求极限的方法总结

合集下载

求极限的12种方法总结及例题

求极限的12种方法总结及例题

求极限的12种方法总结及例题求极限的12种方法总结及例题1. 引言在数学学习中,求极限是一个重要的概念,也是许多数学题解的基础。

在学习求极限的过程中,有许多不同的方法可以帮助我们理解和解决问题。

本文将总结12种方法,帮助我们更全面地理解求极限的概念,并提供相应的例题进行演示。

2. 利用极限的定义我们可以利用极限的定义来求解问题。

根据定义,当x趋向于a时,函数f(x)的极限为L,即对于任意的正数ε,总存在正数δ,使得当0<|x-a|<δ时,有|f(x)-L|<ε。

利用这个定义,可以求得一些简单的极限,如lim(x→0) sinx/x=1。

3. 利用夹逼准则夹逼准则是求极限常用的方法之一。

当我们无法直接求出某个函数的极限时,可以利用夹逼准则来找到该函数的极限值。

要求lim(x→0) xsin(1/x)的极限,可以通过夹逼准则来解决。

4. 利用极限的四则运算极限的四则运算法则是求解复杂函数极限的基本方法之一。

利用这个法则,我们可以将复杂的函数分解成简单的部分,再进行求解。

要求lim(x→0) (3x^2+2x-1)/(x+1),可以利用极限的四则运算法则来求解。

5. 利用洛必达法则当我们遇到不定型的极限时,可以利用洛必达法则来求解。

洛必达法则可以帮助我们求出不定型极限的值,例如0/0、∞/∞、0*∞等形式。

通过洛必达法则,我们可以将求解不定型极限的过程转化为求解导数的问题,从而得到极限的值。

6. 利用泰勒展开泰勒展开是求解复杂函数极限的有效方法之一。

当我们遇到无法直接求解的函数极限时,可以利用泰勒展开将其转化为无穷级数的形式,然后再进行求解。

通过泰勒展开,我们可以将复杂函数近似为一个多项式,从而求得函数的极限值。

7. 利用换元法换元法是求解复杂函数极限的常用方法之一。

通过适当的变量替换,可以将复杂的函数转化为简单的形式,然后再进行求解。

对于lim(x→∞) (1+1/x)^x,可以通过换元法将其转化为e的极限形式来求解。

求极限的计算方法总结

求极限的计算方法总结

千里之行,始于足下。

求极限的计算方法总结极限是数学中重要的概念,它描述了函数在某一点无限接近于某个值的性质。

计算极限是数学分析中的基础内容,对于解决数学问题和理解函数的行为至关重要。

下面将总结一些计算极限的常见方法。

1.代入法:当极限的表达式中存在某个点的函数值不存在时,可以通过代入法来计算极限。

代入法即将极限的定义中与某些点不全都的部分进行代入,然后计算出相应的极限值。

2.分子分母有理化:当极限表达式中含有分数,且分母中有根式时,可以将分子分母有理化,即通过乘以分子分母的共轭形式,将根式消去。

3.利用无穷小量的性质:当极限表达式中存在无穷小量时,可以利用无穷小量的性质进行计算。

例如,常见的无穷小量的性质有:a.加减无穷小量仍旧是无穷小量;b.有界函数与无穷小量相乘仍旧是无穷小量;c.有限次幂无穷小量也是无穷小量等。

4.利用极限的四则运算法则:对于四则运算,极限也有相应的运算法则。

常见的极限运算法则有:a.加减法则:lim(f(x) ± g(x)) = lim f(x) ± lim g(x)b.乘法法则:lim(f(x) * g(x)) = lim f(x) * lim g(x)c.除法法则:lim(f(x) / g(x)) = lim f(x) / lim g(x),其中lim g(x) ≠ 0d.复合函数法则:lim(f(g(x))) = lim f(g(x)), when lim g(x) exists第1页/共2页锲而不舍,金石可镂。

5.利用夹逼定理:当极限表达式无法直接计算时,可以利用夹逼定理进行计算。

夹逼定理规定了假如存在两个函数h(x)和i(x),使得对于足够大的x,h(x) ≤ f(x) ≤i(x),且lim h(x) = lim i(x) = L,则lim f(x)也等于L。

6.利用洛必达法则:洛必达法则可用于计算形如lim(f(x)/g(x))的不定型极限,其中f(x)和g(x)在极限点四周连续可导。

求极限的方法总结

求极限的方法总结

求极限的几种常用方法一、 约去零因子求极限例如求极限limx→1x4-1x-1,本例中当x→1时,x-1→0,表明x 与1无限接近,但x≠1,所以x-1这一因子可以约去。

二、 分子分母同除求极限求极限limx→∞x3-x23x3+1∞∞型且分子分母都以多项式给出的极限,可通过分子分母同除来求。

limx→∞x3-x23x3+1=limx→∞1-1x3+1x3=13三、 分子(母)有理化求极限例:求极限limx→∞(x3+3-x2+1)分子或分母有理化求极限,是通过有理化化去无理式。

()()()()131313lim 13lim 22222222+++++++-+=+-++∞→+∞→x x x x x x xx x x 0132lim 22=+++=+∞→x x x例:求极限limx→01+tanx -1+sinxx330sin 1tan 1lim x x x x +-+→=()x x x x x x sin 1tan 1sin tan lim 30+++-→ =300sin tan lim sin 1tan 11lim x x x x x x x -+++→→=41sin tan lim 2130=-→x x x x 本题除了使用分子有理化方法外,及时分离极限式中的非零因子是解题的关键。

四、 应用两个重要极限求极限(2)limx→∞(1+1x)x=limx→0(1+x)1x=e在这一类型题中,一般也不能直接运用公式,需要恒等变形进行化简后才可以利用公式。

例:求极限limx→∞(x+1x-1)x第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑1+1x,最后凑指数部分。

limx→∞(x+1x-1)x=limx→∞(1+2x-1)x=limx→∞[1+1x-122x-1(1+ 2x-1)12]2=e2五、利用无穷小量的性质求极限无穷小量的性质:无穷小量与有界量的乘积还是无穷小量。

这种方法可以处理一个函数极限不存在但有界,和另一个函数的极限是零的极限的乘积的问题。

16种求极限的方法及一般题型解题思路分享

16种求极限的方法及一般题型解题思路分享

千里之行,始于足下。

16种求极限的方法及一般题型解题思路共享求极限是微积分中格外重要的概念,它可以挂念我们争辩函数的性质以及解决各种数学问题。

在求极限的过程中,有很多种不同的方法可以使用。

本文将介绍16种常见的求极限的方法,并共享一般题型的解题思路。

1. 代入法:将变量的值直接代入函数中,求出函数在该点的函数值。

这种方法适用于对于给定的变量值函数值可以直接计算的状况。

2. 合并同类项法:对于多项式函数,可以将同类项合并,化简为简洁的表达式,使得求极限更加便利。

3. 分子有理化法:对于分式函数,可以通过有理化分子的方法将其转化为整式的形式,使得求极限更加便利。

4. 凑微分法:对于含有微分的项,可以通过凑微分的方法将其转化为可求极限的形式。

5. 分部积分法:对于不定积分的形式,可以通过分部积分的方法将其转化为可求极限的形式。

6. 换元法:通过适当的变量替换,将原函数转化为简洁函数的形式,使得求极限更加便利。

7. 反函数法:对于已知函数,可以通过找到其反函数,将原函数的极限转化为反函数的极限来求解。

第1页/共3页锲而不舍,金石可镂。

8. 夹逼定理:假如一个函数在某点四周的两个函数夹住,并且这两个函数的极限都存在且相等,那么该点的极限存在且等于这两个函数的极限。

9. 洛必达法则:对于两个函数的极限,假如它们的导数的极限都存在且有限,那么这两个函数的极限相等。

这个法则对于解决0/0和∞/∞型的极限问题格外有用。

10. 先有界后无穷法则:假如一个函数在某个点四周有界,并且向正无穷或负无穷趋于极限,那么该点的极限等于无穷。

11. 拆分法则:假如一个极限可以通过拆分成多个极限来求解,那么可以分别求解这些极限,然后将结果合并。

12. 开放法则:对于含有无穷小量的表达式,可以将其开放成多项式的形式,然后求极限。

13. 不等式法则:可以通过利用一些不等式关系来限定函数的范围,从而求出极限的范围。

14. 递推法:对于递归定义的序列或函数,可以通过递推关系式来求出其极限。

求极限的13种方法

求极限的13种方法

求极限的13种方法求极限的方法有很多种,以下列举了常见的13种方法和技巧,以帮助解决各种极限问题。

1.代入法:将极限中的变量代入表达式中,简化计算。

这通常适用于简单的多项式函数。

2.夹逼定理:当一个函数夹在两个趋向于相同极限的函数之间时,函数的极限也趋向于相同的值。

3.式子分解:通过将复杂的函数分解成更简单的部分,可以更容易地计算极限。

4.求导法则:使用导数的性质和规则来计算函数的极限。

这适用于涉及导数的函数。

5.递归关系:如果一个函数的递归关系式成立,可以使用递归关系来计算函数的极限。

6.级数展开:将函数展开成无穷级数的形式,可以使用级数的性质来计算函数的极限。

7.泰勒级数:对于可微的函数,可以通过使用泰勒级数来近似计算函数的极限。

8. 洛必达法则:如果一个函数的极限形式是$\frac{0}{0}$或$\frac{\infty}{\infty}$,可以使用洛必达法则来计算极限。

该法则涉及对分子分母同时求导的操作。

9.极限存在性证明:通过证明一个函数在一些点上的左极限和右极限存在且相等,可以证明函数在该点上的极限存在。

10.收敛性证明:对于一个序列极限,可以通过证明序列是有界且单调递增或单调递减的来证明其极限存在。

11.极限值的判断:根据函数的性质,可以判断函数在一些点上的极限是多少。

12.替换法:通过将变量替换为一个新的变量,可以使函数更容易计算极限。

13.反证法:通过假设极限不存在或不等于一些特定值,来推导出矛盾的结论,从而证明极限存在或等于一些特定值。

这些方法并非完整的极限求解技巧列表,但是它们是最常见和基本的方法。

在实际问题中,可能需要结合使用多种方法来求解复杂的极限。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

计算极限的三种方法

计算极限的三种方法

计算极限的三种方法计算极限的三种方法引言在高等数学中,计算极限是一个重要的概念,它不仅在微积分中应用广泛,还在其他领域中起着关键作用。

本文将详细介绍计算极限的三种常用方法,并对它们的原理进行解释。

方法一:代入法代入法是计算极限中最简单、直观的方法之一。

它的基本思想是通过给定函数的输入值逐渐接近极限点,然后计算对应的函数输出值。

使用代入法计算极限的步骤如下: - 根据题目给出的极限点,选取一系列逼近极限点的数值。

- 将选取的数值代入给定函数中,得到对应的函数输出值。

- 观察函数输出值的变化趋势,判断是否趋近于某个确定的值。

- 如果输出值逐渐趋近于一个常数,该常数即为极限的结果。

方法二:夹逼法夹逼法是一种常用的计算极限的方法,它的基本思想是通过夹逼定理找到一个上界和下界,从而确定函数极限。

使用夹逼法计算极限的步骤如下: - 首先,找到与给定函数相关的两个函数,它们的极限等于同一个常数。

- 接着,通过比较给定函数与这两个函数之间的大小关系,找到一个夹逼定理的条件。

- 利用夹逼定理,证明给定函数的极限也等于这个常数。

夹逼法在一些复杂的函数中特别有用,它可以将函数极限的计算转化为求解两个简单函数的极限问题。

方法三:泰勒展开法泰勒展开法是一种通过近似多项式来计算函数极限的方法,它基于泰勒级数的理论,并利用函数的导数信息建立多项式模型。

使用泰勒展开法计算极限的步骤如下: - 首先,确定需要计算极限的函数。

- 接着,根据函数的性质以及泰勒级数的定义,将函数展开成多项式。

- 选择合适的近似阶数,截断多项式展开式,得到一个近似函数。

- 计算近似函数在极限点处的极限值,作为原函数在该点的极限近似。

泰勒展开法在计算复杂函数的极限时非常有用,它可以将复杂的函数问题转化为求解多项式的问题,简化计算过程。

结论计算极限的三种方法,即代入法、夹逼法和泰勒展开法,各有其适用的情况。

代入法简单直观,适用于求解简单函数的极限;夹逼法适用于复杂函数的极限求解,能够通过夹逼定理得到确定的结果;泰勒展开法在函数特性和导数信息已知的情况下,通过多项式近似求解函数极限。

求极限的计算方法总结

求极限的计算方法总结

求极限的计算方法总结在数学中,极限是一种重要的概念,用于描述一个函数或者数列在一些点或无穷远处的趋势。

计算极限是解决微积分、数学分析以及其他数学领域中问题的基础。

极限的计算方法种类繁多,以下是一些常见的极限计算方法的总结:1.代入法:直接将要计算的极限值代入函数中。

这个方法通常适用于简单的极限,例如多项式的极限。

2. 分子有理化法:对于含有根式的极限,可以通过有理化方法将分子有理化,从而更容易求得极限。

例如,对于极限lim(x->0)((sinx)/x),可以通过将分子分母都乘以(conj(x))来有理化。

3. 倍角公式和和差化积公式:对于一些三角函数的极限,可以使用倍角公式或和差化积公式进行化简。

例如,对于极限lim(x->0)((sin2x)/(x^3)),可以使用倍角公式将分子化简为2*sin(x)*cos(x),进而求得极限。

4. 指数函数和对数函数的性质:对于一些指数函数和对数函数的极限,可以利用它们的性质进行计算。

例如,对于极限lim(x->0)(e^x-1)/x,可以利用指数函数的性质e^0=1进行计算。

5. L'Hospital法则:L'Hospital法则是求解一些特定类型极限的强大工具。

该法则适用于极限形式为0/0或无穷/无穷的情况。

它的基本思想是将函数的求导转化为简化问题。

例如,对于极限lim(x->0)((sinx)/x),可以使用L'Hospital法则将其转化为lim(x->0)(cosx)/1=16. 夹逼准则:夹逼准则适用于求解一些不能直接计算的极限,它的基本思想是找到两个函数夹住要计算的函数,并且这两个函数的极限相等。

然后可以利用夹逼准则得到要计算函数的极限。

例如,对于极限lim(x->0)(x*sin(1/x)),我们可以利用夹逼准则,将其夹逼在两个函数0和x之间,从而得到0。

7. 泰勒级数展开:对于一些复杂的函数,可以利用泰勒级数展开来近似求解极限。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

学号:0 学年论文求极限的方法总结Method of Limit学院理学院专业班级学生指导教师(职称)完成时间年月日至年月日摘要极限的概念是高等数学中最重要、最基本的概念之一。

许多重要的概念如连续、导数、定积分、无穷级数的和及广义积分等都是用极限来定义的。

因此掌握好求极限的方法对学好高等数学是十分重要的。

但求极限的方法因题而异,变化多端,有时甚至感到变幻莫测无从下手,通过通过归纳和总结,我们罗列出一些常用的求法。

本文主要对了数学分析中求极限的方法进行一定的总结,以供参考。

关键词:极限洛必达法则泰勒展开式定积分无穷小量微分中值定理AbstractThe concept of limit is the most important mathematics,one of the most basic important concepts such as continuity,derivative,definite integral,infinite series and generalized integrals and are defined by the mater the methods the Limit learn mathematics integrals and are defined by the limit varies by title,varied,anf sometimes even impossible to start very unpredictable,and summarized through the adoption,we set out the requirements of some commonly used this paper,the mathematical analysis of the method of seeking a certain limit a summary for reference.Keyword:Limit Hospital's Rule Taylor expansion Definite integral Infinitesimal Mean Value Theorem引言极限时分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。

早在中国古代,极限的朴素思想和应用就已在文献中有记载。

例如:3世纪中国数学家刘微的割圆术,就是用圆内接正多边形周长的极限时圆周长这一个思想来近似地计算圆周率的。

随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。

但最初提出的这一概念是含糊不清的,因此在数学界引起了不少争论甚至怀疑。

知道19世纪,由A.—L.柯西、K.(.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。

数学分析中的基本概念得表述都可以用极限来描述。

如函数y=f (x )在0x x =处倒数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义等都是用极限来定义的。

极限时研究数学分析的基本工具。

极限时贯穿数学分析的一条主线。

学好极限要学会归纳和掌握求极限的方法。

本文主要是对求极限的方法进行了归纳和总结。

第一章1、1 利用极限的四则运算法则和简单技巧极限四则元素法则的条件是充分而非必要的,因此,用极限四则运算法则求函数极限时,必须对所给的函数逐一验证它是否满足极限四则运算的法则条件,如果满足条件,才能利用极限的四则运算法则进行计算;不满足条件的就不能直接利用极限四则运算法则求解。

但是,并非所有不满足极限四则运算法则条件的函数就没有极限,而是需要将函数进行恒等变形,使其符合条件候再利用四则运算法则求解,而对函数进行恒等变形时,通常运用一些简单技巧比如拆项,分子分母乘以某一因子,变量代换,分子分母有理化等等方法即可进行恒等变换,以便于我们计算。

极限的四则运算法则叙述如下: 定理1. 1(1(2(3)若B ≠0(4(5)[]00lim ()lim ()nnn x x x x f x f x →→⎡⎤==A ⎢⎥⎣⎦(n 为自然数)①由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。

例1. 求225lim3xxx→+-的极限解:由定理中的第三式可以知道()()22222lim55lim3lim3xxxxxx x→→→++=--22222lim lim5lim lim3x xx xxx→→→→+=+225923+==--以后遇到类似题目,可以分别求子分母的极限,得到的分式就是结果例2. 求32lim3x x→-的极限3222lim3x xx→→=-3x→=14=式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可例3. 已知()11112231nxn n=+++⨯⨯-⨯解:观察11=1122-⨯111=2323-⨯因此得到()11112231nxn n=+++⨯⨯-⨯1111111123311n n n=-+-+-+---所以 1lim lim 11n n n x n →∞→∞⎛⎫=-= ⎪⎝⎭1、2 利用导数的定义求极限导数的定义:函数f(x)如果()()000lim lim x x f x x f x yx x ∆→∆→+∆-∆=∆∆存在,则此极限值就称函数f(x)()0'f x 。

即在这种方法的运用过程中,首先要选好f(x)。

然后把所求极限都表示称f(x)在定点0x 的导数。

例4.()212lim'22x x f x f x f πππ→⎛⎫- ⎪⎝⎭==⎛⎫- ⎪⎝⎭12=1、3 利用两个重要极限公式求极限两个极限公式:(1)0sin lim 1x x x→=,(2)1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭但我们经常使用的是它们的变形:(1)()()()()sin lim1,0x x x ϕϕϕ=→ , (2)()()()()1lim 1,x e x x ϕϕϕ⎛⎫+=→∞ ⎪ ⎪⎝⎭求极限。

(3)其中x 都可以看作整体来看待。

其中第一个重要极限是“00”型;第二个重要极限是“1∞”型,在1∞型中满足“外大内小,内外互倒”。

在利用重要极限求函数极限时,关键在于把要求的函数极限化成重要极限标准型或者是它们的变形式,这就要求要抓住它们的特征,并且能够根据它们的特征辨认它们的变形。

若用到第一个重要极限来求极限时,往往要利用三角形公式对变量进行变形,设法化成标准型,所以,要熟练地掌握三角函数的相关公式(如倍角、半角公式、两角和(差)公式、和差化积、积化和差公式等)、如果是用到第二个重要极限求极限时,有时要对自变量作适当的代换,使所求的极限变成这一形式。

例5. 求xxx x x 20sin cos sin 1lim-+→的极限解:这是0型不定式上式=x x x x x x x x cos sin 1(sin cos sin 1lim220++-+→=)cos sin 1(sin sin sin lim220x x x x x x x x +++→=)cos sin 1(sin cos sin 11limx x x x xx x x x +++++→=12121=+例6:xx x x 10)1()21(lim +-→解:为了利用极限e x xx =+→10)1(lim 故把原式括号内式子拆成两项,使得第一项为1,第二项和括号外的指数互为倒数进行配平。

xx x x 10)1()21(lim +-→=xx xx 10)131(lim +-+→1x 13x3x x 1x03x =lim 11x x +-⋅⋅-+→-⎛⎫+ ⎪+⎝⎭=313310])131[(lim -+--+→=+-+e x x xx xx例7:20cos 1limx xx -→解:将分母变形 后再化成“0/0”型 所以20cos 1limx x x -→=2202sin 2limx xx →=21)2(2sin 21lim 220=→x x x1、4 利用函数的连续性因为一切初等函数在其定义区间内都是连续的,所以如果)(x f 是初等函数,且0x 是)(x f 的定义区间内的点, 则)()(lim 00x f x f x x =→。

例8: 612arcsinlim 1+→x x解 :因为复合函数arcsin 是初等函数,而x 1→是其定义区间内的点,所以极限值就等于该点处的函数值.因此612arcsin612arcsinlim 1+=+→x x x1=arcsin =26π例9:求xx sin ln lim 2π→解: 复合函数x sin ln 在2π=x 处是连续的,所以在这点的极限值就等于该点处的函数值即有2sin ln sin ln lim 2ππ=→x x=1ln 2sinlim =π=01、5 利用两个准则求极限。

1、5、1 函数极限的迫敛性(夹逼法则):若一正整数 N,当n>N 时,有n n nx y z ≤≤且lim lim ,n n x x x z a →∞→∞==则有 lim n x y a →∞=。

②利用夹逼准则求极限关键在于从n x 的表达式中,通常通过放大或缩小的方法找出两个有相同极限值的数列{}n y 和 {}n z ,使得n n n y x z ≤≤。

n x =+例10 : 求n x 的极限解:因为n x 单调递减,所以存在最大项和最小项.......n x ≥++=.......n x ≤=n x ≤≤又因为1x x ==lim 1n x x →∞=1、5、2 单调有界准则:单调有界数列必有极限,而且极限唯一。

利用单调有界准则求极限,关键先要证明数列的存在,然后根据数列的通项递推公式求极限。

定理单调上升( 或单调下降) 有上界( 或有下界) 的数列必有极限。

利用这一定理来求极限时, 首先要研究数列}{n x 的单调性和有界性, 即证明nn x ∞→lim 的存在性, 方法可用数学归纳法或不等式的放缩法; 再令Ax n n =∞→lim , 然后解关于A 的方程, 求得A 的值, 从而得出nn x ∞→lim 。

③例11:证明下列数列的极限存在,并求极限。

123,n y y y y a a a a ===++++证明:从这个数列构造来看 n y 显然是单调增加的。

用归纳法可证。

又因为23,n y y y === 所以得21n n y a y -=+.因为前面证明n y 是单调增加的。

两端除以 n y 得1n nay y <+因为1n y y ≥则从而1n y ≤即n y 是有界的。

根据定理{}n y 有极限,而且极限唯一。

令lim n n y l→∞=则有21lim lim()n n n n y y a -→∞→∞=+所以2l l a =+.又因为 0n y >解方程得所以1lim 2n n y l →∞==例12:设)1110,1,2,n x x n n +===。

相关文档
最新文档