高中数学解题思路大全—用待定系数法求三角函数最值 (1)
求三角函数最值的四种方法

求三角函数最值的四种方法求解三角函数最值问题的基本途径与其他函数最值问题相同,一方面要利用三角函数的特殊性质,例如有界性,另一方面要将问题转化为我们熟悉的函数的最值问题。
以下介绍几种常见的求解三角函数最值的策略。
1.配方转化策略对于能够化为形如y = a sin x + b sin x + c或y = a cos x +b cos x + c的三角函数最值问题,可以将其看作是sin x或cosx的二次函数最值问题,常常利用配方转化策略来解决。
例如,对于函数y = 5 sin x + cos 2x的最值问题,可以将其转化为y = -2 sin x + 5 sin x + 1,然后利用sin x的范围[-1.1]求得最小值为-6,最大值为4.2.有界转化策略对于能够通过变形化为形如y = A sin(ωx + φ)等形式的三角函数,可以利用其有界性来求解最值。
这是常用的求解三角函数最值问题的策略之一。
3.单调性转化策略借助函数单调性是求解函数最值问题常用的一种转化策略。
对于三角函数来说,常常是先化为y = A sin(ωx + φ) + k的形式,然后利用三角函数的单调性求解。
4.导数法对于一些较为复杂的三角函数最值问题,可以利用导数法求解。
通过对函数求导,找到其临界点,然后比较临界点和函数在端点处的取值,即可求得函数的最值。
在求解三角函数最值问题时,需要注意将三角函数准确变形为sin x或cos x的二次函数的形式,正确配方,并把握sinx或cos x的范围,以防止出错。
1,即y=−x+2设点P的坐标为(x,y),则y−0=y−yPx−2=x−xP解得xP=cosx,yP=sinx代入直线方程得y=−(cosx−2)+2=4−cosx所以y的最小值为3,当x=π/2时取到最小值。
答案]3。
高中数学如何求解三角函数的极值和最值

高中数学如何求解三角函数的极值和最值一、引言三角函数是高中数学中的重要内容,求解三角函数的极值和最值是数学分析的基本技能之一。
本文将介绍如何通过分析和计算来求解三角函数的极值和最值,以及一些常见的解题技巧。
二、求解三角函数的极值1. 极值的定义在数学中,极值是指函数在某个区间内取得的最大值或最小值。
对于三角函数而言,极值点就是函数图像上的顶点或谷底。
2. 求解极值的方法(1)利用导数法求解对于一元函数,可以通过求导数来确定其极值点。
对于三角函数而言,可以先求出函数的导数,然后令导数等于零,解方程得到极值点。
例如,考虑函数f(x) = sin(x),其导数f'(x) = cos(x)。
令f'(x) = 0,解得x = π/2 + kπ,其中k为整数。
因此,函数sin(x)在x = π/2 + kπ处取得极值。
(2)利用周期性求解由于三角函数具有周期性,可以利用周期性来求解极值。
例如,考虑函数f(x)= sin(2x),它的周期为π。
因此,只需求解f(x)在一个周期内的极值即可。
在区间[0, π]上,函数f(x)在x = π/4处取得最大值1,而在x = 3π/4处取得最小值-1。
三、求解三角函数的最值1. 最值的定义在数学中,最值是指函数在某个区间内取得的最大值或最小值。
对于三角函数而言,最值点就是函数图像上的最高点或最低点。
2. 求解最值的方法(1)利用周期性求解与求解极值类似,由于三角函数具有周期性,可以利用周期性来求解最值。
例如,考虑函数f(x) = sin(x),它的周期为2π。
因此,只需求解f(x)在一个周期内的最值即可。
在区间[0, 2π]上,函数f(x)在x = π/2处取得最大值1,而在x = 3π/2处取得最小值-1。
(2)利用函数图像求解通过观察函数的图像,可以直观地确定函数的最值点。
例如,考虑函数f(x) = cos(x),它的图像是一条波浪线。
从图像上可以看出,函数f(x)在x = 0处取得最大值1,而在x = π处取得最小值-1。
三角函数最值问题求法

三角函数最值问题求法三角函数是高中数学中常见的一种函数类型,它与三角形的边长和角度之间的关系密切相关。
在解决三角函数最值的问题时,我们通常需要根据特定的条件和信息来确定函数的最大值或最小值。
下面将详细介绍三角函数最值问题的求解方法。
1.函数的定义域和值域分析:在解决三角函数最值问题之前,我们首先要对函数的定义域和值域进行分析。
不同的三角函数具有不同的定义域和值域,对于正弦函数和余弦函数,其定义域是整个实数集,值域是[-1,1];而对于正切函数,其定义域是除去kπ(k∈Z)的全体实数,值域是整个实数集。
2.函数的周期性利用:三角函数具有周期性的特点,即对于一些三角函数f(x),存在正整数T,使得对于任意实数x,有f(x+T)=f(x)。
利用函数的周期性特点,我们可以通过分析一个周期内的变化趋势,从而确定函数的最值。
常见的周期为π或2π。
在具体求解过程中,我们可以通过将函数的自变量进行换元,使其处于一个周期内进行分析。
3.导数的求解和极值点分析:如果一个三角函数是连续的,并且在一些区间内可导,则可以通过求导数的方法来确定指定区间上的局部最值。
我们可以通过求导数并令其等于零,求解出导数为零的点,然后通过第一、第二导数的正负性进行判断,得出函数的极值点和最值。
同时,我们还可以利用导数的符号变化来确定驻点和极值点的位置。
4.图像分析法:对于特定的三角函数问题,我们可以通过观察函数的图像来推测函数的最值。
通过绘制函数的图像,并结合定义域和值域的分析,我们可以直观地判断出函数在一些区间上的最值。
对于常见的正弦函数、余弦函数和正切函数,我们可以通过观察其图像的特点,确定函数在一个周期内的最值位置。
5.利用特殊三角函数的性质:在求解三角函数最值问题时,我们可以利用特殊的三角函数性质来进行分析。
例如,正弦函数和余弦函数在定义域内是交错递增和递减的,因此我们可以通过分析数值的正负性来确定函数在一些区间上的最值。
而正切函数在定义域上的周期是π,其在相邻两个零点之间是增函数还是减函数,从而确定函数的极值点。
求三角函数最值的四种常用解题方法

求三角函数最值的常用解题方法
一. 转化为二次函数求解三角函数的最值,适用于题目中出现的三角函数分别为一次和二次时
例1.已知函数的最大值为1,求的值
解:
结论:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成
时,要考虑的取值及的条件,才能正确求出最值。
二. 使用辅助角公式(化一法)求解三角函数的最值
适用于题目中出现的三角函数同次时
—1—
例2.求函数的值域。
分析:降幂后发现式中出现了和,这时再化成一个角的三角函数便可求得。
解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分组成,其中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。
—2—
三.利用函数值域的有界性,求解三角函数的最值
例3.求函数的值域
解:
—3—
四.使用换元法求解三角函数的最值
例4.求函数的最值。
分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。
解:
—4—。
高中三角函数三角函数的不等式与最值问题

高中三角函数三角函数的不等式与最值问题在高中数学学习中,三角函数是一个重要的章节。
除了学习三角函数的定义、性质和图像等基本知识外,我们还需要掌握三角函数的不等式和最值问题的解决方法。
本文将为大家详细介绍高中三角函数的不等式与最值问题,并提供相应的解决思路和方法。
一、三角函数的不等式1. 正弦函数的不等式正弦函数的定义域为实数集,而正弦函数的值的范围在[-1, 1]之间。
因此,当我们解决正弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的正弦函数转化为关于θ的等价不等式;(3)根据正弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式sinθ > 0,我们可以按照上述步骤进行求解:(1)由于正弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式sinθ > 0转化为等价不等式:0 < sinθ < 1;(3)根据正弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (2kπ, 2kπ + π/2),其中k ∈ Z。
2. 余弦函数的不等式余弦函数的定义域为实数集,而余弦函数的值的范围在[-1, 1]之间。
因此,当我们解决余弦函数的不等式时,可按照以下步骤进行:(1)确定不等式的定义域;(2)将不等式中的余弦函数转化为关于θ的等价不等式;(3)根据余弦函数在不同区间上的增减性质,求解等价不等式,得到不等式的解集。
例如,解不等式cosθ ≥ 0,我们可以按照上述步骤进行求解:(1)由于余弦函数的定义域为实数集,故不等式的定义域为全体实数;(2)将不等式cosθ ≥ 0转化为等价不等式:cosθ > -1 或cosθ < 1;(3)根据余弦函数在不同区间上的增减性质,我们可以得到不等式的解集为:θ ∈ (-2kπ, -2kπ + π/2) U (2kπ, 2kπ + π),其中k ∈ Z。
求三角函数最值的四种常用解题方法

求三角函数最值的四种常用解题方法
求三角函数最值的常用解题方法
一.使用配方法求解三角函数的最值
例1.已知函数的最大值为1,求的值
解:
结论:将三角函数转化为二次函数也是求最值的通法之一,应当注意,整理成
时,要考虑的取值及的条件,才能正确求出最值。
二.使用化一法求解三角函数的最值
例2.求函数的值域。
分析:降幂后发现式中出现了和,这时再化成一个角的三角函数便可求得。
—1—
解:
结论:化一法由“化一次”、“化一名”、“化一角”三部分组成,其中“化一次”使用到降幂公式、“化一名”使用到推导公式、“化一角”使用到倍角公式及三角函数的和差公式等,因此需要大家熟练掌握相关公式并灵活运用。
三.使用基本不等式法求解三角函数的最值
例3.求函数的值域
—2—
解:
解:
四.使用换元法求解三角函数的最值
例4.求函数的最值。
分析:解此题的途径是用逆求将函数式变形,用y表示与x有关的三角函数,利用三角函数的有界性求最值。
解:
—3—。
待定系数法解决一类三角函数的最值问题

2020年第11期(上)中学数学研究11待定系数法解决一类三角函数的最值问题广东省中山纪念中学(528454)邓启龙高考真题(2018年高考全国卷I理科第16题)已知函数f(x)=2sin x+sin2x,则f(x)的最小值是___.分析函数f(x)中既有sin x,又有sin2x=2sin x cos x,初看感觉无从下手,只能通过求导来求最值,于是得到解法一.然后观察f(x)的结构,发现可以利用不等式来求最值,于是得到解法二,三,四.解法一只需考虑一个周期[0,2n].f(x)=2cos x+2cos2x=2(2cos2x+cos x—1)=2(cos x+1)(2cos x—1),令f'(x)=0得x=3,n,¥.易得当x=3时,f(x)取最大值学,当x=罟时,f(x)取最小值-学.解法二先求f(x)在一个周期[0,2n]上的最大值.令x€[0,2〕,则f(n—x)=2sin x—sin2x< f(x),f(n+x)=sin2x—2sin x W f(x),f(2n—x)=—2sin x—sin2x W f(x),所以f(x)的最大值在[。
冷]上取到.易知sin x在[0,n]上凸,由琴生不等式得f(x)=sin x+sin x+sin(n—2x)W3sin x+x+n—2x3当且仅当x=3时取等号.所以当x=3时,f(x)取最大值进.又因为f(x)是奇函数,所以当x=-3时,f(x)取最小值-乎.nx€[0,2],f(x)=2sin x+2sin x cos x=2sin x(1+cos x)sin2x(1+cos x)2=2\J(1—cos x)(1+cos x)3 =22__________________________________________ =3(1—cos x)•(1+cos x)•(1+cos x)-(1+cos x) 32/「3(1—cos x)+3(1+cos x)]4^/3 W制[-----------4------------------]=丁,n当且仅当3(1—cos x)=1+cos x,即 x=3时,f(x)取最大值学.又因为f(x)是奇函数,所以当x=-3时,f(x)取最小值-学.解法四f(x)=2sin x cos x+2sin x.假设当sin x= a,cos x=b时,f(x)取最大值,引入参数a,b>0,且22sin x cos x1sin x2cos x2a2+b2=1.由-------W)2+(十)2]得b2a22sin x cos x W—sin x+〒cos x.由sin x-aab2sin x W—sin2x+a.于是aa bsin2x+a2——得1sin2—sin x+aa 2sin x cos x+2sin x W—sin2x+-cos2x+abb+1•2.a2=------sin x+〒cos x+a,ab由—+.1=-且a2+b2=1得a=单,b=1.a b22于是2sin x cos x+2sin x W A/3sin2x+-\/3cos2x+~^=学.所以f(x)的最大值为学,当且仅当sin x=¥,cos x=1,即x=n+2kn(k€Z)时,f(x)取最大值.又因为f(x)是奇函数,所以当x=-£+2kn(k€Z)解法三同解法二得f(x)的最大值在[0,2]上取到.时,f(x)取最小值——2综上,a的取值范围是^一兰,+8)评注在给定区间上适当考虑某点(端点)的性质,取x 的特殊值,得到参数的取值范围,找到一个不等式成立的必要条件,从而缩小范围,然后再证明必要条件也是充分条件,即可求得结论,就是我们常说的必要性探路法.而端点效应是其中比较常见的一种题型,比如2019年新课标全国I卷文科第20题体现了这样的解题思路.结语不等式恒成立求参数范围问题,往往涉及函数、方程、不等式等高中数学核心知识,以及函数与方程、转化与化归、分类讨论、数形结合等数学思想,综合性强、难度大.解决此类问题的通法是构造函数,对参数进行分类讨论求解;也可以优先采用分离函数方法,将问题转化为求函数的最值,或借助数形结合思想求解;然而并非所有问题用这两种思路容易奏效,这时我们可以采用必要性探路,再证充分性的思路.学生在实际解题中,需结合具体问题进行具体分析,选择合适的解题思路与方法,让问题的解决简洁、高效.12中学数学研究2020年第11期(上)解法二把f(x)的表达式转化为三个角的正弦,且这三个角的和是定值,然后利用琴生不等式求岀函数最大值.解法三把f(x)的表达式转化为正弦与余弦的乘积,然后利用多元均值不等式求岀函数最大值,技巧性很强.解法四利用待定系数法,通过假设f(x)取最大值时sin x,cos x的取值引入参数,并利用结构特点和取等条件构造不等式,最后由系数的比例关系和参数满足的条件求岀参数,进而求岀函数最大值.变式探究若函数f(x)中既有sin x, sin2x,又有cos x,cos2x,即f(x)=p sin2x+q cos2x+r sin x+ s cos x,p,r,s20,如何求函数f(x)的最大值?此时解法一仍然适用,但是方程f'(x)=0不好解.由于系数p,q,r,s 的一般性,解法二和解法三就不适用了.本文通过探究发现,解法四的待定系数法仍然可以解决这一类三角函数的最值问题.假设当sin x=a,cos x=b时,f(x)=p sin2x+q cos2x+r sin x+s cos x取最大值,引入参数a,b>0, 22sin x cos x1sin x2cos x2且a+b2=L由矿•丁W—[(矿)2+(丁)2]pb2pa2sin2x+a2得p sin2x W一sin x+-----cos x.由sin x•a W---------------a b2r2ra cos2x+b2得r sin x W一sin x+------.由cos x•b W---------------得2a丁2z2s cos x W—b cos2x+~—.又q cos2x=q cos2x—q sin2x,于是p sin2x+q cos2x+r sin x+s cos xpb2pa222r2ra W—sin x+丁cos x+q cos x—q sin x-----sin x-----a b2a2s2sb+—b cos x+¥pb r2pa s2ra sb =(万一q+茲)sin x+(万+q+—b)cos x+空+空由pb-q+—■=pa+q+—;且a2+b2=1,解岀参数a2a b2ba,b,于是得到f(x)的最大值,当且仅当sin x=a,cos x=b 时,f(x)取最大值.下面通过例题来说明如何利用待定系数法解决这一类三角函数的最值问题.例1(第六届世界数学团体锦标赛青年组试题第5题)求函数f(x)=2^3sin2x+4sin x+8^3cos x的最大值.解f(x)=^/3sin x cos x+4sin x+^/3cos x.假设当sin x=a,cos x=b时,f(x)取最大值,引入参数a,b>0,22sin x cos x1sin x2cos x2且a2+b2=L由「厂•丁W—[(矿)2+(丁)2]/曰彳后•/W"3b.2^/3a2u-.-/得403sin x cos x W-------sin x+---------cos x.由sin x•a Wabsin2x+a2p^.”2.2c丄7”cos2x+b2得4sin x W—sin x+—a.由cos x・b W--------------a2得873cos x W cos2x+473b.于是b4^/3sin x cos x+4sin x+8^/3cos x27^b-2.27^a2丄2-2.9W-------sin x+---------------cos x+——sin x+2aa b a+cos2x+473bb27^b+2-2i27^a+4732i c i”g=------------sin x+-----------------------------cos x+2a+473b由ab27^b+—=27J475且a2+b2=1,消去b得a b12a4+24a3+a2—12a+2=0,解得a=1,b=g3.于是4^/3sin x cos x+4sin x+8^/3cos x W10sin2x+ 10cos2x+7=17.所以f(x)的最大值为17,当且仅当sin x=1,cos x=X3,即 x=n+2kn(k e Z)时,f(x)取226最大值.例2(《数学通讯》2018年第12期问题376)求函数y=sin x cos x+3sin(x+—)+sin(x—4)的最大值.1n n 解y=-sin2x+3sin(x+—)+sin(x——).令2124n1nt=x—4,得y=—cos2t+3sin(t+3)+sin t= 1cos2t+5sin t+3—3cos t.假设当sin t时,y取最大值,引入参数a,b>0,且由sin t•a=a,cos t=ba2+b2=1.sin2t+a25525W-------------彳得石sin t W厂sin2t+丁a.由224a4cos2t+b2刁曰W3,.W3 2.|3J3---------彳得-----cos t W-------cos t+----b.224b4=-cos2t—-sin2t,于是22」丄z5•丄373丄—cos2t+—sin t+-----------cos t2t1■ 2..5一-—..........4a=(4a一j)sin2t+1—cos t•b W又*cos2t1-—121.25.253^/323^/3 W—cos2t-----sin2t+------sin2t+——a+--------cos2t+---------b224a44b4=(4a一—)sin2t++—)cos2t+4a+翠b由4a一—=醤+—且a2+b2=1,消去b得16a4-40a3+36a2+40a-25=0,解得a=1,b=舟.十口15.3^3.22于是—cos2t+—sin t+-------cos t W2sin2t+2cos2t+1522215~4.所以y的最大值为~4,当且仅当sin t=;=X3,即t=n+2kn(k e Z)时取最大值.所5/615x=—+2kn(k e Z)时,y取最大值—.注如果把sin(x+—),sin(x-4)展开,将函数整理为p sin2x+r sin x+s cos x的形式,系数很复杂,最后得到的方程很难解.本文先作代换t=x-4,然后将函数整理为q cos2t+r sin t+s cos t的形式,系数简单,最后得到的方程也好解.7=4='1—,cos t以当2。
用待定系数法求三角函数最值

用待定系数法求三角函数最值作者:谢斌来源:《读写算·教研版》2015年第14期摘要:待定系数法,是中学数学中的一种重要求未知数的方法。
将一个多项式表示成另一种含有待定系数的新的形式,这样就得到一个恒等式。
然后根据恒等式的性质得出对应系数应满足的方程或方程组,其后通过解方程或方程组便可求出待定的系数,或找出某些系数所满足的关系式,这种解决问题的方法叫做待定系数法。
关键词:待定系数法;三角函数;最值求解中图分类号:G632 文献标识码:B 文章编号:1002-7661(2015)14-274-02使用待定系数法,就是把具有某种确定形式的数学问题,通过引入一些待定的系数,其解题的关键是依据已知,正确列出等式或方程,转化为方程组来解决。
使用待定系数法解题的基本步骤是:第一步,确定所求问题含有待定系数的解析式;第二步,根据恒等的条件,列出一组含待定系数的方程;第三步,解方程组或者消去待定系数,从而使问题得到解决.如何列出一组含待定系数的方程,主要从以下几方面着手分析:1、利用对应系数相等列方程;2、由恒等的概念用数值代入法列方程;3、利用定义本身的属性列方程;4、利用几何条件列方程.要判断一个问题是否可用待定系数法求解,主要是看所求解的数学问题是否具有某种确定的数学表达式,如果具有,就可以用待定系数法求解.例如分解因式、拆分分式、数列求和、求函数式、求复数、解析几何中求曲线方程等,这些问题都具有确定的数学表达式,所以都可以用待定系数法求解,在此不一一列举说明。
下面主要谈一下待定系数法在求三角函数最值中的一种应用。
求三角函数的最值方法众多,常用的方法有:1、配方法(主要利用二次函数理论及三角函数的有界性);2、化为一个角的三角函数(主要利用和差角公式及三角函数的有界性);3、数形结合法(常用到直线斜率关系);4、换元法(如万能公式,将三角函数问题转化为代数问题);5、均值不等式法.在用均值不等式求三角函数最值时,“各数相等”及“和(或积)为定值”是两个需要刻意凑出的条件.从何处入手,怎样拆项,如何凑出定值且使等号成立,又能使解答过程简捷明快,这确实是既“活”又“巧”的问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用待定系数法求三角函数最值
用均值不等式求三角函数最值时,“各数相等”及“和(或积)为定值”是两个需要刻意凑出的条件,从何处入手,怎样拆项,如何凑出定值且使等号成立,又能使解答过程简捷明快,这确实既“活”又“巧”,对此问题,现利用待定系数法探析。
例1. 设x ∈(0,π),求函数x
sin 22x sin y +=的最小值。
分析:拿到此题,很容易想到下面的解法。
因为 s inx >0, 所以2x
sin 22x sin 2x sin 22x sin y =∙≥+=。
故y min =2。
显然,这种解法是错误的!错误的原因是没有考虑“=”号成立的条件。
由
x sin 22x sin =得sinx=2,这样的x 不存在,故为错解。
事实上,此题是可以用均值不等式来解答的,但需要拆项,如何拆,既能使其积为定值,又能使“=”号成立,这确实是一个难点,笔者认为,待定系数法就能很好地解决这个问题,为此,先引入一个待定系数λ(0<λ<2,使x
s i n 2x s i n 2x s i n y λ-+λ+=。
由均值不等式及正弦函数的有界性,得λ-+λ≥λ-+λ∙≥22x
sin 2x sin 2x sin 2y 。
当且仅当
x
sin 2x sin λ=且sinx=1,即λ=21时,上式等号成立。
将λ=21代入,得y min =25。
另解:y=)x
sin 4x (sin 21+。
令sinx=t(0<t ≤1=,易证)t 4t (21y +=在(0,1]上单调递减,所以25)141(21y min =+=。
例2. 当x ∈(0,
2
π)时,求函数x cos 2x sin 36y +=的最小值。
分析:因为x ∈(0,2π),所以sinx >0,cosx >0,引入大于零的待定系数k ,则函数x cos 2x sin 36y +=可变形为x cos 1x cos 1x sin k x sin 33x sin 33y 2++++=+kcos 2x -k ≥33k 27+3k 3-k=12k k 3-,等号成立
当且仅当⎪⎪⎩
⎪⎪⎨⎧==⎪⎪⎩⎪⎪⎨⎧==32232222k 1
x cos k 3x sin ,x cos k x cos 1,x sin k x sin 33即,时成立。
由sin 2x+cos 2x=1,。
得1k 1332=+,即k 2=64,又k >0,所以k=8。
故函数y 的最小值为168212k k 123=-⨯=-,此时x=
3
π。
例3. 设x ∈(0,
2
π),求函数y=sinx+x sin 12的最小值。
分析:因为x ∈(0,2π),所以sinx >0,y=sinx+x sin 12可变形为x sin 12x sin 2x sin y 2++=。
由均值不等式得32413x
sin 12x sin 2x sin ≥++。
但x sin 12x sin 2≠,故上式不能取等号。
下面引入待定系数k 进行配凑解之。
解:因为x ∈(0,
2
π), 所以sinx >0。
因为
,1<k<0,x
sin k 1x sin k x sin 1222-+= 故x sin k 1)x sin k 2x sin 2x sin (y 22-+++= ≥1
k 14k 33-+, 等号当且仅当
x sin k 2x sin 2=且sinx=1,即k=21时等号同时成立。
从而21k 14k 33=-+,故函数y=sinx+
x
sin 12的最小值为2。
例4. 求函数y=sin 2x ·cos 2x+
x cos x sin 122∙的最小值。
分析:易得x 2sin 44x 2sin y 22+=,由均值不等式得2x
2sin 44x 2sin 22≥+。
但x
2sin 44x 2sin 22≠,故上式不能取等号。
于是引入待定正实数λ,μ,且λ+μ=4,则有x
2sin 44x 2sin y 22+=
=x
2sin x 2sin 4x 2sin 222μ+λ+ ≥x
2sin x 2sin 4x 2sin 2222μ+λ∙ ≥μ+λ。
当且仅当x
2sin 4x 2sin 22λ=且sin 22x=1时等号同时成立,此时415,41=μ=λ,所以当sin 22x=1时,y 有最小值为417。