中考数学专题复习(二)圆
2021年中考数学复习专题-【圆】解答题专项测练02

2021中考数学复习【圆】解答题专项测练021.已知:如图,AB=AC,以AB为弦作⊙O与AC切于点A,交BC于D,连接AD;①求证:DA=DC;②若BD=4,CD=8,求⊙O半径.2.如图,AB是⊙O的弦,点C为半径OA上的一点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由.(2)若CD=15,BE=10,tan A=,求⊙O的直径.3.如图,在△ABC中,∠B=90°,点D为AC上一点,以CD为直径的⊙O交AB于点E,连接CE,且CE平分∠ACB.(1)求证:AE是⊙O的切线;(2)连接DE,若∠A=30°,求.4.如图,四边形ABCD内接于⊙O,AB=AC,BD⊥AC,垂足为E.(1)若∠BAC=40°,则∠ADC=°;(2)求证:∠BAC=2∠DAC;(3)若AB=10,CD=5,求BC的值.5.如图,AB是O的直径,C是弧BD的中点,CE⊥AB,垂足为E,BD交CE于点F.(1)求证:CF=BF;(2)若AD=6,⊙O的半径为5,求BC的长.6.如图,已知⊙O,A是的中点,过点A作AD∥BC.求证:AD与⊙O相切.7.如图,AB为⊙O的直径,射线AD交⊙O于点F,点C为劣弧的中点,过点C作CE⊥AD,垂足为E,连接AC.(1)求证:CE是⊙O的切线;(2)若∠BAC=30°,AB=4,求阴影部分的面积.8.如图,已知⊙O是边长为6的等边△ABC的外接圆,点D,E分别是BC,AC上两点,且BD=CE,连接AD,BE相交于点P,延长线段BE交⊙O于点F,连接CF.(1)求证:AD∥FC;(2)连接PC,当△PEC为直角三角形时,求tan∠ACF的值.9.(1)已知:如图1,△ABC是⊙O的内接正三角形,点P为上一动点,求证:PA=PB+PC.下面给出一种证明方法,你可以按这一方法补全证明过程,也可以选择另外的证明方法.证明:在AP上截取AE=CP,连接BE∵△ABC是正三角形∴AB=CB∵∠1和∠2的同弧圆周角∴∠1=∠2∴△ABE≌△CBP(2)如图2,四边形ABCD是⊙O的内接正方形,点P为上一动点,求证:PA=PC+PB.(3)如图3,六边形ABCDEF是⊙O的内接正六边形,点P为上一动点,请探究PA、PB、PC 三者之间有何数量关系,直接写出结论.10.如图,AB为⊙O的直径,C、D为圆上的两点,OC∥BD,弦AD与BC,OC分别交于E、F.(1)求证:=;(2)若CE=1,EB=3,求⊙O的半径;(3)若BD=6,AB=10,求DE的长.参考答案1.证明:①连接AO并延长,交⊙O于点E,连接OD,DE,∵⊙O与AC相切于点A,∴AC⊥AE,∴∠DAC+∠OAD=90°,∴AE为⊙O直径,∴∠ADE=90°,∴∠OAD+∠E=90°,∵∠DAC+∠OAD=90°,∴∠DAC=∠E=∠B,∵AB=AC,∴∠C=∠B,∴∠DAC=∠C,∴DA=DC;②解:设半径为R,作DM⊥AC于M,则AM=CM,∵∠DAC=∠C=∠ABC,∠DCA=∠ACB,∴△ACD∽△BCA,∴,∴AC2=CD•CB=8×12=96,∴AC=4,∴AM=CM=2,∴Rt△CBM中,BM=2,∵∠C=∠B=∠E,∴sin∠C=sin∠E,∴,∴,∴R=.2.解:(1)BD是⊙O的切线.理由如下:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线.(2)如图,过点D作DG⊥BE于点G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴tan∠EDG=tan A=,即DG=12,在Rt△EDG中,∵DG==12,∴DE=13,∵CD=15,∴CE=2,∵△ACE∽△DGE,∴,∴AC=•DG=,∴⊙O的直径为2OA=4AC=.3.(1)证明:连接OE,如图1所示:∵CE平分∠ACB,∴∠ACE=∠BCE,又∵OE=OC,∴∠ACE=∠OEC,∴∠BCE=∠OEC,∴OE∥BC,∴∠AEO=∠B,又∵∠B=90°,∴∠AEO=90°,即OE⊥AE,∵OE为⊙O的半径,∴AE是⊙O的切线;(2)解:连接DE,如图2所示:∵CD是⊙O的直径,∴∠DEC=90°,∴∠DEC=∠B,又∵∠DCE=∠ECB,∴△DCE∽△ECB,∴=,∵∠A=30°,∠B=90°,∴∠ACB=60°,∴∠DCE=∠ACB=×60°=30°,∴=cos∠DCE=cos30°=,∴=.4.(1)解:∵AB=AC,∠BAC=40°,∴∠ABC=∠ACB=70°,∵四边形ABCD是⊙O的内接四边形,∴∠ADC=180°﹣∠BAC=110°,故答案为:110;(2)证明:∵BD⊥AC,∴∠AEB=∠BEC=90°,∴∠ACB=90°﹣∠CBD,∵AB=AC,∴∠ABC=∠ACB=90°﹣∠CBD,∴∠BAC=180°﹣2∠ABC=2∠CBD,∵∠DAC=∠CBD,∴∠BAC=2∠DAC;(3)解:过A作AH⊥BC于H,∵AB=AC,∴∠BAH=∠CAH=CAB,CH=BH,∵∠BAC=2∠DAC,∴∠CAG=∠CAH,过C作CG⊥AD交AD的延长线于G,∴∠G=∠AHC=90°,∵AC=AC,∴△AGC≌△AHC(AAS),∴AG=AH,CG=CH,∵∠CDG=∠ABC,∴△CDG∽△ABH,∴==,∴=,设BH=k,AH=2k,∴AB==k=10,∴k=2,∴BC=2k=4.5.(1)证明:连接AC,如图1所示:∵C是弧BD的中点,∴∠DBC=∠BAC,在ABC中,∠ACB=90°,CE⊥AB,∴∠BCE+∠ECA=∠BAC+∠ECA=90°,∴∠BCE=∠BAC,又C是弧BD的中点,∴∠DBC=∠CDB,∴∠BCE=∠DBC,∴CF=BF.(2)解:连接OC交BD于G,如图2所示:∵AB是O的直径,AB=2OC=10,∴∠ADB=90°,∴BD===8,∵C是弧BD的中点,∴OC⊥BD,DG=BG=BD=4,∵OA=OB,∴OG是△ABD的中位线,∴OG=AD=3,∴CG=OC﹣OG=5﹣3=2,在Rt△BCG中,由勾股定理得:BC===2.6.证明:过点O作OF⊥BC于F,延长OF交⊙O于点E,如图所示:∴=,∠OFB=90°,∴E是的中点,∵A是的中点,∴点E与点A重合,∵AD∥BC,∴∠OAD=∠OFB=90°,∴OA⊥AD,∵点A为半径OA的外端点,∴AD与⊙O相切.7.解:(1)连接BF,OC,∵AB是⊙O的直径,∴∠AFB=90°,即BF⊥AD,∵CE⊥AD,∴BF∥CE,连接OC,∵点C为劣弧的中点,∴OC⊥BF,∵BF∥CE,∴OC⊥CE,∵OC是⊙O的半径,∴CE是⊙O的切线;(2)连接OF,CF,∵OA=OC,∠BAC=30°,∴∠BOC=60°,∵点C为劣弧的中点,∴,∴∠FOC=∠BOC=60°,∵OF=OC,∴∠OCF=∠COB,∴CF∥AB,∴S△ACF =S△COF,∴阴影部分的面积=S,扇形COF∵AB=4,∴FO=OC=OB=2,∴S=,扇形FOC即阴影部分的面积为:.8.解:(1)∵△ABC为等边三角形,∴AB=BC,∴∠ABD=∠∠BCE=60°,∵BD=CE,∴△ABD≌△BCE(SAS),∴∠BDA=∠CEB,∵∠CEB=∠F+∠FCE,∵∠F=∠BAC=∠BCA=60°,∴∠CEB=∠BCA+∠FCE=∠BCF,∴∠BDA=∠BCF,∴AD∥CF;(2)如图,连接PC,当△PEC为直角三角形时,∠PEC=90°,∵∠PEC=∠F+∠ACF,∵∠F=60°,∴∠ACF=30°,∴tan∠ACF=.9.证明:(1)延长BP至E,使PE=PC,连接CE.∵∠1=∠2=60°,∠3=∠4=60°,∴∠CPE=60°,∴△PCE是等边三角形,∴CE=PC,∠E=∠3=60°;又∵∠EBC=∠PAC,∴△BEC≌△APC,∴PA=BE=PB+PC.(2分)(2)过点B作BE⊥PB交PA于E.∵∠1+∠2=∠2+∠3=90°∴∠1=∠3,又∵∠APB=45°,∴BP=BE,∴;又∵AB=BC,∴△ABE≌△CBP,∴PC=AE.∴.(4分)(3)答:;证明:在AP上截取AQ=PC,连接BQ,∵∠BAP=∠BCP,AB=BC,∴△ABQ≌△CBP,∴BQ=BP.又∵∠APB=30°,∴∴(7分)10.(1)证明:∵AB是圆的直径,∴∠ADB=90°,∵OC∥BD,∴∠AFO=∠ADB=90°,∴OC⊥AD∴=;(2)解:连接AC,如图,∵=,∴∠CAD=∠ABC,∵∠ECA=∠ACB,∴△ACE∽△BCA,∴AC:CE=CB:AC,∴AC2=CE•CB,即AC2=1×(1+3),∴AC=2,∵AB是圆的直径,∴∠ACB=90°,∴AB==2,∴⊙O的半径为;(3)解:在Rt△DAB中,AD==8,∵OC⊥AD,∴AF=DF=4,∵OF==3,∴CF=2,∵CF∥BD,∴△ECF∽△EBD,∴===,∴=∴DE=×4=3.。
2021年九年级数学中考复习专题之圆:切割线定理综合运用(二)

2021年九年级数学中考复习专题之圆:切割线定理综合运用(二)一.选择题1.如图,点P是⊙O直径AB的延长线上一点,PC切⊙O于点C,已知OB=3,PB=2.则PC 等于()A.2 B.3 C.4 D.52.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD⊥AB 与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A.B.C.8 D.53.如图,两圆相交于C、D,AB是两圆的一条外公切线,A、B为切点,CD的延长线交AB 于M,若CD=9,MD=3,则AB的长为()A.18 B.12 C.13.5 D.6√34.如图:PAB、PCD为⊙O的两条割线,若PA•PB=30,PC=3,则CD的长为()A.10 B.7 C.D.35.如图,点C、O在线段AB上,且AC=CO=OB=5,过点A作以BC为直径的⊙O切线,D 为切点,则AD的长为()A.5 B.6 C.D.106.如图,已知AB、AC分别为⊙O的直径和弦,D为的中点,DE垂直于AC的延长线于E,连接BC,若DE=6cm,CE=2cm,下列结论一定错误的是()A.DE是⊙O的切线B.直径AB长为20cmC.弦AC长为16cm D.C为的中点7.如图,圆O1与圆O2相交于A、B,过A作圆O1的切线交圆O2于C,连CB并延长交圆O1于D,连AD,AB=2,BD=3,BC=5,则AD的长为()A.B.C.D.28.如图,已知PA是⊙O的切线,A为切点,PC与⊙O相交于B、C两点,PB=2cm,BC=8cm,则PA的长等于()A.4cm B.16cm C.20cm D.2cm9.如图,Rt△ABC中,∠C=90°,AC=6,BC=8,CD为直径的⊙O与AB相切于E,则⊙O 的半径是()A.2 B.2.5 C.3 D.410.如图,PA,PB为⊙O的切线,A,B分别为切点,∠APB=60°,点P到圆心O的距离OP =2,则⊙O的半径为()A.B.1 C.D.2二.填空题11.如图,PT是⊙O的切线,T为切点,PA是割线,交⊙O于A、B两点,与直径CT交于点D.已知CD=2,AD=3,BD=4,那PB=.12.如图,PE是⊙O的切线,E为切点,PAB、PCD是割线,AB=35,CD=50,AC:DB=1:2,则PA=.13.如图,某机械传动装置在静止状态时,连杆PA与点A运动所形成的⊙O交于B点,现测得PB=4cm,AB=5cm,⊙O的半径R=4.5cm,此时P点到圆心O的距离是cm.14.如图,PA切⊙O于A,PBC是⊙O的割线,如果PB=2,PC=4,则PA的长为.15.如图,PA、PB与⊙O分别相切于点A、点B,AC是⊙O的直径,PC交⊙O于点D,已知∠APB=60°,AC=2,那么CD的长为.三.解答题16.如图,已知矩形ABCD,以A为圆心,AD为半径的圆交AC、AB于M、E,CE的延长线交⊙A于F,CM=2,AB=4.(1)求⊙A的半径;(2)求CE的长和△AFC的面积.17.如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.求证:.18.如图1,A为⊙O的弦EF上的一点,OB是和这条弦垂直的半径,垂足为H,BA的延长线交⊙O于点C,过点C作⊙O的切线与EF的延长线相交于点D.(1)求证:DA=DC;(2)当DF:EF=1:8,且DF=时,求AB•AC的值;(3)将图1中的EF所在直线往上平行移动到⊙O外,如图2的位置,使EF与OB,延长线垂直,垂足为H,A为EF上异于H的一点,且AH小于⊙O的半径,AB的延长线交⊙O 于C,过C作⊙O的切线交EF于D.试猜想DA=DC是否仍然成立?并证明你的结论.19.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,且⊙O直径BD=6,连接CD、AO.(1)求证:CD∥AO;(2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围;(3)若AO+CD=11,求AB的长.20.如图,OB是以(O,a)为圆心,a为半径的⊙O1的弦,过B点作⊙O1的切线,P为劣弧上的任一点,且过P作OB、AB、OA的垂线,垂足分别是D、E、F.(1)求证:PD2=PE•PF;.(2)当∠BOP=30°,P点为的中点时,求D、E、F、P四个点的坐标及S△DEF参考答案一.选择题1.解:∵PC、PB分别为⊙O的切线和割线,∴PC2=PB•PA,∵OB=3,PB=2,∴PA=8,∴PC2=PB•PA=2×8=16,∴PC=4.故选:C.2.解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cos D=AD:BD=1:3,设AD=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选:C.3.解:∵AB是两圆的一条外公切线,∴MA2=MD•MC,MB2=MD•MC,∵CD=9,MD=3,∴MA=MB=6,∴AB=12,故选:B.4.解:∵PA•PB=PC•PD,PA•PB=30,PC=3,∴PD==10,∴CD=10﹣3=7.故选:B.5.解:∵AD是⊙O的切线,ACB是⊙O的割线,∴AD2=AC•AB,又AC=5,AB=AC+CO+OB=15,∴AD2=5×15=75,∴AD=5.(AD=﹣5不合题意舍去).故选:C.6.解:连接OD,OC.∵D是弧BC的中点,则OD⊥BC,∴DE是圆的切线.故A正确;∴DE2=CE•AE即:36=2AE∴AE=18,则AC=AE﹣CE=18﹣2=16cm.故C正确;∵AB是圆的直径.∴∠ACB=90°,∵DE垂直于AC的延长线于E.D是弧BC的中点,则OD⊥BC,∴四边形CFDE是矩形.∴CF=DE=6cm.BC=2CF=12cm.在直角△ABC中,根据勾股定理可得:AB===20cm.故B正确;在直角△ABC中,AC=16,AB=20,则∠ABC≠30°,而D是弧BC的中点.∴弧AC≠弧CD.故D错误.故选:D.7.解:∵AC是圆O的切线,1∴∠CAB=∠D,又∵∠C=∠C,∴△ACD∽△BCA,∴∴AC2=BC•CD,∵AB=2,BD=3,BC=5,∴AC2=40,AC=2,∵,∴AD=故选:C.8.解:∵PB=2cm,BC=8cm,∴PC=10cm,∵PA2=PB•PC=20,∴PA=2,故选:D.9.解:∵AC,AE为⊙O的切线,∴AC=AE=6,根据勾股定理可知AB=10,∴BE=4;根据切割线定理有,BE2=BD×BC可得,BD=2,∴CD=6,∴⊙O半径为3.故选:C.10.解:连接OA∵PA为⊙O的切线∴PA⊥OA∵∠APO=∠APB=30°∴OA=OP×sin∠APO=2×=1∴⊙O的半径为1故选:B.二.填空题(共5小题)11.解:∵AD•BD=CD•DT,∴TD=,∵CD=2,AD=3,BD=4,∴TD=6,∵PT是⊙O的切线,PA是割线,∴PT2=PA•PB,∵CT为直径,∴PT2=PD2﹣TD2,∴PA•PB=PD2﹣TD2,即(PB+7)PB=(PB+4)2﹣62,解得PB=20.故答案为:20.12.解:设PA=x,∵∠PAC=∠D,∴△PAC∽△PDB,∴=,∵AC:DB=1:2,∴PD=2PA,∴由切割线定理得,PA•PB=PC•PD,即x(x+35)=2x(2x﹣35),解得x=45,故答案为45.13.解:连接PO交圆于C,并延长PO交圆于D;∵PB=4cm,AB=5cm,∴PA=9cm;由割线定理,得:PB•PA=PC•PD;设点P到圆心的距离是xcm,则有:(x﹣4.5)(x+4.5)=36,解得x=7.5cm.故P到O点的距离为7.5cm.14.解:∵PA切⊙O于A,PBC是⊙O的割线,PB=2,PC=4,∴PA2=PB×PC,∴PA==2.故答案为:2.15.解:连接AD,OB,OP;∵PA、PB与⊙O分别相切于点A、点B,∴∠OAP=∠OBP=90°,∠AOB=180°﹣∠P=120°,∴∠AOP=60°,AP=AO tan60°=,∴PC=;∵PA2=PD•PC,∴PD=,∴CD=.三.解答题(共5小题)16.解:(1)四边形ABCD为矩形,AB=4;∴CD=4.在Rt△ACD中,AC2=CD2+AD2;∴(2+AD)2=42+AD2;解得AD=3.(2)过A点作AG⊥EF于G;∵BC=3,BE=AB﹣AE=4﹣3=1.∴CE===.由CE•CF=CD2,得:CF===.又∵∠B=∠AGE=90°,∠BEC=∠GEA,∴△BCE∽△GAE;∴,即=.∴AG=.∴S=CF•AG=××=.△AFC17.证明:连PO交ST于点D,则PO⊥ST;连SO,作OE⊥PB于E,则E为AB中点,于是因为C、E、O、D四点共圆,所以PC•PE=PD•PO又因为Rt△SPD∽Rt△OPS所以即PS2=PD•PO而由切割线定理知PS2=PA•PB所以即18.(1)证明:连接OC,则OC⊥DC,(1分)∴∠DCA=90°﹣∠ACO=90°﹣∠B.∵∠DAC=∠BAE=90°﹣∠B,∴∠DAC=∠DCA.∴DA=DC.(2)解:∵DF:EF=1:8,∵DF=,∴EF=8DF=8.∵DC为⊙O的切线,∴DC2=DF•DE=×9=18.∵DC=3,∴AF=2,AE=6.∴AB•AC=AE•AF=24.(3)解:结论DA=DC仍然成立.理由如下:延长BO交⊙O于K,连接CK,则∠KCB=90°;∵DC为⊙O的切线,∴∠DCA=∠CKB=90°﹣∠CBK.∵∠CBK=∠HBA,∴∠BAH=90°﹣∠HBA=90°﹣∠CBK.∴∠DCA=∠BAH.∴DA=DC.19.(1)证明:连接BC交OA于E点,∵AB、AC是⊙O的切线,∴AB=AC,∠1=∠2.∴AE⊥BC.∴∠OEB=90°.∵BD是⊙O的直径,∴∠DCB=90°.∴∠DCB=∠OEB.∴CD∥AO.(2)解:∵CD∥AO,∴∠3=∠4.∵AB是⊙O的切线,DB是直径,∴∠DCB=∠ABO=90°.∴△BDC∽△AOB.∴=.∴=.∴y=.∴0<x<6.(3)解:由已知和(2)知:,(8分)把x、y看作方程z2﹣11z+18=0的两根,解这个方程得z=2或z=9,∴(舍去).∴AB===.20.(1)证明:连接PB,OP,∵PE⊥AB,PD⊥OB,∴∠BEP=∠PDO=90°,∵AB切⊙O1于B,∠ABP=∠BOP,∴△PBE∽△POD,∴=,同理,△OPF∽△BPD∴=,∴=,∴PD2=PE•PF;(2)解:连接O1B,O1P,∵AB切⊙O1于B,∠POB=30°,∴∠ABP=30°,∴∠O1BP=90°﹣30°=60°,∵O1B=O1P,∴△O1BP为等边三角形,∴O1B=BP,∵P为弧BO的中点,∴BP=OP,即△O1PO为等边三角形,∴O1P=OP=a,∴∠O1OP=60°,又∵P为弧BO的中点,∴O1P⊥OB,在△O1DO中,∵∠O1OP=60°O1O=a,∴O1D=a,OD=a,过D作DM⊥OO1于M,∴DM=OD=a,OM=DM=a,∴D(﹣a,a),∵∠O1OF=90°,∠O1OP=60°∴∠POF=30°,∵PE⊥OA,∴PF=OP=a,OF=a,∴P(﹣a,),F(﹣a,0),∵AB切⊙O1于B,∠POB=30°,∴∠ABP=∠BOP=30°,∵PE⊥AB,PB=a,∴∠EPB=60°∴PE=a,BE=a,∵P为弧BO的中点,∴BP=PO,∴∠PBO=∠BOP=30°,∴∠BPO=120°,∴∠BPE+∠BPO=120°+60°=180°,即OPE三点共线,∵OE=a+a=a,于O,过E作EM⊥x轴于M,∵AO切⊙O1∴∠EOA=30°,∴EM=OE=a,OM=a,∴E(﹣a,a),∵E(﹣a,a),D(﹣a,a),∴DE=﹣a﹣(﹣a)=a,DE边上的高为:a,=×a×a=a2.∴S△DEF故答案为:D(﹣a,a),E(﹣a,a),F(﹣a,0),P(﹣a,);S=a2.△DEF。
中考数学复习《圆》专题训练-附带有答案

中考数学复习《圆》专题训练-附带有答案一、选择题1.下列有关圆的一些结论:①平分弧的直径垂直于弧所对的弦;②平分弦的直径垂直于弦;③在同圆或等圆中,相等的弦所对的圆周角相等;④同弧或等弧所对的弦相等,其中正确的有()A.①④B.②③C.①③D.②④2.在同一平面内,已知⊙O的半径为3cm,OP=4cm,则点P与⊙O的位置关系是()A.点P在⊙O圆外B.点P在⊙O上C.点P在⊙O内D.无法确定3.如图,AB是⊙O的直径,C是⊙O上一点.若∠BOC=66°()A.66°B.33°C.24°D.30°4.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,若∠CDA=118°,则∠C的度数为()A.32°B.33°C.34°D.44°5.如图,AB是⊙O的直径,点D在AB的延长线上,DC切⊙O于点C,若∠A=26°,则∠D等于()A.26°B.48°C.38°D.52°6.如图,四边形ABCD内接于⊙O,∠C=100°,那么∠A是()A.60°B.50°C.80°D.100°7.如图,AB为⊙O的直径,C是⊙O上的一点,若∠BCO=35°,AO=2,则AC⌢的长度为()A.29πB.59πC.πD.79π8.如图,点A、B、C、D、E都是⊙O上的点AC⌢=AE⌢,∠D=130°则∠B的度数为()A.130°B.128°C.115°D.116°二、填空题9.半径为6的圆上,一段圆弧的长度为3π,则该弧的度数为°.10.如图,在△ABC中,∠ACB= 130°,∠BAC=20°,BC=2.以C为圆心,CB为半径的圆交AB于点D,则BD的长为.11.如图,⊙O是△ABC的外接圆,BC是⊙O的直径,AB=AC.∠ABC的平分线交AC于点D,交⊙O于点E,连结CE.若CE= √2,则BD的长为.12.如图,四边形ABCD为⊙O的内接四边形,若∠ADC=85°,则∠B=.13.如图,在△ABC中∠ACB=90°,O为BC边上一点CO=2.以O为圆心,OC为半径作半圆与AB边交π,则阴影部分的面积为.于E,且OE⊥AB.若弧CE的长为43三、解答题14.如图,AB是⊙O的直径,四边形ABCD内接于⊙O,OD交AC于点E,OD∥BC(1)求证:AD=CD;(2)若AC=8,DE=2,求BC的长.15.如图,AB是⊙O的直径,F为⊙O上一点,AC平分∠FAB交⊙O于点C.过点C作CD⊥AF交AF的延长线于点D.(1)求证:CD是⊙O的切线.(2)若DC=3,AD=9,求⊙O半径.⌢上一点,AG与DC的延长线交于点F.16.已知,如图,AB是⊙O的直径,弦CD⊥AB于点E,G是AC(1)如CD=8,BE=2,求⊙O的半径长;(2)求证:∠FGC=∠AGD.17.如图,在△ABC中AB=AC,以底边BC为直径的⊙O交两腰于点D,E .(1)求证:BD=CE;⌢的长.(2)当△ABC是等边三角形,且BC=4时,求DE18.如图,在△ABC中,经过A,B两点的⊙O与边BC交于点E,圆心O在BC上,过点O作OD⊥BC交⊙O 于点D,连接AD交BC于点F,且AC=FC.(1)试判断AC与⊙O的位置关系,并说明理由;(2)若FC=√3,CE=1.求图中阴影部分的面积(结果保留π).参考答案1.A2.A3.B4.C5.C6.C7.D8.C9.9010.2√311.2√212.95°π13.4√3−4314.(1)证明:∵AB是⊙O的直径∴∠ACB=90°∵OD∥BC∴∠AEO=∠ACB=90°⌢=CD⌢∴AD∴AD=CD;(2)解:∵OD⊥AC,AC=8AC=4∴AE=12设⊙O的半径为r∵DE=2∴OE=OD﹣DE=r﹣2在Rt△AEO中,AE2+OE2=AO2∴16+(r﹣2)2=r2解得:r=5∴AB=2r=10在Rt△ACB中,BC=√AB2−AC2=√102−82=6∴BC的长为6.15.(1)证明:连接OC∵AC平分∠FAB∴∠FAC=∠CAO∵AO=CO∴∠ACO=∠CAO∴∠FAC=∠ACO∴AD∥OC∵CD⊥AF∴CD⊥OC∵OC为半径∴CD是⊙O的切线;(2)解:过点O作OE⊥AF于EAF,∠OED=∠EDC=∠OCD=90°∴AE=EF=12∴四边形OEDC为矩形∴CD=OE=3,DE=OC设⊙O的半径为r,则OA=OC=DE=r∴AE=9﹣r∵OA2﹣AE2=OE2∴r2﹣(9﹣r)2=32解得r=5.∴⊙O半径为5.16.(1)解:连接OC.设⊙O的半径为R.∵CD⊥AB∴DE=EC=4在Rt △OEC中,∵OC2=OE2+EC2∴R2=(R−2)2+42解得R=5.(2)解:连接AD∵弦CD⊥AB̂ = AĈ∴AD∴∠ADC=∠AGD∵四边形ADCG是圆内接四边形∴∠ADC=∠FGC∴∠FGC=∠AGD.17.(1)证明:∵AB=AC∴∠B=∠C⌢=BE⌢∴CD⌢=CE⌢∴BD∴BD=CE;(2)解:连接OD、OE∵△ABC 是等边三角形∴∠B =∠C =60°∴∠COD =120°∴∠COD +∠BOE =∠COE +∠DOE +∠BOD +∠DOE =240° ∴∠DOE =240°−180°=60°∵BC =4∴⊙O 的半径为 2∴DE ⌢ 的长 =60π×2180=2π3 .18.(1)解:AC 与⊙O 的相切,理由如下∵AO =DO∴∠D =∠OAD∵CF =CA∴∠CAF =∠CFA又∵∠CFA =∠OFD∴∠CAF =∠OFD∵OD ⊥BC∴∠OFD +∠ODF =90°∴∠CAF +∠OAF =90°∴OA ⊥AC∵OA 是半径∴AC 是⊙O 的切线∴ AC 与⊙O 的相切;(2)解:过A 作AM ⊥BC 于M ,如图设OA=OE=r∵FC=√3,CE=1在Rt△CAO中AO=r,AC=FC=√3,OC=OE+EC=r+1AO2+AC2=OC2∴r2+(√3)2=(r+1)2解得r=1∴OC=OE+EC=2∴AO=12 OC∴∠C=30°∴∠AOC=60°∴∠AOB=180−∠AOC=120°在Rt△CAM中AM=12AC=12FC=√32∴S△AOB=12⋅OB⋅AM=12×1×√32=√34∴S扇形AOB=120360π×1=π3∴S阴影部分=S△AOB−S扇形AOB=π3−√34.。
中考数学《圆的有关概念及性质》专题复习

中考数学《圆的有关概念及性质》专题复习【基础知识回顾】一、圆的定义:1、⑴形成性定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转形成的图形叫做圆,固定的端点叫线段OA叫做⑵描述性定义:圆是到定点的距离等于的点的集合【名师提醒:1、在一个圆中,圆心决定圆的半径决定圆的2、直径是圆中的弦,弦不一定是直径】3、弦与弧:弦:连接圆上任意两点的叫做弦弧:圆上任意两点间的叫做弧,弧可分为、、三类4、圆的对称性:⑴轴对称性:圆是轴对称图形,有条对称轴的直线都是它的对称轴.⑵中心对称性:圆是中心对称图形,对称中心是【名师提醒:圆不仅是中心对称图形,而且具有旋转性,即绕圆心旋转任意角度都被与原来的图形重合】5、垂径定理及推论:(1)垂径定理:垂直于弦的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .(2)推论:平分弦()的直径,并且平分弦所对的几何语言:∵CD过圆心, 且___________∴ , , .【名师提醒:1、垂径定理及其推论实质是指一条直线满足:⑴过圆心⑵垂直于弦⑶平分弦⑷平分弦所对的优弧⑸平分弦所对的劣弧五个条件中的两个,那么可推出其中三个,注意解题过程中的灵活运用2、圆中常作的辅助线是过圆心作弦的线3、垂径定理常用作计算,在半径r弦a弦心d和弦h中已知两个可求另外两个】三、圆心角、弧、弦之间的关系:1、圆心角定义:顶点在的角叫做圆心角2、定理:在中,两个圆心角、两条弧、两条弦中有一组量它们所对应的其余各组量也分别几何语言:∵在圆O中,_______∴ , .∵在圆O中,________∴ , .∵在圆O中,________∴ , .【名师提醒:注意:该定理的前提条件是“在同圆或等圆中”】四、圆周角定理及其推论:1、圆周角定义:顶点在并且两边都和圆的角叫圆周角2、圆周角定理:在同圆或等圆中,圆弧或等弧所对的圆周角都等于这条弧所对的圆心角的推论1、在同圆或等圆中,如果两个圆周角那么它们所对的弧推论2、半圆(或直弦)所对的圆周角是 900的圆周角所对的弦是【名师提醒:1、在圆中,一条弦所对的圆心角只有一个,而它所对的圆周角有个,它们的关系是2、作直弦所对的圆周角是圆中常作的辅助线】3、圆内接四边形定义:如果一个多边形的所有顶点都在圆上,这个多边形叫做这个圆叫做性质:圆内接四边形的对角【名师提醒:圆内接平行四边形是圆内接梯形是】考点一:垂径定理例1、一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是A. 4B. 5C. 6D. 8例2、绍兴市著名的桥乡,如图,石拱桥的桥顶到水面的距离CD为8m,桥拱半径OC为5m,则水面宽AB 为_________考点二:圆心角定理例3、如图,DC 是⊙O直径,弦AB⊥CD于F,连接BC,DB,则下列结论错误的是()A.B.AF=BF C.OF=CF D.∠DBC=90°例4、如图,半圆O的直径AB=10cm,弦AC=6cm,AD平分∠BAC,则AD的长为____________对应训练2.如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠DAB等于().A.55° B.60°C.65° D.70°考点三:圆周角定理例5、如图,将直角三角板60°角的顶点放在圆心O上,斜边和一直角边分别与⊙O相交于A、B两点,P 是优弧AB上任意一点(与A、B不重合),则∠APB= .例6、如图,已知⊙O是△ABD的外接圆,AB是⊙O的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD等于_____________对应训练6、△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7、如图,AB是⊙O的直径,弦CD⊥AB于点N,点M在⊙O上,∠1=∠C(1)求证:CB∥MD;(2)若BC=4,sinM= ,求⊙O的直径.考点四:圆内接四边形的性质例3 如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内上一点,∠BMO=120°,则⊙C的半径长为()A.6 B.5 C.3 D.3对应训练【聚焦中考】1.如图,AB是的直径,C是上一点,AB=10,AC=6,,垂足为D,则BD的长为(A)2 (B)3 (C)4 (D)62.如图,⊙O的直径AB=12,CD是⊙O的弦,CD⊥AB,垂足为P,且BP:AP=1:5,则CD的长为(). A. B. C. D.3.如图,在⊙O中,∠CBO=45°,∠CAO=15°,则∠AOB的度数是(A)75°. (B)60°. (C)45°. (D)30°.4.如图,已知圆心角∠BOC=78°,则圆周角∠BAC的度数是()A.156°B.78°C.39°D.12°5.如图,点A,B,C,在⊙O上,∠ABO=32°,∠ACO=38°,则∠BOC等于()A.60° B.70° C.120° D.140°6.如图,AB是⊙O的直径,,AB=5,BD=4,则sin∠ECB=______7.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A. 135°B. 122.5°C. 115.5°D.112.5°8.如图,在△ABC中,以BC为直径的圆分别交边AC、AB于D、E两点,连接BD、DE.若BD平分∠ABC,则下列结论不一定成立的是A.BD⊥ACB.AC2=2AB·AEC.△ADE是等腰三角形D. BC=2AD.9.如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为__________.10.如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为点E,AO=1.(1)求∠C的大小;(2)求阴影部分的面积.11.AB是圆O的直径,BC是圆O的切线,连接AC交圆O于点D,E为弧AD上一点,连接AE、BE,BE交AC于点F,且AF²=EF.EB(1)求证:CB=CF (2)若点E到弦AD的距离为1,cos角C=3/5,求圆O的半径12.某施工工地安放了一个圆柱形饮水桶的木制支架(如图1),若不计木条的厚度,其俯视图如图2所示,已知AD垂直平分BC,AD=BC=48cm,则圆柱形饮水桶的底面半径的最大值是 cm.【备考真题过关】一、选择题1.如图,⊙O的半径OD⊥弦AB于点C,连结AO并延长交⊙O于点E,连结EC.若AB=8,CD=2,则EC的长为__________2.如图,以M(-5,0)为圆心、4为半径的圆与x轴交于A、B两点,P是⊙M上异于A、B的一动点,直线PA、PB分别交y轴于C、D,以CD为直径的⊙N与x轴交于E、F,则EF的长()A.等于4 B.等于4 C.等于6 D.随P点位置的变化而变化3.如图,在半径为5的⊙O中,AB、CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为()A.3 B.4 C.3 D.44.如图,AB为⊙O的直径,弦CD⊥AB于E,已知CD=12,BE=2,则⊙O的直径为()A.8 B.10 C.16 D.205.如图,CD是⊙O的直径,AB是弦(不是直径),AB⊥CD于点E,则下列结论正确的是()A.AE>BE B.C.∠D=∠AEC D.△ADE∽△CBE6.△ABC为⊙O的内接三角形,若∠AOC=160°,则∠ABC的度数是()A.80° B.160° C.100° D.80°或100°7.如图,在△ABC中,AB为⊙O的直径,∠B=60°,∠BOD=100°,则∠C的度数为()A.50° B.60° C.70° D.80°二、填空题8.如图,AB为⊙O的直径,CD为⊙O的一条弦,CD⊥AB,垂足为E,已知CD=6,AE=1,则⊙0的半径为.9.如图,AB是⊙O的弦,OC⊥AB于C.若AB=2,0C=1,则半径OB的长为.10.如图,在⊙O中,直径AB丄弦CD于点M,AM=18,BM=8,则CD的长为.111314.如图,已知点A(0,2)、B(2,2)、C(0,4),过点C向右作平行于x轴的射线,点P是射线上的动点,连接AP,以AP为边在其左侧作等边△APQ,连接PB、BA.若四边形ABPQ为梯形,则:(1)当AB为梯形的底时,点P的横坐标是;15.如图,△ABC内接于⊙O,AB、CD为⊙O直径,DE⊥AB于点E,sinA=,则∠D的度数是.三、解答题16.如图所示为圆柱形大型储油罐固定在U型槽上的横截面图.已知图中ABCD为等腰梯形(AB∥DC),支点A与B相距8m,罐底最低点到地面CD距离为1m.设油罐横截面圆心为O,半径为5m,∠D=56°,求:U 型槽的横截面(阴影部分)的面积.(参考数据:sin53°≈0.8,tan56°≈1.5,π≈3,结果保留整数)17.如图,⊙O的半径为17cm,弦AB∥CD,AB=30cm,CD=16cm,圆心O位于AB,CD的上方,求AB和CD的距离.18.在⊙O中,直径AB⊥CD于点E,连接CO并延长交AD于点F,且CF⊥AD.求∠D的度数.19.如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC=60°,(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.20.如图△ABC中,BC=3,以BC为直径的⊙O交AC于点D,若D是AC中点,∠ABC=120°.(1)求∠ACB的大小;(2)求点A到直线BC的距离.21.如图,已知AB是⊙O的弦,OB=4,∠OBC=30°,点C是弦AB上任意一点(不与点A、B重合),连接CO并延长CO交⊙O于点D,连接AD、DB.(1)当∠ADC=18°时,求∠DOB的度数;(2)若AC=2,求证:△ACD∽△OCB.。
人教中考数学压轴题专题复习——圆的综合的综合及详细答案

一、圆的综合真题与模拟题分类汇编(难题易错题)1.如图,⊙M交x轴于B、C两点,交y轴于A,点M的纵坐标为2.B(﹣33,O),C(3,O).(1)求⊙M的半径;(2)若CE⊥AB于H,交y轴于F,求证:EH=FH.(3)在(2)的条件下求AF的长.【答案】(1)4;(2)见解析;(3)4.【解析】【分析】(1)过M作MT⊥BC于T连BM,由垂径定理可求出BT的长,再由勾股定理即可求出BM的长;(2)连接AE,由圆周角定理可得出∠AEC=∠ABC,再由AAS定理得出△AEH≌△AFH,进而可得出结论;(3)先由(1)中△BMT的边长确定出∠BMT的度数,再由直角三角形的性质可求出CG 的长,由平行四边形的判定定理判断出四边形AFCG为平行四边形,进而可求出答案.【详解】(1)如图(一),过M作MT⊥BC于T连BM,∵BC是⊙O的一条弦,MT是垂直于BC的直径,∴BT=TC=123∴124;(2)如图(二),连接AE,则∠AEC=∠ABC,∵CE⊥AB,∴∠HBC+∠BCH=90°在△COF中,∵∠OFC+∠OCF=90°,∴∠HBC=∠OFC=∠AFH,在△AEH和△AFH中,∵AFH AEHAHF AHE AH AH∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△AEH≌△AFH(AAS),∴EH=FH;(3)由(1)易知,∠BMT=∠BAC=60°,作直径BG,连CG,则∠BGC=∠BAC=60°,∵⊙O的半径为4,∴CG=4,连AG,∵∠BCG=90°,∴CG⊥x轴,∴CG∥AF,∵∠BAG=90°,∴AG⊥AB,∵CE⊥AB,∴AG∥CE,∴四边形AFCG为平行四边形,∴AF=CG=4.【点睛】本题考查的是垂径定理、圆周角定理、直角三角形的性质及平行四边形的判定与性质,根据题意作出辅助线是解答此题的关键.2.如图所示,以Rt△ABC的直角边AB为直径作圆O,与斜边交于点D,E为BC边上的中点,连接DE.(1)求证:DE是⊙O的切线;(2)连接OE,AE,当∠CAB为何值时,四边形AOED是平行四边形?并在此条件下求sin∠CAE的值.【答案】(1)见解析;(2)1010. 【解析】 分析:(1)要证DE 是⊙O 的切线,必须证ED ⊥OD ,即∠EDB+∠ODB=90°(2)要证AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又BD ⊥AC ,所以△ABC 为等腰直角三角形,所以∠CAB=45°,再由正弦的概念求解即可.详解:(1)证明:连接O 、D 与B 、D 两点,∵△BDC 是Rt △,且E 为BC 中点,∴∠EDB=∠EBD .(2分)又∵OD=OB 且∠EBD+∠DBO=90°,∴∠EDB+∠ODB=90°.∴DE 是⊙O 的切线.(2)解:∵∠EDO=∠B=90°,若要四边形AOED 是平行四边形,则DE ∥AB ,D 为AC 中点,又∵BD ⊥AC ,∴△ABC 为等腰直角三角形.∴∠C AB=45°.过E 作EH ⊥AC 于H ,设BC=2k ,则EH=22k ,AE=5k , ∴sin ∠CAE=1010EH AE .点睛:本题考查的是切线的判定,要证某线是圆的切线,已知此线过圆上某点,连接圆心和这点(即为半径),再证垂直即可.3.函数是描述客观世界运动变化的重要模型,理解函数的本质是重要的任务。
2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(二)

2021年九年级数学中考复习专题之圆的考察:相交弦定理的运用(二)一.选择题(共10小题)1.如图在一次游园活动中有个投篮游戏,活动开始时四个人A、B、C、D在距篮筐P都是5米处站好,篮球放在AC和BD的交点O处,已知取篮球时A要走6米,B要走3米,C要走2米,则D要走()A.2米B.3米C.4米D.5米2.如图,⊙O的直径AB=8,弧AC=弧BC,E为OB上一点,∠AEC=60°,CE的延长线交⊙O于D,则CD的长为()A.6 B.4C.D.3.如图,已知⊙O的两条弦AB、CD相交于AB的中点E,且AB=4,DE=CE+3,则CD的长为()A.4 B.5 C.8 D.104.如图,⊙O的直径AB=10,E是OB上一点,弦CD过点E,且BE=2,DE=2,则弦心距OF为()A.1 B.C.D.5.如图:若弦BC经过圆O的半径OA的中点P,且PB=3,PC=4,则圆O的直径为()A.7 B.8 C.9 D.106.在⊙O中,弦AB与CD相交于点M,AM=4,MB=3,则CM•MD=()A.28 B.21 C.12 D.77.如图,已知⊙O的弦AB,CD交于点P,且OP⊥CD,若CD=4,则AP•BP的值为()A.2 B.4 C.6 D.88.如图,AB为⊙O的直径,AB=10cm,弦CD⊥AB,垂足为E,且AE:EB=2:3,则AC=()A.3cm B.4cm C.cm D.cm 9.如图,AB是⊙O的直径,M是⊙O上一点,MN⊥AB,垂足为N.P、Q分别是、上一点(不与端点重合),如果∠MNP=∠MNQ,下面结论:①∠1=∠2;②∠P+∠Q=180°;③∠Q=∠PMN;④PM=QM;⑤MN2=PN•QN.其中正确的是()A.①②③B.①③⑤C.④⑤D.①②⑤10.如图,已知AB为⊙O的直径,C为⊙O上一点,CD⊥AB于D,AD=9,BD=4,以C为圆心,CD为半径的圆与⊙O相交于P,Q两点,弦PQ交CD于E,则PE•EQ 的值是()A.24 B.9 C.6 D.27二.填空题(共5小题)11.如图,在△ABC与△BCD中,AB=AC=4,BD交AC于E点,AE=3,且∠BAC=2∠BDC.则BE•ED=.12.如图,弦AB与CD交于点E,AE=3,BE=2,DE=,则CE=.13.如图,在⊙O中,弦AB平分弦CD于E,若CD=8,AE:EB=1:4,则弦AB=.14.如图,⊙O过M点,⊙M交⊙O于A,延长⊙O的直径AB交⊙M于C,若AB=8,BC=1,则AM=.15.如图,⊙O的弦AB、CD相交于点P,已知CP=3,PD=4,AP=2,那么AB=.三.解答题(共5小题)16.已知:如图所示,BC为圆O的直径,A、F是半圆上异于B、C的一点,D是BC上的一点,BF交AH于点E,A是弧BF的中点,AH⊥BC.(1)求证:AE=BE;(2)如果BE•EF=32,AD=6,求DE、BD的长.17.如图,已知圆O,弦AB、CD相交于点M.(1)求证:AM•MB=CM•MD;(2)若M为CD中点,且圆O的半径为3,OM=2,求AM•MB的值.18.我们所学的几何知识可以理解为对“构图”的研究:根据给定的(或构造的)几何图形提出相关的概念和问题(或者根据问题构造图形),并加以研究.例如:在平面上根据两条直线的各种构图,可以提出“两条直线平行”、“两条直线相交”的概念;若增加第三条直线,则可以提出并研究“两条直线平行的判定和性质”等问题(包括研究的思想和方法).请你用上面的思想和方法对下面关于圆的问题进行研究:(1)如图1,在圆O所在平面上,放置一条直线m(m和圆O分别交于点A、B),根据这个图形可以提出的概念或问题有哪些?(直接写出两个即可)(2)如图2,在圆O所在平面上,请你放置与圆O都相交且不同时经过圆心的两条直线m和n(m与圆O分别交于点A、B,n与圆O分别交于点C、D).请你根据所构造的图形提出一个结论,并证明之;(3)如图3,其中AB是圆O的直径,AC是弦,D是的中点,弦DE⊥AB于点F.请找出点C和点E重合的条件,并说明理由.19.如图是一个铁艺制品,一个圆形铁架里面焊接有△ABC和△DBC,其中BD与AC交于点E,若AE=DE,BC=CE.(1)求∠ACB的度数;(2)过圆心O焊接GF,并使GF⊥AC,垂足为F,GF交BE于点G,若DE=3,EG=2,求AB的长.20.已知,如图,PA切⊙O于点A,割线PD交⊙O于点C、D,∠P=45°,弦AB⊥PD,垂足为E,且BE=2CE,DE=6,CF⊥PC,交DA的延长线于点F.求tan∠CFE的值.参考答案一.选择题1.解:根据题意得:A、B、C、D在以P为圆心,半径是5米的圆上.∴OA•OC=OB•OD,即6×2=3×OD.解得OD=4.故选:C.2.解:连接OC、OD,过点O作OF⊥CD于点F.∵AB是⊙O的直径,C为弧AB的中点,∴∠AOC=∠BOC=90°(等弧所对的圆心角相等);又∵O是圆心,OF⊥CD,∴CF=DF=CD,(垂径定理);在Rt△OEC中,∵∠AEC=60°,∴∠OCE=30°(直角三角形的两个锐角互余);∴在Rt△OCF中,CF=OC•cos30°;又AB=8,∴OC=4;∴CF=4×=2∴CD=2CF=4.故选:D.3.解:设CE=x,则DE=3+x.根据相交弦定理,得x(x+3)=2×2,x=1或x=﹣4(不合题意,应舍去).则CD=3+1+1=5.故选:B.4.解:∵AB=10,∴⊙O的半径为5,又∵BE•AE=CE•ED,即BE•(OA+OE)=CE•ED,即2×(5+5﹣2)=2CE,∴CE=4,∴CD=CE+ED=4+2=6,EF=CD﹣ED=3﹣2=,又∵OE=OB﹣BE=5﹣2=3,在Rt△OEF中,EF=,OE=3,∴OF===.故选:C.5.解:延长AO交⊙O于点D,设⊙O的半径是x,根据相交弦定理,得=12,x=4,因此⊙O的直径是8.故选:B.6.解:由相交弦定理知,CM•MD=AM•MB=3×4=12,故选C.7.解:由于OP⊥CD,可通过垂径定理得出CP=DP=2,再根据相交弦定理,AP•BP=CP•DP=2•2=4.故选:B.8.解:∵CD⊥AB,∴CE=DE,∴CE2=AE•BE,∵AB=10cm,且AE:EB=2:3,∴AE=4cm,EB=6cm,∴CE=2cm,∴AC===2cm.故选:D.9.解:延长MN交圆于点W,延长QN交圆于点E,延长PN交圆于点F,连接PE,QF ∵∠PNM=∠QNM,MN⊥AB,∴∠1=∠2(故①正确),∵∠2与∠ANE是对顶角,∴∠1=∠ANE,∵AB是直径,∴可得PN=EN,同理NQ=NF,∵点N是MW的中点,MN•NW=MN2=PN•NF=EN•NQ=PN•QN(故⑤正确),∴MN:NQ=PN:MN,∵∠PNM=∠QNM,∴△NPM∽△NMQ,∴∠Q=∠PMN(故③正确).故选:B.10.解:延长DC交⊙C于M,延长CD交⊙O于N.∵CD2=AD•DB,AD=9,BD=4,∴CD=6.在⊙O、⊙C中,由相交弦定理可知,PE•EQ=DE•EM=CE•EN,设CE=x,则DE=6﹣x,EN=6﹣x+6则(6﹣x)(x+6)=x(6﹣x+6),解得x=3.所以,CE=3,DE=6﹣3=3,EM=6+3=9.所以PE•EQ=3×9=27.故选:D.二.填空题(共5小题)11.解:∵AB=AC=4,AE=3,∴CE=1,∵∠BAC=2∠BDC,∴点B、C、D在以点A为圆心,AB为半径的圆上,∴根据相交弦定理,得BE•ED=CE•(AE+AB),∴BE•ED=1×(3+4)=7.故答案为:7.12.解:由相交弦定理得,AE•BE=DE•CE,∴3×2=×CE,解得,CE=4,故答案为:4.13.解:设AE=x,则EB=4x,∵弦AB平分弦CD于E,∴CE=DE=CD=×8=4,∵AE•BE=CE•DE,即x•4x=4•4,解得x=2或x=﹣2(舍去),∴AB=AE+BE=5x=10.故答案为10.14.解:作过点M、B的直径EF,交圆于点E、F,则EM=MA=MF,由相交弦定理知,AB•BC=EB•BF=(EM+MB)(MF﹣MB)=AM2﹣MB2=8,∵AB是圆O的直径,∴∠AMB=90°,由勾股定理得,AM2+MB2=AB2=64,∴AM=6.15.解:由相交弦定理得:PA•PB=PC•PD,∴BP===6,∴AB=8,故答案为8.三.解答题(共5小题)16.解:(1)连接AB;∵BC是直径,且BC⊥AH,∴;∵A是的中点,∴==;∴∠BAE=∠ABE;∴AE=BE;(2)易知DH=AD=6;∴AE=6﹣DE,EH=6+DE;由相交弦定理,得:AE•EH=BE•EF,即:(6﹣DE)(6+DE)=32,解得DE=2;Rt△BDE中,BE=AE=AD﹣DE=4,DE=2;由勾股定理,得:BD==2.17.解:(1)连接AD、BC.∵∠A=∠C,∠D=∠B,∴△ADM∽△CBM∴即AM•MB=CM•MD.(2)连接OM、OC.∵M为CD中点,∴OM⊥CD在Rt△OMC中,∵OC=3,OM=2∴CD=CM===由(1)知AM•MB=CM•MD.∴AM•MB=•=5.18.解:(1)弦(图中线段AB)、弧(图中的ACB弧)、弓形、求弓形的面积(因为是封闭图形)等.(写对一个给(1分),写对两个给2分)(2)如图,AB为弦,CD为弦,且AB与CD在圆内相交于点P.结论:PA•PB=PC•PD.证明:连接AD,BC,∵∠APD=∠BPC,∠D=∠B∴△APD∽△BPC∴PA•PB=PC•PD;(3)若点C和点E重合,则由圆的对称性,知点C和点D关于直径AB对称,(8分)设∠BAC=x,则∠BAD=x,∠ABC=90°﹣x,(9分)又D是的中点,所以2∠CAD=∠CAD+∠ACD=180°﹣∠ABC,即2•2x=180°﹣(90°﹣x),(10分)解得x=∠BAC=30°.(11分)(若求得AB=或AF=3•FB等也可,评分可参照上面的标准;也可以先直觉猜测点B、C是圆的十二等分点,然后说明.)19.(1)证明:∵AE•EC=DE•BE,AE=DE,∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠ACB=60°;(2)解:作BM⊥AC于点M,∵OF⊥AC,∴AF=CF,∵△EBC为等边三角形,∴∠GEF=60°,∴∠EGF=30°,∵EG=2,∴EF=1,又∵AE=ED=3,∴CF=AF=4,∴AC=8,EC=5,∴BC=5,∵∠BCM=60°,∴∠MBC=30°,∴CM=,BM==,∴AM=AC﹣CM=,∴AB==7.20.解:由相交弦定理,得AE•BE=DE•CE 又∵BE=2CE∴AE•2CE=6CE∴AE=3∵AB⊥PD∴∠AEP=90°又∵∠P=45°∴∠EAP=∠P=45°∴PE=AE=3在Rt△AEP中,由勾股定理,得:PA ===∵PA切⊙O于点A∴PA2=PC•PD∴PC=∴CE=PE﹣PC=3﹣2=1∵FC⊥PD∴∠FCE=90°又∵∠AED=90°∴∠AED=∠FCE∴AE∥FC∴=∴FC===∴tan∠CFE===.。
2021年中考数学高频考点:《圆的综合》解答题专题练习(二)含答案

2021年中考数学复习高频考点精准练:《圆的综合》解答题专题练习(二)1.在Rt△ABC中,∠ABC=90°,tan A=,AC=5,点M是射线AB上一点,以MC为半径的⊙M交直线AC于点D.(1)如图,当MC=AC时,求CD的长;(2)当点D在线段AC的延长线上时,设BM=x,四边形CBMD的面积为y,求y关于x的函数解析式,并写出它的定义域;(3)如果直线MD与射线BC相交于点E,且△ECD与△EMC相似,求线段BM的长.2.如图,PA、PB为⊙O的切线,A、B为切点,点C为半圆弧的中点,连AC交PO于E 点.(1)求证:PB=PE;(2)若tan∠CPO=,求sin∠PAC的值.3.在梯形ABCD中,AD∥BC,AB⊥BC,AD=3,CD=5,cos C=(如图).M是边BC 上一个动点(不与点B、C重合),以点M为圆心,CM为半径作圆,⊙M与射线CD、射线MA分别相交于点E、F.(1)设CE=,求证:四边形AMCD是平行四边形;(2)联结EM,设∠FMB=∠EMC,求CE的长;(3)以点D为圆心,DA为半径作圆,⊙D与⊙M的公共弦恰好经过梯形的一个顶点,求此时⊙M的半径长.4.已知如图,⊙O的直径BC=4,==,点P是射线BD上的一个动点.(1)如图1,求BD的长;(2)如图1,若PB=8,连接PC,求证PC为⊙O的切线;(3)如图2,连接AP,点P在运动过程中,求AP+PB的最小值.5.如图,P是⊙O外一点,PA是⊙O的切线,A是切点,B是⊙O上一点,且PB=PA,射线PO交⊙O于C、D两点.(1)求证:PB是⊙O的切线;(2)求证:AC平分∠PAB;(3)若⊙O的直径是6,AB=2,则点D与△PAB的内切圆上各点之间距离的最大值为.6.国庆假期,小明做数学题时遇到了如下问题:如图1,四边形ABCD是⊙O的内接四边形,BC是⊙O的直径,直线l经过点A,∠ABD =∠DAE=30°.试说明直线l与⊙O相切.小明添加了适当的辅助线后,得到了图2的图形,并利用它解决了问题.(1)请你根据小明的思考,写出解决这一问题的过程;(2)图2中,若AD=,AB=4,求DC的长.7.如图,直线l1⊥l2,O为垂足,以O圆心,的半径作圆,交l1于点M,N,交l2于点P,Q.在⊙O上任取一点A,作△ABC,使∠A=90°,∠ACB=30°,顶点A,B,C按顺时针方向分布,点C落在射线ON上,且不在⊙O内.若△ABC的某一边所在直线与⊙O相切,我们称该边为⊙O的“相伴切边”.(1)如图1,CA为⊙O的“相伴切边”,CA平分∠OCB,求OC的长;(2)是否存在△ABC三边中两边都是⊙O的“相伴切边”的情形?若存在,请求出AC的长;若不存在,请说明理由.8.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,AC平分∠DAB,AC 与BD相交于点F,延长AC到点E,使CE=CF.(1)求证:BE是半圆O所在圆的切线;(2)若BC=AD=6,求⊙O的半径.9.如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,以AD为直径作⊙O交AB于点E,连接CE,且CB=CE.(1)求证:CE是⊙O的切线;(2)若CD=2,AB=4,求⊙O的半径.10.如图,⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于D.(1)判断△ABD的形状,并说明理由;(2)求点O到弦BD的距离.(3)求CD的长.11.如图,射线PG平分∠EPF,O为射线PG上一点,以O为圆心,10为半径作⊙O,分别与∠EPF两边相交于A、B和C、D,连接OA,此时有OA∥PE.(1)求证:AP=AO;(2)若,求弦AB的长;12.如图,在Rt△ABC中,∠ABC=90°.以AB为直径作⊙O交AC于点D,过点D作DE ⊥AB于点E,F为DE中点,连接AF并延长交BC于点G,连接DG.求证:(1)BG=CG;(2)DG是⊙O的切线.13.如图,直线AF与⊙O相切于点A,弦BC∥AF,连接BO并延长,交⊙O于点E,连接CE并延长,交AF于点D.(1)求证:CE∥OA;(2)若⊙O的半径R=13,BC=24,求DE的长.14.如图,在等腰△ABC中,AB=AC,以AB为直径作⊙O,交BC于E,过点B作∠CBD =∠A,过点C作CD⊥BD于D.(1)求证:BD是⊙O的切线;(2)若CD=2,BC=2,求⊙O的直径.15.如图,AB是⊙O的直径.四边形ABCD内接于⊙O,AD=CD,对角线AC与BD交于点E,在BD的延长线上取一点F,使DF=DE,连接AF.(1)求证:AF是⊙O的切线.(2)若AD=5,AC=8,求⊙O的半径.参考答案1.解:在Rt△ABC中,tan A=,AC=5,设∠A=α,则BC=3,AB=4=BM,sin A==sinα,cos A==cosα,(1)如图1,∵MC=MA=5,过点M作MN⊥CD于点N,∵MC=MD,则CN=CD,在Rt△AMN中,MN=AM sin A=(4+4)×=,则CD=2CN=2=2=;(2)如图1,设CD=2m,则CM2=BC2+MB2=9+x2,则MN2=CM2﹣m2=x2+9﹣m2,在Rt△AMN中,AN2+MN2=AM2,即(5+m)2+9+x2﹣m2=(4+x)2,解得m=(4x﹣9),则MN==(x+4);则S=CD•MN+×AM•BC=(8x2+39x﹣72);∵m=(4x﹣9)>0,∴x>;(3)如图2,过点M作MN⊥CD于点N,过点P作PD⊥CM于点P,设圆的半径为r,∵△ECD与△EMC相似,则∠ECD=∠EMC=∠ACB=α,在Rt△DPM中,DP=DM sin∠EMC=r sinα=r,MP=r cosα=r,则CP=r﹣MP=r﹣r=r,CD==r=2CN,∴MN==r,∵tan A==,解得r=3,则BM===6.2.(1)证明:连接OA,OC,∵OA=OC,∴∠OAC=∠OCA,∵点C为半圆弧的中点,∴∠COE=90°,∴∠OCA+∠OEC=90°,∵PA为⊙O的切线,∴∠PAO=90°,∴∠OAC+∠PAE=90°,∴∠PAE=∠OEC,∵∠OEC=∠AEP,∴∠PAE=∠AEP,∵PA、PB为⊙O的切线,∴PA=PE=PB;(2)解:∵tan∠CPO==,设OC=3k,OP=5k,∴OA=OC=3k,∴PA=PE=4k,过A作AH⊥PO于H,∴OP•AH=PA•OA,∴AH==k,∴OH==k,∵∠AHE=∠COE=90°,∠AEH=∠CEO,∴△AHE∽△COE,∴,∴OE=k,∴CE==k,∴sin∠PAC=sin∠CEO===.3.(1)证明:如图1中,连接EM,过点M作MG⊥CD于G,则EG=CG=,在Rt△CGM中,CM===3,∴AD=CM,∵AD∥CM,∴四边形AMCD是平行四边形.(2)解:如图2中,过点E作EH⊥BC于H,过点M作MT⊥EC于T.∵ME=MC,MT⊥EC,∴CT=ET,∴cos C==,设EC=6k,则CT=ET=3k,MC=ME=5k,在Rt△CEH中,EH=CE=k,CH=EC=k,∴MH=CM﹣CH=k,∴tan∠EMH=,∵∠FMB=∠EMC,∴tan∠FMB===,∴BM=,∴CM=BC﹣BM==5k,∴CE=6k=.(3)如图3﹣1中,当公共弦经过点A时,过点D作DP⊥BC于P,则四边形ABPD是矩形.∴AD=BP=3,在Rt△CDP中,cos C==,∵CD=5,∴PC=3,AB=PD=4,∴BC=3+3=6,设CM=AM=x,在Rt△ABM中,则有x2=42+(6﹣x)2,解得x=,∴⊙M的半径为.如图3﹣2中,当公共弦经过点D时,连接MD,MP,过点M作MN⊥AD于N.设CM=ME=MP=x,则DN=x﹣3,∵DM2=MN2+DN2=MP2﹣DP2,∴42+(x﹣3)2=x2﹣32,∴x=,综上所述,满足条件的⊙M的半径为或.4.解:(1)∵BC是直径,==,则、、均为60°的弧,则∠DBC=30°,连接OA交BD于点H,∵BC=4,则BO=CO=2,在Rt△BOH中,BH=BO cos∠DBC=2×=3,则BD=2BH=6;(2)在Rt△BCD中,BC=4,∠DBC=30°,则CD=CB=2,PD=PB﹣BD=8﹣6=2,在Rt△CDP中,PC2=CD2+PD2=4+(2)2=16,在△BCP中,BC2=(4)2=48,BP2=64,则PB2=CB2+PC2,故△BPC为直角三角形,故PC⊥CB,故PC为⊙O的切线;(3)过点A作AH⊥BC交BD于点P,在Rt△PBH中,∠DBC=30°,则PH=PB,即AP+PB=AP+PH=AH为最小,∵、均为60°的弧,则∠ABO=60°,而AO=BO,故△ABO为边长为2的等边三角形,则AH=AB sin60°=2×=3,即AP+PB的最小值为3.5.(1)证明:如图1中,连接OA,OB.∵PA是切线,∴PA⊥OA,∴∠PAO=90°,在△PAO和△PBO中,,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO=90°,∴PB⊥OB,∴PB是⊙O的切线.(2)证明:如图1中,设∠PAC=α.∵∠PAO=90°,∴∠OAC=90°﹣α,∵OA=OC,∴∠OCA=∠OAC=90°﹣α,∵PA=PB,OA=OB,∴PO垂直平分线段AB,∴∠CAB=90°∠ACO=90°﹣(90°﹣α)=α,∴∠PAC=∠CAB,∴AC平分∠PAB.(3)解:如图2中,设AB交OP于点M.∵PA,PB是⊙O的切线,∴OP平分∠APB,∵AC平分∠PAB,∴点C是△PAB的内心,设△PAB的内切圆⊙C交PC于H,∵⊙O的直径为6,∴OA=3,∵OP垂直平分线AB,AB=2,∴AM=BM=,∴OM===2,∵OC=3,∴CH=CM=3﹣2=1,∵点D到⊙C上各点的最大距离为DH,∴最大距离DH=CD+CH=6+1=7.故答案为7.6.(1)证明:过A作直径AF,连接DF,如图2所示:∵AF是⊙O的直径,∴∠ADF=90°,∴∠AFD+∠FAD=90°,∵∠ABD=∠AFD,∠ABD=∠DAE,∴∠AFD=∠DAE,∴∠DAE+∠DAF=90°,即∠OAE=90°,∴OA⊥AE,∵点A是半径OA的外端,∴直线l与⊙O相切;(2)解:过点A作AG⊥BD,垂足为点G,∴∠AGB=∠AGD=90°,∵∠ABD=30°,∴∠AFD=30°,∴直径AF=2AD==BC,∵∠ABD=30°,AB=4,∴AG==2,BG=AG=2,∴DG===,∴BD=BG+DG=,∵BC是直径,∴∠BDC=90°,∴.7.解:(1)如图1,连接OA,则OA=,∵CA为⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠ACB=30°,CA平分∠OCB,∴∠OCA=∠ACB=30°,则在Rt△AOC中,OC=2OA=2;(2)存在.由题意可分三种情况,①当边AB,BC都是⊙O的“相伴切边”时,即OA⊥AB,∵∠BAC=90°,即AC⊥AB,∴O,A,C三点共线,又∵点C落在射线ON上,且不在⊙O内,∴点A只能在点M或点N处,如图2,当点A在点N处时,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC﹣AO=,当点A在点M处时,如图3,设BC与⊙O相切于点D,连接OD,则OD⊥CD,∵∠ACB=30°,∴OC=2OD=2,∴AC=OC+AO=3,②当边AC,BC都是⊙O的“相伴切边”时,则OA⊥AC,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,如图4,设BC与⊙O相切于点D,连接OD,则OD⊥CD,设AB=x,则BC=2x,AC==x,∴OB=OA+AB=+x,∵∠BAC=∠BDO=90°,∠B=∠B,∴△ABC∽△DBO,∴,即,解得,x=2﹣或x=0(舍去),经检验,x=2﹣是所列方程的解.∴AC=x=2﹣3.③当边AC,AB都是⊙O的“相伴切边”时,∵AC是⊙O的“相伴切边”,∴OA⊥AC,即∠OAC=90°,∵∠BAC=90°,∴∠OAB=180°,即O,A,B三点共线,∴AB不可能是⊙O的“相伴切边”,则AC,AB不能同时是⊙O的“相伴切边”;综上可得,AC的长是或3或2﹣3.8.(1)证明:∵AB是半圆O的直径,∴∠ACB=∠ADB=90°,∵CE=CF,∴BE=BF,∴∠E=∠BFE,∵AC平分∠DAB,∴∠DAF=∠BAF,∵∠DAF+∠AFD=90°,∴∠BAF+∠E=90°,∴BE是半圆O所在圆的切线;(2)解:∵∠DAF=∠BAF,∴=,∵BC=AD,∴=,∴==,∴∠CAB=30°,∴AB=2BC=12,∴⊙O的半径为6.9.(1)证明:如图,连接OE,DE,∵∠ACB=90°,∴∠A+∠B=90°,∵AD是⊙O的直径,∴∠AED=∠DEB=90°,∴∠DEC+∠CEB=90°,∵CE=BC,∴∠B=∠CEB,∴∠A=∠DEC,∵OE=OD,∴∠OED=∠ODE,∵∠A+∠ADE=90°,∴∠DEC+∠OED=90°,即∠OEC=90°,∴OE⊥CE.∵OE是⊙O的半径,∴CE是⊙O的切线;(2)解:在Rt△ABC中,∠ACB=90°,CD=2,AB=4,BC=CE,设⊙O的半径为r,则OD=OE=r,OC=r+2,AC=2r+2,∴AC2+BC2=AB2,∴(2r+2)2+BC2=(4)2,在Rt△OEC中,∠OEC=90°,∴OE2+CE2=OC2,∴r2+BC2=(r+2)2,∴BC2=(r+2)2﹣r2,∴(2r+2)2+(r+2)2﹣r2=(4)2,解得r=3,或r=﹣6(舍去).∴⊙O的半径为3.10.解:(1)△ABD是等腰直角三角形,理由如下:∵AB是⊙O的直径,∴∠ACB=∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴,∴AD=BD,∴△ABD是等腰直角三角形;(2)过O作OE⊥DB于E,如图所示:则∠OEB=90°,∵AB=10cm,∴OB=AB=5(cm),由(1)得:△ABD是等腰直角三角形,∴∠ABD=45°,∴△OBE是等腰直角三角形,∴OE=OB=(cm),即点O到弦BD的距离为cm;(3)过B作BF⊥CD于F,如图所示:则∠BFC=∠BFD=90°,∵∠ACB=90°,∴BC===8(cm),∵∠BCD=45°,∴△BCF是等腰直角三角形,∴CF=BF=BC=4(cm),由(1)得:△ABD是等腰直角三角形,∴BD=AB=5(cm),∴DF===3,∴CD=CF+DF=4+3=7(cm).11.(1)证明:∵PG平分∠EPF,∴∠DPO=∠BPO,∵OA∥PE,∴∠DPO=∠POA,∴∠BPO=∠POA,∴PA=OA;(2)过点O作OH⊥AB于点H,如图,则AH=BH,在Rt△OPH中,tan∠OPH==,设OH=x,则PH=2x,由(1)可知PA=OA=10,∴AH=PH﹣PA=2x﹣10,∵AH2+OH2=OA2,∴(2x﹣10)2+x2=102解得x1=0(不合题意,舍去),x2=8,∴AH=6,∴AB=2AH=12.12.证明:(1)∵DE⊥AB,∴∠AED=∠ABC=90°,∴DE∥BC,∴△AEF∽△ABG,△ADF∽△ACG,∴,=,∴,∵F为DE中点,∴EF=DF,∴BG=CG;(2)连接OD,BD,OG,∵AB为⊙O的直径,∴AD⊥BD,∵AO=BO,BG=CG,∴OG∥AC,∴OG⊥BD,∴BF=DF,∴DG=BG,在△ODG与△OBG中,,∴△ODG≌△OBG(SSS),∴∠ODG=∠OBG=90°,∴DG是⊙O的切线.13.(1)证明:∵BE是⊙O的直径,∴∠BCE=90°,∵BC∥AF,∴∠CDF=∠ACE=90°,∵AF与⊙O相切于点A,∴∠OAF=90°,∴∠OAF=∠CDF,∴CE∥OA;(2)解:如图,作OH⊥CE于点H,由垂径定理知:CH=EH,∵OB=OE,∴OH是△ECB的中位线,∴OH=BC=24=12,在Rt△OEH中,根据勾股定理,得EH===5,∵OH⊥CE,∴∠OHD=90°,由(1)知:∠CDA=∠OAD=90°,∴四边形OADH是矩形,∴DH=OA=13,∴DE=DH﹣EH=13﹣5=8.14.解:(1)如图,连接AE,∵AB为直径,∴∠AEB=90°,∵△ABC是等腰三角形,AB=AC,∴∠BAE=BAC,∵∠CBD=∠BAC,∴∠BAE=∠CBD,∵∠ABE+∠BAE=90°,∴∠ABE+∠CBD=90°,∴∠ABD=90°,∴AB⊥BD,∵AB为直径,∴BD是⊙O的切线;(2)由(1)知:△ABC是等腰三角形,AE⊥BC,∴BE=CE=BC=,∵CD⊥BD,∴∠CDB=∠AEB=90°,∵∠CBD=∠BAE,∴△CBD∽△BAE,∴=,∴=,∴AB=3.∴⊙O的直径为3.15.解:(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥EF,∠BAD+∠ABD=90°,又∵DF=DE,∴AF=AE,∴∠FAD=∠EAD.∴∠FAD=∠EAD=∠ACD=∠ABD,∴∠FAB=∠FAD+∠BAD=∠BAD+∠ABD=90°,∴AF是⊙O的切线.(2)如图,连接OD交AC于M,∵AD=CD,∴,∴OD⊥AC,AM=CM=AC=4,∴AD=CD=5,在Rt△DMC中,DM==3.设⊙O的半径为x,则OM=x﹣3,∵OM2+AM2=OA2,∴(x﹣3)2+42=x2,∴x=.⊙O的半径即OA=.。
2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)(含答案)

2021年九年级数学中考复习—— 圆的专题:填空题专项训练(二)1.如图,在平面直角坐标系中,直线l 的函数表达式为y =x ,点O 1的坐标为(1,0),以O 1为圆心,O 1O 为半径画圆,交直线l 于点P 1,交x 轴正半轴于点O 2;以O 2为圆心,O 2O 为半径画圆,交直线l 于点P 2,交x 轴正半轴于点O 3;以O 3为圆心,O 3O 为半径画圆,交直线l 于点P 3,交x 轴正半轴于点O 4;…按此做法进行下去,其中弧的长 .2.如图,△ABC 的内切圆⊙O 分别与三角形三边相切于点D 、E 、F ,若∠DFE =55°,则∠A = °.3.如图,在Rt △ABC 中,点D 是AB 上的一点,将Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 的对应点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,若AC =2BC =2,则阴影部分的面积是 .4.如图,以半圆的一条弦AN为对称轴,将AN弧折叠过来和直径MN交于点B,如果MB:BN =2:3,若MN=10,那么弦AN的长为.5.如图,PA与⊙O切于点A,PO的延长线交⊙O于点B,若⊙O的半径为3,∠APB=54°,则弧AB的长度为.6.如图,△ABC内接于⊙O,AB是⊙O直径,∠ACB的平分线交⊙O于D,若AC=m,BC=n,则CD的长为(用含m、n的代数式表示).7.如图△ABC中,AC=BC=5,AB=6,以AB为直径的⊙O与AC交于点D,若E为的中点,则DE.8.在矩形ABCD中,AB=4,BC=6,若点P是矩形ABCD上一动点,要使得∠APB=60°,则AP的长为.9.如图,在⊙O中,,AB=3,则AC=.10.用正五边形钢板制作一个边框总长为40cm的五角星(如图),则正五边形的边长为cm(保留根号).11.如图,⊙O是等边△ABC的外接圆,其半径为3.图中阴影部分的面积是.12.如图所示,⊙O的半径为5,AB为弦,半径OC⊥AB,垂足为D,如果CD=2,那么AB 的长是.13.过三点A(3,3)、B(7,3)、C(5,6)的圆的圆心坐标为.14.如图,在扇形OAB中,∠AOB=90°,OA=1,将扇形OAB绕点B逆时针旋转,得到扇形BDC,若点O刚好落在弧AB上的点D处,则线段AC的长等于.15.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠BCD=30°,CD=2,则阴影部分=.面积S阴影16.如图,在边长为的正八边形ABCDEFGH中,点P在CD上,则△PGH的面积为.17.如图,已知⊙O的半径为6,C、D在直径AB的同侧半圆上,∠AOC=96°,∠BOD=36°,动点P在直径AB上,则CP+PD的最小值是.18.如图,四边形ABCD内接于以AC为直径的⊙O,AD=,CD=2,BC=BA,AC与BD 相交于点F,将△ABF沿AB翻折,得到△ABG,连接CG交AB于E,则BE长为.19.如图,⊙O的半径为5,弦AB的长为5,C为⊙O内一动点,且△ACB=90°,则△ABC的周长的最大值为.20.已知:如图,在△ABC中,D是AB边上一点,圆O过D、B、C三点,∠DOC=2∠ACD=90°.如果∠ACB=75°,圆O的半径为2,则BD的长为.参考答案1.解:连接P1O1,P2O2,P3O3,P4Q4,…,如图所示:∵P1是⊙1上的点,∴P1O1=OO1,∵直线l解析式为y=x,∴∠P1OO1=45°,∴△P1OO1为等腰直角三角形,即P1O1⊥x轴,同理,P n O n垂直于x轴,∴为圆的周长,∵以O1为圆心,O1O为半径画圆,交x轴正半轴于点O2,以O2为圆心,O2O为半径画圆,交x轴正半轴于点O3,以此类推,∴OO n=2n﹣1,∴=×2π•OO n=π×2n﹣1=2n﹣2π,∴n=2020时,=22020﹣2π=22018π,故答案为:22018π.2.解:连接OD,OE,如图所示:则∠ADO=∠AEO=90°;由圆周角定理知,∠DOE=2∠DFE=110°;∴∠A =360°﹣∠ADO ﹣∠AEO ﹣∠DOE =70°.故答案为:70.3.解:如图,连接CD 、CD ′,∵Rt △ABC 绕直角顶点C 逆时针旋转90°,使得点A 与点A ′落在BC 的延长线上,点B 的对应点B ′落在边AC 上,点D 的对应点D '落在边A ′B ′上,经过点B ′,∴∠DCD ′=∠ACA ′=∠BCB ′=90°,CB =CD =CB ′=CD ′=,AC =A ′C =2,∴∠BCD +∠DCB ′=∠B ′CD ′+∠DCB ′=90°,∴∠DCB =∠D ′CB ′,∴△DCB ≌△D ′CB ′(SAS ),由旋转可知:△ABC ≌△A ′CB ′,∴S △DCB =S △D ′CB ′,S △ABC =S △A ′CB ′,∴S △BCD +S △A ′CD ′=S △ABC∴S 阴影=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △BCD ﹣S △A ′CD ′=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣(S △BCD +S △A ′CD ′)=S 扇形ACA ′+S △ABC ﹣S 扇形DCD ′﹣S △A ′CB ′=S 扇形ACA ′﹣S 扇形DCD ′=﹣=.故答案为.4.解:连接MA并延长至M',使AM'=AM,连接M'N,交半圆于D,连接AD,如图所示:∵MN是半圆的直径,∴∠MAN=90°,∴AN⊥AM,∵AM'=AM,∴M′N=MN=10,∵MB:BN=2:3,∴MB=4,BN=6,由折叠的性质得:AD=AB,BN=DN,∴DM'=BM=4,∵四边形AMND是圆内接四边形,∴∠M'AD=∠M'NM,∵∠M'=∠M',∴△M'AD∽△M'NM,∴=,∴M′A•M′M=M′D•M′N,即M′A•2M′A=4×10=40.则M′A2=20,又∵M′A2=M′N2﹣AN2,∴20=100﹣AN2,∴AN=4.故答案为:4.5.解:连接OA,∵PA与⊙O切于点A,∴OA⊥PA,∴∠OAP=90°,∵∠APB=54°,∴∠AOB=∠APB+∠PAO=54°+90°=144°,∵⊙O的半径为3,∴弧AB的长度为=π.故答案为:π.6.解:如图,作DE⊥CA与E,DF⊥BC于F.∵AB是直径,∴∠ECF=∠CED=∠CFD=90°,∴四边形DECF是矩形,∵DC平分∠ACB,DE⊥CA,DF⊥CB,∴DE=DF,∴四边形DECF是正方形,∵∠DCA=∠DCB,∴=,∴AD=BD,∴Rt△ADE≌Rt△FDB(HL),∴AE=BF,∴CE+CF=AC+AE+CB﹣BF=AC+BC=m+n,∴CE=CF=DE=DF=(m+n),∴CD=(m+n),故答案为:(m+n).7.解:连接OC、OE、BD,OE与BD交于点F,如图所示:∵AC=BC=5,O为AB的中点,∴OA=OB=3,OC⊥AB,∴OC===4,∵AB为⊙O的直径,∴∠ADB=90°∴AD⊥BD,∴BD===,∴AD===,∵E为的中点,∴OE⊥BD,∴OE∥AD,∵OA=OB,∴OF为△ABD的中位线,∴DF=BF=BD=,OF=AD=,∴EF=OE﹣OF=3﹣=,∴DE===;故答案为:.8.解:如图,取CD中点P,连接AP,BP,∵四边形ABCD是矩形,∴AB=CD=4,AD=BC=6,∠D=∠C=90°,∵点P是CD中点,∴CP=DP=2,∴AP===4,BP===4,∴AP=PB=AB,∴△APB是等边三角形,∴∠APB=60°,过点A,点P,点B作圆与AD交于点P′,与BC交于点P″,连接BP′,AP″,此时∠AP′B=∠APB=60°,∠AP″B=60°,∴AP′==4,AP″==8,故答案为:4或4或8.9.解:∵在⊙O中,,∴AC=AB=3,故答案为:310.解:∵五边形ABCDE是正五边形,∴五边形ABCDE为圆内接正五边形,∴====,∴∠BAE==108°,∠HAN=∠AEH=∠BAC=∠DAE=∠ABE=∠BAE=×108°=36°,∴∠EAH=∠BAN=36°+36°=72°,∴∠AHE=180°﹣72°﹣36°=72°,∠ANB=180°﹣72°﹣36°=72°,∴∠EAH=∠EHA=72°,∠ANH=∠AHN=72°,∴AE=HE,∠EAH=∠EHA=∠ANH=∠AHN,∴△AEH∽△AHN,∴=,∵五角星的边框总长为40cm,∴AH=AN=EN==4,HN=HE﹣NE=AE﹣4,∴=,整理得:(AE﹣2)2=20,∴AE=2+2(cm),故答案为:2+2.11.解:∵△ABC为等边三角形,∴∠A=60°,∴∠BOC=2∠A=120°,∴图中阴影部分的面积==3π,故答案为:3π.12.解:连接OA,∵半径OC⊥AB,∴AD=BD=AB,∵OC=5,CD=2,∴OE=3,在Rt△AOD中,AD===4,∴AB=2AD=8,故答案为8.13.解:如图,在平面直角坐标系中画出点A、B、C,连接AB、AC、BC,过C作CE⊥AB于E,设所求的圆的圆心为D,半径为r,连接AD∵A(3,3)、B(7,3)∴圆心D在直线x=5上∴D的横坐标为5∵C(5,6)∴CE=3∵CD=r∴DE=3﹣r在Rt△DAE中,由勾股定理得:AE2+DE2=AD2∴22+(3﹣r)2=r2解得r=∴点D的纵坐标为6﹣=∴D(5,)故答案为:(5,).14.解:连接OD,BC,AB,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴OB=BD=OD,∴△BOD是等边三角形,∴∠OBD=60°,即旋转角等于60°,∵将扇形OAB绕点B逆时针旋转,得到扇形BDC,∴AB=BC,∠ABC=60°,∴△ABC是等边三角形,∴AC=AB=OB=,故答案为:15.解:连接OC.∵AB⊥CD,∴=,CE=DE=,∴∠COB=∠BOD,∵∠BOD=2∠BCD=60°,∴∠COB=60°,∵OC=OB=OD,∴△OBC,△OBD都是等边三角形,∴OC=BC=BD=OD,∴四边形OCBD是菱形,∴OC∥BD,∴S△BDC =S△BOD,∴S阴=S扇形OBD,∵OD==2,∴S阴==,故答案为.16.解:作正八边形的外接圆O,则∠HGD=×360°=90°,∠FGD=×360°=45°,在正八边形ABCDEFGH中,CD∥HG,∴S△HGP =S△CDH,过F作FM⊥DG于M,过E作EN⊥DG于N,在Rt△GMF中,∠FGD=45°,GF=,∴GM=GF=1,同理,DN=1,∵MN=EF=,∴GD=1++1=2+,∴S△HGP =S△HGD=HG•GD=.故答案为:+1.17.解:过D作DE⊥AB交⊙O于E,连接CE交AB于P,连接OE,作OF⊥CE于F,如图所示:此时CP+PD=CE最小.,∴∠BOE=∠BOD=36°,∵∠AOC=96°,∴∠BOC=84°,∴∠COE=∠BOC+∠BOE=120°,∵OC=OE=6,∴∠OCE=∠OEC=30°,∵OF⊥CE,∴CF=EF,OF=OC=3,CF=OF=3,∴CE=2CF=6.即CP+PD的最小值为6;故答案为:6.18.解:∵AC为⊙O的直径,∴∠ADC=∠ABC=90°,∵AD=,CD=2,∴AC==,∵AB=BC,∴∠1=∠2,过F作FM⊥AD于M,FN⊥CD于N,∴FM=FN,∴====2,∴AF=AC=,∵将△ABF沿AB翻折,得到△ABG,∴∠GAE=∠CAE,∴==3,∵AG=AF=,∵∠BAG=∠BAC=45°,∴∠GAC=90°,∴CG==,∴EG=CG=,∴tan∠CGA==3,过A作AH⊥EG于H,∴HG=AG•cos∠AGH=×=,AH=AG•sin∠AGH=×=1,∴EH=EG﹣HG=,∴AE==,∵AB=AC=,∴BE=AB﹣AE=.故答案为:.19.解:如图,连接OA、OB,∵OA=OB=5,AB=5,∵52+52=(5)2∴OA2+OB2=AB2,∴△AOB是直角三角形,∴∠AOB=90°,∵△ACB=90°,即当点C与点O重合时,△ABC的周长最大,因为AB是定值,AO+BO是直径最大,则△ABC的周长的最大值为:10+5.故答案为:10+5.20.解:如图,连接OB,∵∠DOC=2∠ACD=90°.∴∠ACD=45°,∵∠ACB=75°,∴∠BCD=∠ACB﹣∠ACD=30°,∵OC=OD,∠DOC=90°,∴∠DCO=45°,∴∠BCO=∠DCO﹣∠BCD=15°,∵OB=OC,∴∠CBO=∠BCO=15°,∴∠BOC=150°,∴∠DOB=∠BOC﹣∠DOC=150°﹣90°=60°,∵OB=OD,∴△BOD是等边三角形,∴BD=OD=2.故答案为2.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题二:圆知识要点扫描归纳一圆的基本概念(1)圆的定义:在平面内到定点的距离等于定长的点的集合叫做圆。
定点叫做圆心,定长叫半径。
(2)确定圆的条件;①已知圆心和半径,圆心确定圆的位置,半径确定圆的大小;②不在同一条直线上的三点确定一个圆;③已知圆的直径的位置和长度可确定一个圆;(3)点和圆的位置关系设圆的半径为r,点到圆心的距离为d,则点与圆的位置关系有三种。
①点在圆外⇔d>r;②点在圆上⇔d=r;③点在圆内⇔d<r;(4)弦:连结圆上任意两点的线段叫做弦。
经过圆心的弦叫做直线。
直径是圆中最大的弦。
圆心到弦的距离叫做弦心距。
(5)弧:圆上任意两点间的部分叫做弧。
弧分为半圆,优弧、劣弧三种。
(6)等圆、等弧:能够重合的两个圆叫做等圆。
同圆或等圆的半径相等。
在同圆或等圆中,能够互相重合的两条弧叫做等弧。
(7)圆的对称性:圆既是轴对称图形又是中心对称图形。
经过圆心的每一条直线都是它的对称轴。
圆心是它的对称中心。
圆绕圆心旋转任何角度,都能够与原来的图形重合,因此圆还具有旋转不变性。
二圆中的重要定理1.垂径定理及其推论:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.推论1:一条直线,如果具有①过圆心;②垂直于弦;③平分弦(非直径);④平分弦所对的劣弧;⑤平分弦所对的优弧.这五个性质中的任何两个性质这条直线就具有其余的三条性质.推论2:圆的平行弦所夹的弧相等.2.圆心角、弧、弦、弦心距之间的关系、定理及推论.在同圆或等圆中,四组量:①两个圆心角;②两条弧;③两条弦;④两条弦心距.其中任一组量相等,则其余三组量也分别相等.即在同圆或等圆中:圆心角相等←−−→←−−→←−−→所对所对所对弧相等弦相等弦心距相等 3.圆周角①定义:顶点在圆上,且两边与圆相交的角. ②定理及推论定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧相等.推论2:半圆(或直径)所对的圆周角是直角;90o 的圆周角所对的弦是直径.推论3:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.推论4:圆内接四边形定理:圆的内接四边形对角互补,并且任何一个外角都等于它的内对角.三、直线和圆的位置关系:1.直线和圆的位置关系的定义及有关概念(1)直线和圆有两个公共点时,叫做直线和圆相交(图1),这时直线叫圆的割线.(2)直线和圆有唯一公共点时,叫做直线和圆相切(图2) 这时直线叫做圆的切线,唯一的公共点叫做切点. (3)直线和圆没有公共点时,叫做直线和圆相离(图3)2.直线和圆的位置关系性质和判定如果⊙O 的半径r ,圆心O 割直线l 的距离为d ,那么(1)直线l 和⊙O 相交d r ⇔<(图1);(2)直线l 和⊙O 相切d r ⇔=(图2);(3)直线l 和⊙O 相离d r ⇔>(图3).· lO图1 · lO图2· lO图2·Odr ·Odr ·Or四、切线的判定和性质: (一)切线的判定1.切线判定定理:经过半径的外端点并且垂直于这条半径的直线是圆的切线; 2.和圆心距离等于半径的直线是圆的切线;3.经过半径外端点且与半径垂直的直线是圆的切线. (二)切线的性质1.切线的性质定理,圆的切线垂直于经过切点的半径; 推论1:经过圆心且垂直于切线的直线必经过切点; 推论2:经过切点且垂直于切线的直线必经过圆心. 2.切线的性质:(1)切线和圆只有一个公共点; (2)切线和圆心的距离等于圆的半径; (3)切线垂直于过切点的半径;(4)经过圆心垂直于切线的直线过切点; (5)经过切点垂直于切线的直线必过圆心. 五、三角形的内切圆 1.三角形的外接圆过三角形三个顶点的圆,叫做三角形的外接圆,三条边中垂线的交点,叫做三角形的外心。
三角形的外心到各顶点的距离相等. 2.外心的位置锐角三角形的外心在三角形内部,钝角三角形的外心在三角形的外部,直角三角形的外心在斜边中点,外接圆半径2CR =(C 为斜边长) 3.三角形的内切圆到三角形三条边距离都相等的圆,叫三角形的内切圆,三角形中,三个内角平分线的交点,叫三角形的内心,三角形内心到三条边的距离相等,内心都在三角形的内部.若三角形的面积为ABC S ∆,周长为a+b+c,则内切圆半径为:c b a S r ABC ++=∆2,当b a ,为直角三角形的直角边,c 为斜边时,内切圆半径cb a abr ++=或2cb a r -+=. 4.圆内接四边形的性质(1)圆内接四边形的对角互补;(2)圆内接四边形的任何一个外角等于它的对角.注意:①圆内接平行四边形为矩形;②圆内接梯形为等腰梯形. 六、切线长定理: 1.切线长概念:在经过圆外一点的切线上,这点和切点之间的线段的R ,叫做这点到圆的切线长.2.切线长和切线的区别切线是直线,不可度量;而切线长是切线上一条线段的长,而圆外一已知点到切点之间的距离,可以度量. 3.切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角.要注意:此定理包含两个结论,如图,PA 、PB 切⊙O 于A 、B 两点,①PA=PB ②PO 平分APB ∠. 4.两个结论:圆的外切四边形对边和相等;圆的外切等腰梯形的中位线等于腰长. 七、弦切角定理: 1.弦切角概念:理解体弦切角要注意两点:①角的顶点在圆上;②角的一边是过切点的弦,角的边一边是以切点为端点的一条射线. 2.弦切角定理:弦切角等于它所夹的弦对的圆周角,该定理也可以这样说:弦切角的度数等于它所夹弧的度数的一半. 3.弦切角定理的推论:推论:如果两个弦切角所夹的弧相等,那么这两个弦切角相等. 八 与比例线段相关的定理(了解) 1.相交弦定理及其推论:(1)定理:圆内的两条相交弦,被交点分成的两条线段长的积相等.· AOCDBPPA BC D如图,AB ,CD 相交余E ,则A E ·EB=C E ·D E(2),推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项.如上右图,有A E ·EB=C E 2成立2,切割线定理及其推论(1)定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项. 如上左图,PT 切⊙O,PAB 是⊙O 的一条 割线,则有PT 2=PA ·PB 成立.(2)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.如上右图,有P A ·PB=P C ·PD 成立. 九 圆中的相关计算1. 弧长公式:半径为R 的圆,其周长是R π2,将圆周分成360份,每一份弧就是1o 的弧,1o 弧的弧长应是圆周长的3601,而为1803602RR ππ=,因此,o n 的弧的弧长就是180R n π,于是得到公式:)(180代表弧长l Rn l π=。
2. (1)扇形的定义:一条弧和经过这条弧的端点的两条半径组成的图形叫做扇形(如图)。
(2)扇形的周长: (3)扇形的面积:如图,阴影部分的面积即为扇形OAB 的面积。
S 扇形=)(3602为扇形圆心角的度数为半径,n R R n π 由上面两公式可知S 扇形=213602n R lR π=.可据已知条件灵活选用公式。
3. 弓形的面积PABC D· OP ABT ·· OPA BCDAB AB l R l OB OA +=++2·O AB·ABO m·ABOm(1)由弦及其所对的劣弧组成的图形,S 弓形=S 扇形-S △OAB 。
(2)由弦及其所对的优弧组成的弓形,S 弓形=S 扇形+S △OAB 。
十.两圆的位置关系: 1 圆与圆的位置关系外 离外 切相 交内 切内 含图形公共点 0个 1个 2个 1个 0个 d 、r 、R 的关系 d>R+r d=R+r R-r<d<R+rd=R-r d<R-r 外公切线 2条 2条 2条 1条 0条 内公切线2条1条0条0条0条2.两圆连心线的性质(1)如果两圆相切,那么切点位于这两个圆的连心线上. (2)相交两圆的连心线垂直平分这两个圆的公共弦. 3.两圆的公切线(1)与两圆都相切的直线,叫做这两个圆的公切线,两个圆在公切线的同旁时,这条公切线叫做这两个圆的外公切线;两个圆在公切线的两旁时,这条公切线叫做这两个圆的内公切线;公切线上两个切点间的距离,叫做这条公切线(段)的长;(2)两圆的两条外公切线长相等;(3)两圆的两条内公切线长相等,且交点位于这两个圆的连心线上; (4)两圆相切可以运用于弧与弧的平浓连接. 考点扫描归纳 1 角度的计算1.(年山东省青岛市)如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC= °.2、(年安徽省B 卷)13.如图,一条公路的转弯处是一段圆弧(图中的弧AB ),点O 是这段弧的圆心,C 是弧AB 上一点,OC ⊥AB ,垂足为D , AB =300m ,CD =50m ,则这段弯路的半径是 m .· O 2·O 1 · · O 1O 2Rrd·O 1 · O 2RrR rO 2 O 1 · · Rr · O 2· O 1R rOCBA A 3、(福建德化)如图,点B 、C 在⊙O 上,且BO=BC ,则圆周角BAC ∠等于( ) A .60︒ B .50︒ C .40︒D .30︒第2题图第3题图4.(年北京崇文) AB 是圆O 的直径,CD 是圆O 的弦,DAB ∠=48︒,则ACD ∠=︒.5.(年门头沟区)如图,CD AB ⊥于E ,若60B ∠=,则A ∠= 度.第4题图6.(年重庆潼南县)如图,已知AB 为⊙O 的直径,点C 在⊙O 上,∠C =15°,则∠BOC 的度数为( )A .15°B . 30°C .45°D .60°7. (年兰州市) 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧.其中正确的有A .4个B .3个C . 2个D . 1个 8. (年安徽中考) 如图,△ABC 内接于⊙O ,AC 是⊙O 的直径,∠ACB =500,点D 是BAC 上一点,则∠D =_______________OABC第1题图· 第5题ABCO题图6第8题 第9题 第10题9.(重庆市)如图,△ABC 是⊙O 的内接三角形,若∠ABC =70°,则∠AOC 的度数等于( )A .140°B .130°C .120°D .110°10.(年四川省眉山市)如图,∠A 是⊙O 的圆周角,∠A =40°,则∠OBC 的度数为_______.11.(年福建省晋江市)如图, A 、B 、C 是⊙O 上的三点,且A 是优弧BAC 上与点B 、点C 不同的一点,若BOC ∆是直角三角形,则BAC ∆必是( ) . A.等腰三角形 B.锐角三角形C.有一个角是︒30的三角形D.有一个角是︒45的三角形12.(年浙江省绍兴市)如图,⊙O 是正三角形ABC 的外接圆,点P 在劣弧AB上,ABP ∠=22°,则BCP ∠的度数为_____________.13.(年宁德市)如图,在⊙O 中,∠ACB =34°,则∠AOB 的度数是( ).A.17°B.34°C.56°D.68°14.(年山东省青岛市)如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠BOC = °.A OBC第11题第13题图AOCB 第12题图OABC第14题图·(第17题)15.(江苏泰州,18,3分)如图⊙O 的半径为1cm ,弦AB 、CD 的长度分别为2,1cm cm ,则弦AC 、BD 所夹的锐角α= .第15题图 第16题图16.(年安徽芜湖市)如图所示,在圆⊙O 内有折线OABC ,其中OA =8,AB =12,∠A =∠B =60°,则BC 的长为()A .19B .16C .18D .2017.(浙江省喜嘉兴市)如图,A 、B 、C 是⊙O 上的三点,已知∠O =60º,则∠C=( )A .20ºB .25ºC .30ºD .45º18.(年浙江省金华). 如图,△ABC 内接于⊙O ,∠A =40°,则∠BOC 的度数为( )A . 20°B . 40°C . 60°D . 80°19. (年兰州市) 将量角器按如图所示的方式放置在三角形纸板上,使点C 在 半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为A .15︒B .28︒C .29︒D .34︒(第18题)ABOCD20. (年兰州市)(本题满分6分)小明家的房前有一块矩形的空地,空地上有三棵树A、B、C,小明想建一个圆形花坛,使三棵树都在花坛的边上.(1)(本小题满分4分)请你帮小明把花坛的位置画出来(尺规作图,不写作法,保留作图痕迹).(2)(本小题满分2分))若△ABC中AB=8米,AC=6米,∠BAC=90,试求小明家圆形花坛的面积.21(江苏宿迁)(本题满分10分)如图,在平面直角坐标系中,O为原点,每个小方格的边长为1个单位长度.在第一象限内有横、纵坐标均为整数的A、B两点,且OA= OB=10.(1)写出A、B两点的坐标;(2)画出线段AB绕点O旋转一周所形成的图形,并求其面积(结果保留π).CyxOBA22.(江西)如图,以点P 为圆心的圆弧与X 轴交于A ,B ;两点,点P 的坐标为(4,2)点A 的坐标为(2,0)则点B 的坐标为 .21题图2 垂径定理的相关计算与证明1.(年台湾省)如图(1),AB 为圆O 的直径,C 、D 两点均在圆上,其中OD 与AC 交于E 点,且OD AC 。