.π2B .0C .钝角D .锐角 [答案] C[解析] y ′|x =4=(e x sin x +e x cos x )|x =4=e 4(sin4+cos4)=2e 4sin(4+π4)<0,故倾斜角为钝角,选C.8.曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线与x 轴、直线x =π所围成的三角形的面积为 ( )A.π22 B .π2 C .2π2D.12(2+π)2 [答案] A[解析] 曲线y =x sin x 在点⎝⎛⎭⎫-π2,π2处的切线方程为y =-x ,所围成的三角形的面积为π22. 9.设f 0(x )=sin x ,f 1(x )=f 0′(x ),f 2(x )=f 1′(x ),…,f n +1(x )=f n ′(x ),n ∈N ,那么f 2021(x )等于( )A .sin xB .-sin xC .cos xD .-cos x[答案] D[解析] f 0(x )=sin x ,f 1(x )=f 0′(x )=(sin x )′=cos x , f 2(x )=f 1′(x )=(cos x )′=-sin x , f 3(x )=f 2′(x )=(-sin x )′=-cos x , f 4(x )=f 3′(x )=(-cos x )′=sin x ,∴4为最小正周期,∴f 2021(x )=f 3(x )=-cos x .应选D.10.f (x )与g (x )是定义在R 上的两个可导函数,假设f (x )、g (x )满足f ′(x )=g ′(x ),那么f (x )与g (x )满足( )A .f (x )=g (x )B .f (x )-g (x )为常数C .f (x )=g (x )=0D .f (x )+g (x )为常数[答案] B[解析] 令F (x )=f (x )-g (x ),那么F ′(x )=f ′(x )-g ′(x )=0,∴F (x )为常数. 二、填空题11.设f (x )=ax 2-b sin x ,且f ′(0)=1,f ′⎝⎛⎭⎫π3=12,那么a =________,b =________. [答案] 0 -1[解析] f ′(x )=2ax -b cos x ,由条件知⎩⎪⎨⎪⎧-b cos0=12π3a -b cos π3=12,∴⎩⎪⎨⎪⎧b =-1a =0. 12.设f (x )=x 3-3x 2-9x +1,那么不等式f ′(x )<0的解集为________. [答案] (-1,3)[解析] f ′(x )=3x 2-6x -9,由f ′(x )<0得3x 2-6x -9<0,∴x 2-2x -3<0,∴-1<x <3.13.曲线y =cos x 在点P ⎝⎛⎭⎫π3,12处的切线的斜率为______. [答案] -32[解析] ∵y ′=(cos x )′=-sin x , ∴切线斜率k =y ′|x =π3=-sin π3=-32.14.函数f (x )=ax +b e x 图象上在点P (-1,2)处的切线与直线y =-3x 平行,那么函数f (x )的解析式是____________.[答案] f (x )=-52x -12e x +1[解析] 由题意可知,f ′(x )|x =-1=-3, ∴a +b e -1=-3,又f (-1)=2,∴-a +b e -1=2,解之得a =-52,b =-12e ,故f (x )=-52x -12e x +1.三、解答题15.求以下函数的导数:(1)y =x (x 2+1x +1x 3);(2)y =(x +1)(1x -1);(3)y =sin 4x 4+cos 4x4;(4)y =1+x 1-x +1-x 1+x .[解析] (1)∵y =x ⎝⎛⎭⎫x 2+1x +1x 3=x 3+1+1x 2, ∴y ′=3x 2-2x3;(3)∵y =sin 4x 4+cos 4x4=⎝⎛⎭⎫sin 2x 4+cos 2x 42-2sin 2x 4cos 2x4=1-12sin 2x 2=1-12·1-cos x 2=34+14cos x ,∴y ′=-14sin x ;(4)∵y =1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴y ′=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2. 16.两条曲线y =sin x 、y =cos x ,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.[解析] 由于y =sin x 、y =cos x ,设两条曲线的一个公共点为P (x 0,y 0), ∴两条曲线在P (x 0,y 0)处的斜率分别为假设使两条切线互相垂直,必须cos x 0·(-sin x 0)=-1, 即sin x 0·cos x 0=1,也就是sin2x 0=2,这是不可能的,∴两条曲线不存在公共点,使在这一点处的两条切线互相垂直.17.曲线C 1:y =x 2与C 2:y =-(x -2)2.直线l 与C 1、C 2都相切,求直线l 的方程.[解析] 设l 与C 1相切于点P (x 1,x 21),与C 2相切于点Q (x 2,-(x 2-2)2).对于C 1:y ′=2x ,那么与C 1相切于点P 的切线方程为y -x 21=2x 1(x -x 1),即y =2x 1x-x 21.① 对于C 2:y ′=-2(x -2),与C 2相切于点Q 的切线方程为y +(x 2-2)2=-2(x 2-2)(x -x 2),即y =-2(x 2-2)x +x 22-4.②∵两切线重合,∴2x 1=-2(x 2-2)且-x 21=x 22-4,解得x 1=0,x 2=2或x 1=2,x 2=0. ∴直线l 的方程为y =0或y =4x -4. 18.求满足以下条件的函数f (x ):(1)f (x )是三次函数,且f (0)=3,f ′(0)=0,f ′(1)=-3,f ′(2)=0; (2)f ′(x )是一次函数,x 2f ′(x )-(2x -1)f (x )=1. [解析] (1)设f (x )=ax 3+bx 2+cx +d (a ≠0) 那么f ′(x )=3ax 2+2bx +c由f (0)=3,可知d =3,由f ′(0)=0可知c =0, 由f ′(1)=-3,f ′(2)=0可建立方程组⎩⎪⎨⎪⎧f ′(1)=3a +2b =-3f ′(2)=12a +4b =0,解得⎩⎪⎨⎪⎧a =1b =-3,所以f (x )=x 3-3x 2+3.(2)由f ′(x )是一次函数可知f (x )是二次函数, 那么可设f (x )=ax 2+bx +c (a ≠0) f ′(x )=2ax +b ,把f (x )和f ′(x )代入方程,得 x 2(2ax +b )-(2x -1)(ax 2+bx +c )=1 整理得(a -b )x 2+(b -2c )x +c =1 假设想对任意x 方程都成立,那么需⎩⎪⎨⎪⎧ a -b =0b -2c =0c =1解得⎩⎪⎨⎪⎧a =2b =2c =1,所以f (x )=2x 2+2x +1.选修2-2 1.2.2 第2课时 根本初等函数的导数公式及导数运算法那么一、选择题1.函数y =(x +1)2(x -1)在x =1处的导数等于( ) A .1 B .2 C .3D .4[答案] D[解析] y ′=[(x +1)2]′(x -1)+(x +1)2(x -1)′ =2(x +1)·(x -1)+(x +1)2=3x 2+2x -1, ∴y ′|x =1=4.2.假设对任意x ∈R ,f ′(x )=4x 3,f (1)=-1,那么f (x )=( ) A .x 4B .x 4-2C .4x 3-5D .x 4+2[答案] B[解析] ∵f ′(x )=4x 3.∴f (x )=x 4+c ,又f (1)=-1 ∴1+c =-1,∴c =-2,∴f (x )=x 4-2.3.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,那么数列{1f (n )}(n ∈N *)的前n 项和是( )A.n n +1B.n +2n +1 C.n n -1D.n +1n[答案] A[解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1, ∴m =2,a =1,∴f (x )=x 2+x , 即f (n )=n 2+n =n (n +1),∴数列{1f (n )}(n ∈N *)的前n 项和为:S n =11×2+12×3+13×4+…+1n (n +1)=⎝⎛⎭⎫1-12+⎝⎛⎭⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=1-1n +1=nn +1,应选A.4.二次函数y =f (x )的图象过原点,且它的导函数y =f ′(x )的图象是过第一、二、三象限的一条直线,那么函数y =f (x )的图象的顶点在( )A .第一象限B .第二象限C .第三象限D .第四象限[答案] C[解析] 由题意可设f (x )=ax 2+bx ,f ′(x )=2ax +b ,由于f ′(x )的图象是过第一、二、三象限的一条直线,故2a >0,b >0,那么f (x )=a ⎝⎛⎭⎫x +b 2a 2-b 24a, 顶点⎝⎛⎭⎫-b 2a ,-b24a 在第三象限,应选C. 5.函数y =(2+x 3)2的导数为( ) A .6x 5+12x 2 B .4+2x 3 C .2(2+x 3)2D .2(2+x 3)·3x[答案] A[解析] ∵y =(2+x 3)2=4+4x 3+x 6, ∴y ′=6x 5+12x 2.6.(2021·江西文,4)假设函数f (x )=ax 4+bx 2+c 满足f ′(1)=2,那么f ′(-1)=( ) A .-1 B .-2 C .2D .0[答案] B[解析] 此题考查函数知识,求导运算及整体代换的思想,f ′(x )=4ax 3+2bx ,f ′(-1)=-4a -2b =-(4a +2b ),f ′(1)=4a +2b ,∴f ′(-1)=-f ′(1)=-2要善于观察,应选B.7.设函数f (x )=(1-2x 3)10,那么f ′(1)=( ) A .0 B .-1 C .-60D .60[答案] D[解析] ∵f ′(x )=10(1-2x 3)9(1-2x 3)′=10(1-2x 3)9·(-6x 2)=-60x 2(1-2x 3)9,∴f ′(1)=60.8.函数y =sin2x -cos2x 的导数是( ) A .22cos ⎝⎛⎭⎫2x -π4 B .cos2x -sin2x C .sin2x +cos2xD .22cos ⎝⎛⎭⎫2x +π4 [答案] A[解析] y ′=(sin2x -cos2x )′=(sin2x )′-(cos2x )′ =2cos2x +2sin2x =22cos ⎝⎛⎭⎫2x -π4. 9.(2021·高二潍坊检测)曲线y =x 24-3ln x 的一条切线的斜率为12,那么切点的横坐标为( )A .3B .2C .1D.12[答案] A[解析] 由f ′(x )=x 2-3x =12得x =3.10.设函数f (x )是R 上以5为周期的可导偶函数,那么曲线y =f (x )在x =5处的切线的斜率为( )A .-15B .0 C.15D .5[答案] B[解析] 由题设可知f (x +5)=f (x ) ∴f ′(x +5)=f ′(x ),∴f ′(5)=f ′(0) 又f (-x )=f (x ),∴f ′(-x )(-1)=f ′(x ) 即f ′(-x )=-f ′(x ),∴f ′(0)=0 故f ′(5)=f ′(0)=0.故应选B. 二、填空题11.假设f (x )=x ,φ(x )=1+sin2x ,那么f [φ(x )]=_______,φ[f (x )]=________.[答案]2⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π4,1+sin2x [解析] f [φ(x )]=1+sin2x =(sin x +cos x )2=|sin x +cos x |=2⎪⎪⎪⎪sin ⎝⎛⎭⎫x +π4. φ[f (x )]=1+sin2x .12.设函数f (x )=cos(3x +φ)(0<φ<π),假设f (x )+f ′(x )是奇函数,那么φ=________. [答案] π6[解析] f ′(x )=-3sin(3x +φ), f (x )+f ′(x )=cos(3x +φ)-3sin(3x +φ) =2sin ⎝⎛⎭⎫3x +φ+5π6. 假设f (x )+f ′(x )为奇函数,那么f (0)+f ′(0)=0, 即0=2sin ⎝⎛⎭⎫φ+5π6,∴φ+5π6=k π(k ∈Z ). 又∵φ∈(0,π),∴φ=π6.13.函数y =(1+2x 2)8的导数为________. [答案] 32x (1+2x 2)7[解析] 令u =1+2x 2,那么y =u 8, ∴y ′x =y ′u ·u ′x =8u 7·4x =8(1+2x 2)7·4x =32x (1+2x 2)7.14.函数y =x 1+x 2的导数为________. [答案] (1+2x 2)1+x 21+x 2[解析] y ′=(x1+x 2)′=x ′1+x 2+x (1+x 2)′=1+x 2+x 21+x 2=(1+2x 2)1+x 21+x2.三、解答题15.求以下函数的导数:(1)y =x sin 2x ; (2)y =ln(x +1+x 2);(3)y =e x +1e x -1; (4)y =x +cos x x +sin x .[解析] (1)y ′=(x )′sin 2x +x (sin 2x )′ =sin 2x +x ·2sin x ·(sin x )′=sin 2x +x sin2x . (2)y ′=1x +1+x 2·(x +1+x 2)′=1x +1+x 2(1+x1+x 2)=11+x 2.(3)y ′=(e x +1)′(e x -1)-(e x +1)(e x -1)′(e x -1)2=-2e x(e x -1)2 .(4)y ′=(x +cos x )′(x +sin x )-(x +cos x )(x +sin x )′(x +sin x )2=(1-sin x )(x +sin x )-(x +cos x )(1+cos x )(x +sin x )2=-x cos x -x sin x +sin x -cos x -1(x +sin x )2.16.求以下函数的导数:(1)y =cos 2(x 2-x ); (2)y =cos x ·sin3x ; (3)y =x log a (x 2+x -1); (4)y =log 2x -1x +1.[解析] (1)y ′=[cos 2(x 2-x )]′ =2cos(x 2-x )[cos(x 2-x )]′ =2cos(x 2-x )[-sin(x 2-x )](x 2-x )′ =2cos(x 2-x )[-sin(x 2-x )](2x -1) =(1-2x )sin2(x 2-x ).(2)y ′=(cos x ·sin3x )′=(cos x )′sin3x +cos x (sin3x )′ =-sin x sin3x +3cos x cos3x =3cos x cos3x -sin x sin3x .(3)y ′=log a (x 2+x -1)+x ·1x 2+x -1log a e(x 2+x -1)′=log a (x 2+x -1)+2x 2+x x 2+x -1log a e.(4)y ′=x +1x -1⎝ ⎛⎭⎪⎫x -1x +1′log 2e =x +1x -1log 2e x +1-x +1(x +1)2 =2log 2e x 2-1. 17.设f (x )=2sin x 1+x 2,如果f ′(x )=2(1+x 2)2·g (x ),求g (x ). [解析] ∵f ′(x )=2cos x (1+x 2)-2sin x ·2x (1+x 2)2=2(1+x 2)2[(1+x 2)cos x -2x ·sin x ], 又f ′(x )=2(1+x 2)2·g (x ). ∴g (x )=(1+x 2)cos x -2x sin x .18.求以下函数的导数:(其中f (x )是可导函数)(1)y =f ⎝⎛⎭⎫1x ;(2)y =f (x 2+1).[解析] (1)解法1:设y =f (u ),u =1x ,那么y ′x =y ′u ·u ′x =f ′(u )·⎝⎛⎭⎫-1x 2=-1x 2f ′⎝⎛⎭⎫1x . 解法2:y ′=⎣⎡⎦⎤f ⎝⎛⎭⎫1x ′=f ′⎝⎛⎭⎫1x ·⎝⎛⎭⎫1x ′=-1x 2f ′⎝⎛⎭⎫1x . (2)解法1:设y =f (u ),u =v ,v =x 2+1,选修2-2 1.3.1 函数的单调性与导数一、选择题1.设f(x)=ax3+bx2+cx+d(a>0),那么f(x)为R上增函数的充要条件是()A.b2-4ac>0B.b>0,c>0C.b=0,c>0 D.b2-3ac<0[答案] D[解析]∵a>0,f(x)为增函数,∴f′(x)=3ax2+2bx+c>0恒成立,∴Δ=(2b)2-4×3a×c=4b2-12ac<0,∴b2-3ac<0.2.(2021·广东文,8)函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)[答案] D[解析]考查导数的简单应用.f′(x)=(x-3)′e x+(x-3)(e x)′=(x-2)e x,令f′(x)>0,解得x>2,应选D.3.函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-2)(x0+1)2,那么该函数的单调递减区间为()A.[-1,+∞) B.(-∞,2]C.(-∞,-1)和(1,2) D.[2,+∞)[答案] B[解析]令k≤0得x0≤2,由导数的几何意义可知,函数的单调减区间为(-∞,2].4.函数y=xf′(x)的图象如图(1)所示(其中f′(x)是函数f(x)的导函数),下面四个图象中,y=f(x)的图象大致是()。

(完整版)数学选修2-2练习题及答案

(完整版)数学选修2-2练习题及答案

目录:数学选修2-2第一章 导数及其应用 [基础训练A 组] 第一章 导数及其应用 [综合训练B 组] 第一章 导数及其应用 [提高训练C 组] 第二章 推理与证明 [基础训练A 组] 第二章 推理与证明 [综合训练B 组]第二章 推理与证明 [提高训练C 组] 第三章 复数 [基础训练A 组] 第三章 复数 [综合训练B 组]第三章 复数 [提高训练C 组](数学选修2-2)第一章 导数及其应用[基础训练A 组]一、选择题1.若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+--的值为( )A .'0()f xB .'02()f xC .'02()f x - D .02.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( ) A .7米/秒 B .6米/秒 C .5米/秒 D .8米/秒 3.函数3yx x 的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞4.32()32f x ax x =++,若'(1)4f -=,则a 的值等于( )A .319 B .316C .313 D .310 5.函数)(x f y =在一点的导数值为0是函数)(x f y =在这点取极值的( )A .充分条件B .必要条件C .充要条件D .必要非充分条件6.函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .0二、填空题1.若3'0(),()3f x x f x ==,则0x 的值为_________________;2.曲线x x y 43-=在点(1,3)- 处的切线倾斜角为__________; 3.函数sin xy x=的导数为_________________; 4.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________; 5.函数5523--+=x x x y 的单调递增区间是___________________________。

高中的数学选修22综合测试卷试试题有答案

高中的数学选修22综合测试卷试试题有答案

选修 2-2 综合测试题2一、选择题1.在数学归纳法证明“1a a 2an1a n 1(a,N )〞时,验证当n1时,等式的左1 n1a边为〔〕A. 1B. 1aC. 1 aD.1a22.三次函数 f ( x)1x3(4 m 1)x 2(15m22m7) x 2 在 x ( ∞,∞ ) 上是增函数,那么 m 的3取值范围为〔〕A. m 2或 m4B.4m2C. 2m4D.以上皆不正确3.设f ( x)( ax b)sin x (cx d )cos x ,假设 f ( x)x cosx ,那么 a, b , c, d 的值分别为〔〕A. 1,1,0, 0B.1,0,1,0C.0,1,0,1D.1,0,0,14.抛物线y ax 2bx c 通过点P(11),,且在点 Q(2, 1)处的切线平行于直线y x 3,那么抛物线方程为〔〕A. y 3x 211x9B. y3x 211x9C. y 3x 211x 9D. y3x211x92a n ,0≤ a n≤1,26,那么 a2004的值为〔5.数列a n满足 a n 11假设a1〕2a≤ a n ,7n ,11 2A.6B.5C.3D.1 77776.a,b是不相等的正数,x ab, ya b ,那么 x ,y的关系是〔〕2A. x yB. y xC. x 2 yD.不确定7.复数z m 2i( m R) 不可能在〔〕12iA.第一象限B.第二象限C.第三象限D.第四象限8.定义A B,B C, C D, D A 的运算分别对应以下图中的〔1〕,〔2〕,〔3〕,〔4〕,那么,图中〔A〕,〔B〕可能是以下〔〕的运算的结果A. B D,A DB.B D,A CC.B C,A DD.C D,A D- 1 -9.用反证法证明命题“a, b N ,如果 ab 可被5整除,那么 a , b 至少有1个能被5整除.〞那么假设的内容是〔〕A. a , b 都能被5整除B. a , b 都不能被 5 整除C. a 不能被5整除D. a , b 有 1 个不能被 5 整除10.以下说法正确的选项是〔〕A.函数C.函数y x 有极大值,但无极小值B.函数y x 既有极大值又有极小值D.函数y x 有极小值,但无极大值y x 无极值11.对于两个复数13i ,13i,有以下四个结论:① 1 ;② 1 ;③ 1 ;2222④331〕.其中正确的个数为〔A. 1B. 2C. 3D. 412.设f ( x)在[ a,b]上连续,那么 f ( x)在[ a,b]上的平均值是〔〕A. f ( a)B.bC.1D.f (b) f (x)dx b f ( x) dx1 b f ( x)dx2a 2 a b a a二、填空题13.假设复数z log2( x23x 3) i log 2 ( x 3) 为实数,那么x 的值为.14.一同学在电脑中打出如以下图形〔○表示空心圆,●表示实心圆〕○●○○●○○○●○○○○●假设将此假设干个圆依此规律继续下去,得到一系列的圆,那么前2006 年圆中有实心圆的个数为.15.函数f ( x) ax36ax 2b(a0) 在区间 [ 1,2] 上的最大值为,最小值为29 ,那么 a , b 的值分3别为.16.由y2 4 x 与直线 y 2 x 4 所围成图形的面积为.三、解答题n n17.设n N且sin x cos x 1 ,求 sin x cos x 的值.〔先观察 n1,2,3,4 时的值,归纳猜测sin n x cos n x 的值.〕18.设关于x的方程x2(tan i ) x (2 i)0 ,〔1〕假设方程有实数根,求锐角和实数根;- 2 -〔2〕证明:对任意πkπ (k Z ) ,方程无纯虚数根.219.设t0 ,点 P(t,0) 是函数 f (x) x 3ax 与 g( x) bx 2 c 的图象的一个公共点,两函数的图象在点 P 处有相同的切线.〔1〕用t表示a,b,c;〔 2〕假设函数y f (x) g ( x)在( 1,3)上单调递减,求 t 的取值范围.20.以下命题是真命题,还是假命题,用分析法证明你的结论.命题:假设 a b c,且 a b c0 ,那么b 2ac3 .a21.某银行准备新设一种定期存款业务,经预测,存款量与利率的平方成正比,比例系数为k(k0) ,且知当利率为0.012 时,存款量为 1.44 亿;又贷款的利率为 4.8% 时,银行吸收的存款能全部放贷出去;假设设存款的利率为x , x (0 ,0.048) ,那么当 x 为多少时,银行可获得最大收益?22.函数 f ( x)x,数列 a n满足 a1 f ( x) , a n 1f (a n ) .( x 0)1x2(1〕求a2,a3,a4;(2〕猜测数列an的通项,并予以证明.参考答案一、选择题: CCDAC,BABBBD二、填空题: 13、4, 14 、61, 15 、 2,3 16、917、解:当n1时, sin x cosx 1 ;当 n2时,有 sin 2 x cos 2 x 1 ;当 n 3 时,有 sin 3 x cos 3 x(sin x cos x)(sin2 x cos 2 x sin xcos x) ,而 sin x cos x1,∴12sin x cos x 1 , sin xcos x0 .∴ sin3 x cos 3 x1 .当 n4时,有 sin 4 x cos 4 x(sin 2 x cos2x) 22sin 2 xcos 2 x 1.由以上可以猜测,当n N时,可能有sin n x cos n x( 1) n成立.18、解:〔 1〕设实数根为a,那么a2(tan i )a (2 i ) 0 ,即(a2a tan2) (a1)i 0 .R ,那么a2,a,a1,由于 a , tan a tan tan 2 0.又 0π,得πa 1 1tan12.4- 3 -〔2〕假设有纯虚数根i(R) ,使 ( i) 2(tan)(i ) i (2) i 0,即 (22)( tan 1) i0 ,22,由, tan R ,那么,0由于220 无实数解.tan10故对任意πZ ) ,方程无纯虚数根kπ (k219、解:〔 1〕因为函数 f ( x), g (x) 的图象都过点 (t,0),所以 f (t ) 0,即 t 3at0 .因为 t 0 ,所以 a t 2.g (t ) 0 ,即 bt 2 c 0 ,所以 c ab .又因为 f ( x) , g (x) 在点 (t,0) 处有相同的切线,所以 f (t )g (t ) ,而 f ( x) 3x 2 a , g (x)2bx ,所以 3t 2 a 2bt .将 a t 2代入上式得 b t .因此c ab t 3.故a t2, b t , c t 3.〔2〕y f (x)g (x) x3t 2 x tx 2t 3, y3x22tx t 2(3 x t )( x t ) .当 y(3x t )( x t) 0 时,函数 y f ( x) g (x) 单调递减.由 y0,假设t0,那么tt ;x3假设t0 ,那么 t x t .3,t( 1,3)t ,( 13),由题意,函数 y f ( x)g (x) 在 ( 1,3)上单调递减,那么 3 t或t 3.所以 t ≤9 或 t ≥ 3 .又当 9t 3时,函数y f (x)g( x)在( 1,3)上不是单调递减的.所以 t 的取值范围为∞, 93,∞.20、解:此命题是真命题.∵ a b c 0 , a b c ,∴ a0 , c 0 .b 2ac22222要证a3 成立,只需证bac3a ,即证 b ac 3a ,也就是证 ( a c)ac 3a,即证 ( a c)(2 a c)0 .∵ a c0 , 2a c( a c)a b a 0 ,∴ (a c)(2 ac) 0成立,故原不等式成立.21、解:由题意,存款量 f (x)kx2,又当利率为时,存款量为 1.44 亿,即x0.012 时,;由2,得,那么 2 ,银行应支付的利息1 . 4 4 k ·(0.012)k 10000 f ( x)1 0 0 0x 0g (x)x·f (x) 10000x 3 ,- 4 -设银行可获收益为 y ,那么 y480x 210000x 3,由于 y960x 30000x 2,那么 y0 ,即 960x30000x20 ,得 x 0 或 .因为, x(0,0.032) 时, y0 ,此时,函数y480x 2 10000x 3递增;x (0.032 , 0.048) 时, y 0 ,此时,函数y480x 2 10000x 3递减;故当 x 0.032 时, y 有最大值,其值约为亿.axx22、解:〔 1〕由 a 12,f (x) ,得 a 2f (a 1 )1a21 x1 2 x 2 1 211xx 21x a 3 f (a 2 )a 2 a 212 x 21221x2x 21xa 3 1 3x2a 4 f (a 3 )a21 231x3x 21x13x 2x14x 2,.〔2〕猜测: a nxN ) ,(n1 nx2证明:〔 1〕当 n1时,结论显然成立;〔2〕假设当 nk 时,结论成立,即a kx ;kx 21x那么,当 n k1 时,由 a k 1f (a k )1 kx 2x,1x 2 1 (k1)x 2kx 21这就是说,当 nk1 时,结论成立;由〔 1〕,〔 2〕可知, a nx 对于一切自然数 n( nN ) 都成立.1 nx 2- 5 -。

人教版高中数学选修2-2模块综合检测 Word版含解析

人教版高中数学选修2-2模块综合检测 Word版含解析

模块综合检测(时间分钟满分分)一、选择题(本大题共小题,每小题分,共分.在每小题给出的四个选项中,只有一项是符合题目要求的).已知复数=+,=+,则在复平面内对应的点位于( ).第一象限.第三象限.第四象限.第二象限解析:选==-,对应点在第四象限..下面几种推理中是演绎推理的为( ).由金、银、铜、铁可导电,猜想:金属都可导电.猜想数列,,,…的通项公式为=(∈+).半径为的圆的面积=π,则单位圆的面积=π.由平面直角坐标系中圆的方程为(-)+(-)=,推测空间直角坐标系中球的方程为(-)+(-)+(-)=解析:选由演绎推理的概念可知正确..函数=( )的导数是( ).′= ·.′=( ).′=.′=( )解析:选′=[( )]′=( )·( )′=( )· ·=× · ··=· ·,故选..设()=,若′()=,则的值为( )..).解析:选由()=,得′()=+. 根据题意知+=,所以=,因此=..观察下列等式,+=++=+++=,根据上述规律,+++++=( )....解析:选归纳得+++++==..函数()的图象如图,则函数的单调递增区间是( ).(-∞,-].[-]解析:选由题图可知=.不妨取=,∵()=++,∴′()=++.由图可知′(-)=,′()=,∴-+=++=,∴=-,=-.∴=--,′=-. 当>时,′>,∴=--的单调递增区间为.故选..设曲线=上任一点(,)处切线的斜率为(),则函数=()的部分图象可以为( )解析:选根据题意得()=,∴=()=为偶函数.又=时,=,故选..设函数()在上可导,()=′()-,则(-)与()的大小关系是( ).(-)=() .(-)>().不确定.(-)<()解析:选因为()=′()-,所以′()=′()-,则′()=′()-,解得′()=,所以()=-,所以()=-,(-)=,故(-)>()..若不等式≥-+-对∈(,+∞)恒成立,则实数的取值范围是( ).(-∞,) .(-∞,].[,+∞).(,+∞)解析:选由≥-+-,得≤++,设()=++(>),则′()=.当∈()时,′()<,函数()单调递减;当∈(,+∞)时,′()>,函数()单调递增,所以()=()=.所以≤()=.故的取值范围是(-∞,]..定义在上的函数()满足:′()>()恒成立,若<,则()与()的大小关系为( ).()>().()<().()=()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9. (n∈N*);10. ;11. ;
12.1+a+a2;13.(-∞,-1];14.
13、【解析】∵g(x)在区间-∞, 内单调递减,
∴g′(x)=3ax2+4(1-a)x-3a在 上的函数值非正,
由于a<0,对称轴x= >0,故只需g′ = Байду номын сангаас a(1-a)-3a≤0,注意到a<0,
∴a2+4(1-a)-9≥0,得a≤-1或a≥5(舍去).
2高中数学选修《2-2》复习试题
一、选择题(共8题,每题5分)
1.复数 在复平面内的对应点在()
A.第一象限B.第二象限C.第三象限D.第四象限
2.一质点做直线运动,由始点经过 后的距离为 ,则速度为 的时刻是( )A. B. C. 与 D. 与
3.某射击选手每次射击击中目标的概率是 ,如果他连续射击 次,则这名射手恰有 次击中目标的概率是()
13.函数g(x)=ax3+2(1-a)x2-3ax在区间 内单调递减,则a的取值范围是________.
14.现有12名同学分别到三个企业进行社会调查,若每个企业4人,则不同的分配方案共有
种。(只列式)
三、解答题(共6题,70分)
15.(10分)已知复数 在复平面内表示的点为A,实数m取什么值时,
9..观察下列式子 , … … ,
则可归纳出________________________________
10.复数 的共轭复数是________。
11.由曲线 与 所围成的曲边形的面积为________________
12.利用数学归纳法证明“1+a+a2+…+an+1= ,(a≠1,n∈N)”时,在验证n=1成立时,左边应该是。
故所求a的取值范围是(-∞,-1].
15.解:(1)当 =0即m=3或m=6时,z为实数;…………………………3分
当 , 即m=5时,z为纯虚数.…………………………6分
(2)当 即 即3<m<5时,对应点在第三象限. ……………12分
16.解:记一星期多卖商品 件,若记商品在一个星期的获利为 ,则
= ………………………11分
= ……12分
这就是说当n=k+1时,猜想也成立. ………………………13分
1高中数学选修2-2《导数及其应用》检测题
一、选择题(每题5分,共60分)
1.定积分 的结果是()
A.1B. C. D.
2.已知函数 的图象上一点(1,1)及邻近一点(1+△ ,1+△ ),则 等于( )
(2)如何定价才能使一个星期的商品销售利润最大?
17(12分)、已知二次函数 在 处取得极值,且在 点处的切线与直线 平行.(1)求 的解析式;(2)求函数 的单调递增区间及极值。(3)求函数 在 的最值。
18(12分)、设函数 .(1)求 的单调区间;
(2)当 时,若方程 在 上有两个实数解,求实数t的取值范围;
A.4 B. C. D.
3.已知函数 在 处可导,则 等于 ( )
A. B.2 C.-2 D.0
4. 函数 ,则导数 =( )
A. B.
C. D.
5.方程 在区间 内根的个数为 ( )
A.0 B.1 C.2 D.3
6.函数 的定义域为开区间 ,导函数 在 内的图象如图所示,则函数 在开区间 内有极小值点
在 有极大值4/27。
(3)由 及(2),所以函数 的最大值为2,最小值为0。
18、解:(Ⅰ)由 表示事件“购买该商品的3位顾客中至少有1位采用1期付款”.
知 表示事件“购买该商品的3位顾客中无人采用1期付款”
, .
(Ⅱ) 的可能取值为 元, 元, 元.
, ,

的分布列为
(元).
19、
20、解:通过观察,猜想
Sn= a1+a2+a3+……+an=(-1)n+1(1+2+3+……+n)= …………4分
下面用数学归纳法给予证明:
(1)当n=1时,S1=a1=1,而
∴当n=1时,猜想成立……………………………………6分
(2)假设当n=k(k≥1, )时,猜想成立,
即Sk= ………………………………7分
那么Sk+1=Sk+ak+1= + ……………9分
(3)证明:当m>n>0时, .
19(12分)、数列{an}的通项an ,观察以下规律:
a1= 1=1
a1+a2= 1-4=-3=-(1+2)
a1+a2+a3= 1-4+9=6=+(1+2+3)
……
试写出求数列{an}的前n项和Sn的公式,并用数学归纳法证明。
2高中数学选修2-2复习题答案
一、选择题(每题5分)BCCCD ABB
A.1个B.2个C.3个D.4个
5.已知曲线 上一点P ,则过点P的切线的斜率为
A.1B.-1C.2D.-2
8. ,若 ,则 的值等于()
A. B. C. D.
以上推理中( )
A.大前提错误 B. 小前提错误 C.推理形式错误 D.结论正确
7..在复平面内,复数1 + i与 i分别对应向量 和 ,其中 为坐标原点,则 =()A. B. C. D.
8、函数 ( )
A.在 上单调递减B.在 和 上单调递增
C.在 上单调递增D.在 和 上单调递减
二、填空题(共6题,30分)
(1)z为实数?z为纯虚数?
(2)A位于第三象限?
16.(12分)某商品每件成本9元,售价30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出的商品件数与商品单价的降低值x(单位:元,0≤x≤30)的平方成正比。已知商品单价降低2元时,一星期多卖出24件。
(1)将一个星期的商品销售利润表示成x的函数;
又有条件可知 解得 所以
(2)由(1)得
所以 在(0,2)递减(2,12)递增(12,30)递减
所以 时 取极大值,又 所以定价30-12=18(元)能使一个星期的商品销售利润最大。
17、(1)由 ,可得 .
由题设可得 即
解得 , .所以 .
(2)由题意得 ,
所以 .令 ,得 , .
4/27
0
所以函数 的单调递增区间为 , .在 有极小值为0。
(A) (B) (C) (D)
4.已知 则a,b,c的大小关系为()
A.a>b>cB.c>a>bC.c>b>aD.b>c>a
5.曲线 上的任意一点P处切线的斜率的取值范围是()
A. B. C. D.
6.有一段“三段论”推理是这样的:
对于可导函数 ,如果 ,那么 是函数 的极值点,因为函数 在 处的导数值 ,所以, 是函数 的极值点.
相关文档
最新文档