生物传感器专业知识讲座共22页

合集下载

【生物医学课件】5生物传感器

【生物医学课件】5生物传感器
✓基于生物吸附的生物敏感膜
基于生物体内存在相互亲和性的物质,把它们的一方固定 在膜上作为分子识别元件,当被测溶液中存在它们的配体时, 发生特异性反应,形成稳定的复合体,测定反应前后膜电位 的变化,即可得知配体浓度。
✓基于天然生物膜和人工生物膜的生物敏感膜
例如膜与外来物反应,生成的复合物影响到膜结构,改变 了膜的物理化学性质,使膜的通透性发生变化,进而感知外 界信息。
微生物作为敏感膜材料与底物作用时一般有两种情况: (1)呼吸机能型:对好氧性微生物,在与底物作用的同时, 其细胞的呼吸活性提高,耗氧量增大,用氧电极或CO电极 测定其呼吸活性,便可求出底物浓度。
呼吸机能型
(2)代谢机能型:对厌氧性微生物,其微生物同化被测有机物 后将生成各种代谢产物,如CO2、H2、H+等,可利用相应的离 子选择性电极测得代谢产物浓度,进而求出底物浓度。
总反应式为:葡萄糖 O2 G OD葡萄糖酸内酯 H2O2
此时氧电极附近的氧气量由于酶促反应而减少,使得还原电 流减小,通过测量电流值的变化即可确定葡萄糖浓度。
也可以通过测量反应产物H2O2的产生量来确定葡萄糖浓度。
快速葡萄糖(glucose)分析仪
电流型酶电极多以分子氧作为生物氧化还原反应的电子受体, 在环境缺氧或氧分压变化时对测量不利。故发展了利用介体取 代O2、H2O2在酶反应和电极间进行电子传递的介体酶电极。 将GOD固定在石墨电极上,以水不溶性二茂铁单羟酸为介体, 在电极对葡萄糖的响应过程中,二茂铁离子作为GOD的氧化剂, 并在酶反应与电极过程间迅速传递电子。由于二茂铁离子不与 氧反应,故传感器对氧不敏感,故可在缺氧或氧浓度易变的场 合使用;二茂铁离子与还原的GOD之间的电子传递快,因而电 极响应快;
分类方式

生物传感器的简单介绍

生物传感器的简单介绍

电流信号测量方法 控制电极的电位从而 有选择性的使溶液中 某些成分发生氧化还 原反应,电路中通过 电流时电极发生极化 现象,转化为电位测 量。 采用三电极测量体系
记录仪
函 数 发 生 器
恒电位仪
工 作 电 极
测定溶液 电流法测量O2,H2O2等 电活性物质浓度 辅助电极
参比电极
电化学信号转换器的特点与应用
第二节 生物敏感材料
生物传感器由生物敏感元件和信号转换器两个主 要部分组成,其中,传感器的选择性主要取决于 生物敏感材料,而灵敏度与信号转换器、生物材 料的固定化技术有很大关系。 按特性分类,可分为磁敏、电敏、热敏、光敏和 压电材料 具体说来,有生物酶、细胞(器)、生物组织、 基因、光纤等 由于时间限制,下面仅以生物酶为例做简单介绍
敏感膜(DNA探 针)固定在光纤 头 光纤
其他光学型DNA传感器
1)近红外荧光型 2)化学发光型 3)拉曼光谱型(涉及化学分析的知识) 4)共振镜型 有兴趣了解这些知识的同学可以自行查 阅有关资料
两种光学型DNA传感器的比较
以一个表格,进行粗略比较 性能 响应时间 灵敏度(检 稳定性(使 测下限) 用期限) 可以重复使 用数百次 贮存一年后 光纤仍可使 用
生物传感器的简单介绍
第一节 第二节 第三节 第四节 概述 生物敏感材料 信号转换器 生物是一种信息获取与处理的装置,受启发于生物 体的感觉系统,是人类感官功能的延伸。 生物传感器是一种特殊的传感器,它是以生物活性单 元(如酶、抗体、核酸、细胞等)作为生物敏感元件, 对被测物具有高度选择性的检测器。 到目前为止,生物传感器大致经历三个发展阶段:第 一代生物传感器是有固定了生物成分的非活性基质膜 (透析膜或反应膜)和电化学电极所组成;第二代生 物传感器是将生物成分直接吸附或共价结合到转换器 的表面,无需非活性基质膜,测定时不必加入其他试 剂;第三代生物传感器是把生物成分直接固定在电子 元件上,他们可以直接感知和放大界面物质的变化, 从而把生物识别和信号的转换处理结合在一起。

生物传感器详细介绍

生物传感器详细介绍

生物传感器是对生物物质敏感并将其浓度转换为电信号进行检测的仪器。

生物传感器具有接受器与转换器的功能。

由于酶膜、线粒体电子传递系统粒子膜、微生物膜、抗原膜、抗体膜对生物物质的分子结构具有选择性识别功能,只对特定反应起催化活化作用,因此生物传感器具有非常高的选择性。

缺点是生物固化膜不稳定。

生物传感器涉及的是生物物质,主要用于临床诊断检查、治疗时实施监控、发酵工业、食品工业、环境和机器人等方面。

生物传感器是用生物活性材料(酶、蛋白质、DNA、抗体、抗原、生物膜等)与物理化学换能器有机结合的一门交叉学科,是发展生物技术必不可少的一种先进的检测方法与监控方法,也是物质分子水平的快速、微量分析方法。

在未来21世纪知识经济发展中,生物传感器技术必将是介于信息和生物技术之间的新增长点,在国民经济中的临床诊断、工业控制、食品和药物分析(包括生物药物研究开发)、环境保护以及生物技术、生物芯片等研究中有着广泛的应用前景。

各种生物传感器有以下共同的结构:包括一种或数种相关生物活性材料(生物膜)及能把生物活性表达的信号转换为电信号的物理或化学换能器(传感器),二者组合在一起,用现代微电子和自动化仪表技术进行生物信号的再加工,构成各种可以使用的生物传感器分。

智能化集成化未来的生物传感器必定与计算机紧密结合,自动采集数据、处理数据,更科学、更准确地提供结果,实现采样、进样、结果一条龙,形成检测的自动化系统。

同时,芯片技术将愈加进入传感器,实现检测系统的集成化、一体化。

低成本高灵敏度高稳定性高寿命生物传感器技术的不断进步,必然要求不断降低产品成本,提高灵敏度、稳定性和寿命。

这些特性的改善也会加速生物传感器市场化,商品化的进程。

在不久的将来,生物传感器会给人们的生活带来巨大的变化,它具有广阔的应用前景,必将在市场上大放异彩。

生物传感器实用性是生物体成分(酶、抗原、抗体、激素、DNA) 或生物体本身(细胞、细胞器、组织),它们能特异地识别各种被测物质并与之反应;后者主要有电化学电极、离子敏场效应晶体管(ISFET ) 、热敏电阻器、光电管、光纤、压电晶体(PZ) 等,其功能为将敏感元件感知的生物化学信号转变为可测量的电信号。

《生物传感器》课件

《生物传感器》课件

2
研究热点和挑战
纳米技术、生物信息学和人工智能等领域的发展,将会推动生物传感器的研究和 创新。
3
广阔前景
生物传感器在医疗保健、环境保护、食品安全等方面的应用前景广阔,将为人类 健康和生活质量带来积极影响。
总结和展望
优势与比较
生物传感器相较于其他类型传感器的优势,为其在各个领域的广泛应用提供了巨大潜力。
生物传感器的工作原理和分类决定了其在不同领域中的应用方式和效果。
构成和组成元素
了解生物传感器的构成和组成元素对于实现更高的灵敏度和选择性至关重要。
主要技术
生物传感器中的主要技术,如纳米材料和生物分子探测技术,环境监测
生物传感器在水质、空气污染等环境监测中的应用,有助于实时监测和保护我们 的生态环境。
《生物传感器》PPT课件
生物传感器是一种用于检测、测量和监测生物过程的先进技术。了解生物传 感器的概念、原理和应用将对我们的日常生活和科学研究产生重要影响。
引言
生物传感器的概念和应用以及生物传感器的种类和分类。了解生物传感器的基础知识是深入研究其原理和应用 的关键。
生物传感器的原理和构成
工作原理
2
医学检测
通过生物传感器,可以实现早期疾病诊断、药物监测等医学检测的快速和准确。
3
食品安全
生物传感器在食品安全领域的应用,能够检测有害物质和食品质量,保障消费者 的健康。
生物传感器的发展趋势
1
未来发展方向
生物传感器将越来越普遍应用于生命科学研究、医疗诊断、环境监测等领域,为 人类带来更多的机会和挑战。
发展现状和前途
了解生物传感器的发展现状,并为未来的研究和应用提供展望。
研究与发展
进一步深入研究和开发生物传感器,将推动其在科学研究和工程应用中的创新和突破。

生物传感器-讲义(学生完整版)

生物传感器-讲义(学生完整版)

医用传感器应具有以下特性:
(1) (2) (3) (4) (5) (6) 足够高的灵敏度。能够检测出微弱的生物信号。 尽可能高的信噪比。以便在干扰和噪声背景中提取有用的信息。 良好的精确性。以保证检测出的信息准确、可靠。 足够快的响应速度。能够跟随生物体信息量的变化。 良好的稳定性。保持长时间检测漂移很小,输出稳定。 较好的互换性,调试、维修方便。
第三节
一、医用传感器的用途
医用传感器的用途和分类
医学领域有很多反映生命体征的量,常见的各种量如表 1-1 所示。
反映生命的信息绝大多数属于非电量, 其放大和处理是很困难的。 医用传感器是把非电量转换成电量的器件。 表 1-1 中所列的生物电本身就是电量,但在生物体内处于离子导电的状态,需要采用医用电极将离子导电转换成 导体内的电子导电,然后才能进行放大和处理,所以医用电极也可以被看做是一种特殊的医用传感器。
2
第二章 传感器的基本特性
传感器的特性主要指其转换信息的能力和性质。这种能力和性质常用传感器输人和输出的对应关系来描述。 传感器的输人量可分为静态量和动态量,静态量是指常量或变化缓慢的量,动态量是指周期变化、瞬态变化或随 机变化的量。
第一节 一、静态特性
传感器的静态特性
传感器的输入量在较长时间维持不变或发生极其缓慢的变化, 则传感器的输出量与输人量间的关系即为静态 特性。这种关系一般是由传感器的物理、化学或生物的特性来决定。 输出与输人的关系可分为线性特性和非线性特性。 通常人们都希望传感器的输出和输人之间具有确定的对应 关系,并且具有线性关系,即满足理想的输出输人关系,以便如实反映待测的信息。但实际遇到的传感器大多为 非线性特性,其静态特性可用下列多项式代数方程表示: (2-1) y=a0+a1x+a2 x2+...+anxn 式中,y 是输出信号;x 是输人信号;a0 是无输入时的输出,零位输出;a1 是传感器的线性灵敏度;a2 ,a3,...,an 是 非线性项的待定常数。 此方程又称为传感器静态特性的数学模型。若 a0 = 0,则静态特性过原点,此时静态特性由线性项和非线性 项叠加而成。一般有以下几种典型情况: (一) 、理想线性特性 当 a2=a3=...=an=0 时,输人与输出之间具有理想的线性关系,特性曲线如图 2-1 (a)所示。此时传感器的静 态特性为 (2-2) y = a1x 静态特性曲线为一条直线。具有这种特性的传感器称为线性传感器。 若 a0≠0,a1≠0, a2 =a3 =a4 =…=0,仍表示线性,只是这时的直线不通过原点,有零偏 a0; 若输人分别为 x,x+△x,则对应于两者的输出差△y 为 (2-3) △y =a1△x 。 这时的 a1 称为传感器的灵敏度(sensitivity) (二) 、非线性项次数为偶数 当 a3 =a5 =a7 =...=0 时,特性曲线如图 2-1 (b)所示。此时传感器的静态特性为 (2-4) y=a1x+a2 x+a4 x4 +... 不具有对称性,且线性范围较窄,所以传感器设计时一般很少采用这种特性。 (三) 、非线性项次数为奇数 当 a2 =a4=…=时,传感器的静态特性为 (2-5) y=a1x+a3 x3 + a5 x5+... 特性曲线如图 2-1 (c)所示。特性曲线关于原点对称 y(x)=-y(-x) ,在原点有较宽的线性区,不少差动 式传感器具有这种特性。在实际应用中,差动式传感器就是将电器元件对称排列以消除电器元件的偶次分量,使 线性得到改善,同时也使灵敏度提高一倍。

13生物传感器ppt学习资料

13生物传感器ppt学习资料
位,通常可采用三 用于电流测量的三电极测量体系
电极测量体系如图 所示。
电解回路由工作电极和对电 极构成,电位的测量和控制由参 比电极与工作电极回路实现。测 量时采用线性扫描法、恒电位法 等方式,测量的电流信号与发生 电极氧化(或还原)的物质浓度 相关。
生物传感器中常涉及用电流法 测量O2、H2O2等其他活性物质浓 度。
生物传感器是一类特殊的化学传感 器,它是以生物活性单元(如酶、 蛋白质、DNA、抗体、抗原、生 物膜、微生物、细胞等)作为识别 元件,将生化反应转变成可定量 的物理、化学信号,从而能够进 行生命物质和化学物质检测和监 控的装置。
生物传感器的发展史(1)
• 最先问世的生物传感器是酶电极, Clark和Lyons最先提出组成酶电极 的设想。
固体电极的相间电位
(2)液体接界电位 (浓差电位)
其产生的条件是相 互接触的两液存在 浓差梯度,同时扩 散的离子其淌度不 同。界面两侧HCl 浓度不同,左侧的 H+和Cl-不断向右 侧扩散,同时由于 H+的淌度比Cl-淌 度大,最终界面右 侧将分布过剩正电 荷,左侧有相应的 负电荷,形成了液 体接界电位。
④可在同一硅片上集成多种传感器, 对样品中不同成分同时进行测量 分析。
FET的应用:
离子敏场效应晶体管可作为 酶(水解酶)、微生物传感器中 的信号转换器。
3.热敏电阻型信号转换器
热敏电阻是由铁、镍、钴、 钛等金属氧化物构成的半导体。 从外形上分类有珠型、片型、棒 型、厚膜型、薄膜型与触点型等。 凡有生物体反应的地方,大都可 观察到放热或吸热反应的热量变 化(焓变化)。
将生物活性物质如酶固定在栅极 氢离子敏感膜(SiO2水化层)表 面,样品溶液中的待测底物扩散 进入酶膜。假设是检测酶催化后 的产物(反应速率取决于底物浓 度),产物向离子选择性膜扩散 的分子浓度不断积累增加,并在 酶膜和离子选择性膜界面达到衡 定。

最新生物传感器讲解

最新生物传感器讲解

生物传感器讲解------------------------------------------作者xxxx------------------------------------------日期xxxx《传感器》论文姓名:学号:班级:专业:学院:2015年12月生物传感器一、生物传感器的介绍:生物传感器(biosensor),是一种对生物物质敏感并将其浓度转换为电信号进行检测的仪器。

是由固定化的生物敏感材料作识别元件(包括酶、抗体、抗原、微生物、细胞、组织、核酸等生物活性物质)、适当的理化换能器(如氧电极、光敏管、场效应管、压电晶体等等)及信号放大装置构成的分析工具或系统。

生物传感器具有接受器与转换器的功能.新型生物传感器有微生物传感器、免疫传感器及细胞器传感器、酶传感器、DNA传感器等。

二、生物传感器的原理:待测物质经扩散作用进入生物活性材料,经分子识别,发生生物学反应,产生的信息继而被相应的物理或化学换能器转变成可定量和可处理的电信号,再经二次仪表放大并输出,便可知道待测物浓度。

三、生物传感器的特点:(1)采用固定化生物活性物质作催化剂,价值昂贵的试剂可以重复多次使用,克服了过去酶法分析试剂费用高和化学分析繁琐复杂的缺点。

(2)专一性强,只对特定的底物起反应,而且不受颜色、浊度的影响。

(3)分析速度快,可以在一分钟得到结果.(4)准确度高,一般相对误差可以达到1%。

(5)操作系统比较简单,容易实现自动分析。

(6)成本低,在连续使用时,每例测定仅需要几分钱人民币.(7)有的生物传感器能够可靠地指示微生物培养系统内的供氧状况和副产物的产生。

在产控制中能得到许多复杂的物理化学传感器综合作用才能获得的信息.同时它们还指明了增加产物得率的方向。

四、生物传感器的种类:按照其感受器中所采用的生命物质分类,可分为:微生物传感器、免疫传感器、组织传感器、细胞传感器、酶传感器、DNA传感器等。

(2)按照传感器器件检测的原理分类,可分为:热敏生物传感器、场效应管生物传感器、压电生物传感器、光学生物传感器、声波道生物传感器、酶电极生物传感器、介体生物传感器等。

第二讲 生物传感器

第二讲 生物传感器
化学物质 力 热 光
声 被 测 对 象 生物敏 感膜 (分子 识别感 受器) 物理、化学反应 换 能 器 电 信 号
图16-1 生物传感器原理图
. . .
生物传感器工作机理
溶液(Solution) 识别元件(Recognition)
BIOSENSORS
换能器(Transducer)
感受器(Receptor)
敏感膜(分子识别原件)、换能器(传送 和转换)和 信号处理器
Ⅲ 生物传感器的优点
BIOSENSORS
可进入生物体内实现活体检测; 样品一般无需预处理,被测组 测定过程简单迅速; 分的分离和检测同时完成,且 准确度和灵敏度高,一般相 对误差不超过1%; 测定时不需加入其它试剂; 体积小,便于野外连续自动 采用固定化生物活性物质作敏 监测; 感基元(催化剂),价值昂贵 专一性强,只对特定的底物 的试剂可以重复多次使用; 起反应,而且不受颜色、浊 分析成本远低于大型分析仪器, 度的影响。 便于推广普及; 测定范围广泛;
生物功能物质的固定化方法

BIOSENSORS
直接化学结合法: 将电极表面先经过化学处理或修饰,然后将生物功能 物质以共价,离子或配位等方式结合固定于电极表面。
TiO2电极
生物功能物质的固定化方法
BIOSENSORS
② 架桥化固定法: 用多功能的试剂,如戊二醛与酶蛋白分子相互结合,起 着桥梁的作用,从而使酶固定于电极表面,是酶固定化用得 比较多的方法。
Ⅳ 生物传感器的发展历程
BIOSENSORS
第一代生物传感器:
1962年,Clark和 Lyon报道了用葡萄糖氧化酶与 氧电极相结合检测葡萄糖的结果,可认为是最早 提出了生物传感器(酶传感器)的原理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
生物传感器专业知识讲 座
6、纪律是自由的第一条件。——黑格 尔 7、纪律是集体的面貌,集体的声音, 集体的 动作, 集体的 表情, 集体的 信念。 ——马 卡连柯
8、我们现在必须完全保持党的纪律, 否则一 切都会 陷入污 泥中。 ——马 克思 9、学校没有纪律便如磨坊没有水。— —夸美 纽斯
10、一个人应该:活泼而守纪律,天 真而不 幼稚, 勇敢而 鲁莽, 倔强而 有原则 ,热情 而不冲 动,乐 观而不 盲目。 ——马 克思

30、意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
22
相关文档
最新文档