高数函数极限方法总结

合集下载

高数求极限运算法则

高数求极限运算法则

高数求极限运算法则极限(Limit)是高等数学中非常重要的数学概念,是对函数在某一特定变量无穷接近某个值的概念,是理解微积分及其它研究的基础。

极限的求取是高数教学的重要内容,它不仅提高了学生的数学思维能力,还有助于培养其创新能力。

因此,高数求极限的运算法则的掌握就显得尤为重要。

一、定义极限又称无穷小,是指分母函数值趋近于无穷小,且分子函数值恒不变时,分母函数不变时其商函数极限,记作:$$lim_{xto a}f(x)=L$$其中$xto a$(x逼近a)表示x不断逼近a,当$xto a$时,$f(x)=L$。

二、极限的计算1、无穷小的消去法即在极限的运算中,若分母中出现无穷小,可让其消去,即$lim_{xto a}f(x)=f(a)$,$f(a)$为极限值。

2、无穷大的消去法即若极限运算中出现无穷大,首先判断一下分子和分母的大小,根据大小将分母合理改写,使无穷大可以化简消去,然后将合理改写后的分母和分子相除,得到极限的值。

3、积分型极限计算法则即若函数形式为$frac{f(x_0)+f(x_1)+f(x_2)+cdots+f(x_n)}{x_0+x_1+x_2+cdots+x_n}$,此时函数的极限可以用随机积分法求出。

4、指数函数极限计算法则即若函数形式为$a^x$,其中a为任意正数,当$xto infty$时极限值为无穷大;当$xto -infty$时极限值为0。

5、三角函数极限计算法则即当函数形式为$sin x$或$cos x$等三角函数的极限时,可以运用三角恒等公式,将它们改写成有限值表达式,求出其极限值。

6、指数型函数极限计算法则即当函数形式为$a^x$,其中a为任意正数,此时函数的极限可以用对数函数法求出,其计算方法是将该函数改写成对数函数形式,再用极限运算法则加以求解。

三、总结1、极限定义:极限是指函数在某一特定变量无穷接近某个值的概念,记作:$$lim_{xto a}f(x)=L$$2、求极限的方法:包括无穷小的消去法、无穷大的消去法、积分型极限计算法则、指数函数极限计算法则、三角函数极限计算法则、指数型函数极限计算法则等,其中各种方法有其特色,使用了正确的方法可以满足不同的求解要求。

考研高数求极限的方法总结

考研高数求极限的方法总结

考研高数求极限的方法总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--考研高数求极限的方法总结这是一篇由网络搜集整理的关于2017考研高数求极限的方法总结的文档,希望对你能有帮助。

1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。

全部熟记(x趋近无穷的时候还原成无穷小)。

2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。

首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。

洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。

对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。

3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。

4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

高数部分知识点总结

高数部分知识点总结

高数部分知识点总结1 高数部分1.1 高数第一章《函数、极限、连续》求极限题最常用的解题方向:1.利用等价无穷小;2.利用洛必达法0,,0,0,1则,对于型和型的题目直接用洛必达法则,对于、、型0,0,的题目则是先转化为型或型,再使用洛比达法则;3.利用重要极0,1xx1x,1(1,x),e限,包括、、;4.夹逼定理。

(1,),exlimlimlimsinxxx,0,0x,,1.2 高数第二章《导数与微分》、第三章《不定积分》、第四章《定积分》第二章《导数与微分》与前面的第一章《函数、极限、连续》、后面的第三章《不定积分》、第四章《定积分》都是基础性知识,一方面有单独出题的情况,如历年真题的填空题第一题常常是求极限;更重要的是在其它题目中需要做大量的灵活运用,故非常有必要打牢基础。

对于第三章《不定积分》,陈文灯复习指南分类讨论的非常全面,范围远大于考试可能涉及的范围。

在此只提醒一点:不定积分f(x)dx,F(x),C中的积分常数C 容易被忽略,而考试时如果在答,案中少写这个C会失一分。

所以可以这样建立起二者之间的联系以加f(x)dx深印象:定积分的结果可以写为F(x)+1,1指的就是那一分,,f(x)dx,F(x),C把它折弯后就是中的那个C,漏掉了C也就漏掉了,这1分。

第四章《定积分及广义积分》可以看作是对第三章中解不定积分方法的应用,解题的关键除了运用各种积分方法以外还要注意定积分与不定积分的差异——出题人在定积分题目中首先可能在积分上下af(x)dx限上做文章:对于型定积分,若f(x)是奇函数则有,,aaaaf(x)dxf(x)dxf(x)dx=0;若f(x)为偶函数则有=2;对于,,,,a,a0,,2t,,xf(x)dx型积分,f(x)一般含三角函数,此时用的代换是常,02用方法。

所以解这一部分题的思路应该是先看是否能从积分上下限中入手,对于对称区间上的积分要同时考虑到利用变量替换x=-u和利aaa奇函数,0偶函数,2偶函数用性质、。

高数极限证明方法

高数极限证明方法

高数极限证明方法在高等数学中,极限是一个十分重要的概念。

极限是函数趋于某个点或无穷时的一种特殊情况,它能够描述函数在该点的局部特性,如连续性、可导性等。

在证明高数极限的过程中,有一些基本的方法和原则可以被应用。

首先,我们先来看一下高数中的一些极限基本定理,它们是证明极限的基础:1.极限的唯一性定理:如果函数f(x)的极限存在,则该极限是唯一的。

也就是说,一个函数只能趋于一个极限。

2.有界收敛定理:如果一个函数在某个点a 的某个去心领域中有界且有极限,那么这个函数在该点必然有极限。

3.夹逼定理:如果对于所有的x∈X,都有g(x)≤f(x)≤h(x),并且g(x)和h(x)的极限都为L,那么f(x)的极限也为L。

4.极限的四则运算法则:如果函数f(x)和g(x)在点a处有极限,那么它们的和、差、积以及商(只要g(a)≠0)在该点也有极限,并且极限值等于对应的运算。

掌握了以上基本定理后,我们可以运用以下几种证明方法来证明高数中的极限问题:1.ε-δ方法:这是一种直接证明的方法,通过选取合适的δ,使得当0<|x-a|<δ时,相应地有|f(x) - L| <ε,其中ε为一个正数。

该方法常用于连续函数的极限证明。

2.夹逼法:当无法直接计算函数的极限时,我们可以使用夹逼法来确定极限值。

夹逼法的关键是找到两个已知函数,使得它们的极限都等于L,并且函数f(x)一直被这两个函数夹在中间。

3.断点法:当函数在某个点a处无极限时,我们可以考虑将该点变成一个极限点,并引入无穷大或无穷小,从而计算出极限。

此时,我们需要观察并分析函数在该点的性质,如左极限和右极限是否存在。

4.局部性质法:当要证明函数在某个点a处有极限时,我们可以先观察该点的局部性质,如连续性、可导性等,然后利用这些性质推导出极限。

总结一下,证明高数极限时,我们可以采用ε-δ方法来直接证明,也可以用夹逼法来确定极限值,还可以使用断点法来处理无极限的情况,最后可以利用函数的局部性质来推导极限。

2-4高数极限运算法则

2-4高数极限运算法则
证 lim f ( x) A, lim g( x) B. f ( x) A , g( x) B . 其中 0, 0. 由无穷小运算法则,得
[ f ( x) g( x)] ( A B) 0. (1)成立.
[ f ( x) g( x)] ( A B) ( A )(B ) AB
例5

lim
x
2x3 7x3

3x2 4x2

5 1
.
(型)
解 x 时, 分子,分母的极限都是无穷大.
先用x 3去除分子分母 , 分出无穷小, 再求极限.
lim
x
2x3 7x3

3x2 4x2
ห้องสมุดไป่ตู้ 1
2 lim
x
7
3 x 4 x
5 x3 1 x3

2. 7
二、求极限方法举例
例1

lim
x2
x2
x3 1 3x
5
.
解 lim( x 2 3x 5) lim x 2 lim 3x lim 5
x2
x2
x2
x2
(lim x)2 3 lim x lim 5
x2
x2
x2
22 3 2 5 3 0,
令 u (x) a lim ( x)
x x0
lim f (u)
ua
例8

lim
xa
3
3
x3 a xa
.
解: 原式 lim
x a3 (x a)2
xa x a (3 x2 3 ax 3 a2 )

高数中求极限的16种方法

高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。

全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。

通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。

面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。

高数中求极限的16种方法

高数中求极限的16种方法

千里之行,始于足下。

高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。

为了解决各种极限问题,数学家们总结出了很多方法和技巧。

以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。

2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。

3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。

4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。

5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。

6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。

7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。

8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。

9.利用积分计算:将极限式子进行积分计算,以求出极限。

10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。

第1页/共2页锲而不舍,金石可镂。

11.利用积素等价:将极限式子进行积素等价,以求出极限。

12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。

13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。

14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。

15.利用导数性质:利用函数的导数性质,对极限进行计算。

16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。

除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。

这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
各项的拆分相加
(来消掉中间的大多数) (对付的还是数列极限) 可以使用待定系数法来拆分化简函数
16、用罗必塔法则求极限(上下分别 求导)
【注】许多变动上显的积分表示的极限,常用罗必塔法则求解 LHopital 法则、洛必达法则 (所以面对数列极限时候先要转化成 求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必 要条件 ) (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无 穷!) (导数存在、极限存在) (必须是 0比0 无穷大比无穷大) (当然还要注意分母不能为0 ) 0乘以无穷 无穷减去无穷 ( 应为无穷大与无穷小成倒数的关系) 0 的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就 能把幂上的函数移下来了, 就是写成0与无穷的形式了 ,
17、对数恒等式、幂指函数
limf (x)g(x)
18、利用Taylor公式求极限
泰勒展开式公式 (含有e的x次方的时候 ,尤 其是含有正余弦的加减的时候要特别注意E
2
【说明】 (1) 等价无穷小量代换,只能代换极限式中的因式; (2)此方法在各种求极限的方法中应作为首选。 (3)只能在乘除时使用,但是不是说一定在加减的时候不能 用,但是前提要证明拆分后极限依然存在。
7、换元法、扩大
一.如果数列{Xn},{Yn}及{Zn}满足下列条件: (1)从某项起,即当n>n。,其中n。∈N,有Yn≤Xn≤Zn。 (n=n。+1,n。
先凑出1,再凑
1 X
,最后凑指数部分。
6.等价无穷小代换法 x 0 x ~ s x ~ t i x ~ a n a x n ~ r a c x ~ r l 1 s c n x ) ~ ei x t ( 1n an
1co x~s1x2,1abx1~abxa∧x—1~xlna(a是固定的,x是变量)
4.有限个无穷大之积是无穷大 5.无穷大与有界函数之和是无穷大,之积不一定 6.同号无穷大之和是无穷大
11、极限的四则运算性质
12、利用单侧极限
12、函数极限的定义
设函数f(x)在点x。的某一去心邻域内有定义,如果存在 常数A,对于任意给定的正数ε(无论它多么小),总存在正 数δ ,使得当x满足不等式0<|x-x。|<δ 时,对应的函数值 f(x)都满足不等式: |f(x)-A|<ε
9、收敛数列的性质
1.收敛数列与其子数列收敛同一个数 2、(极限存在性定理)单调递增有上 界函数收敛,单调递减有下界函数收 敛。(证明) 利用每项数列趋于同一数方程求解。 (求出极限)
10、无穷小和无穷大的性质:
无穷小与有界函数的处理办法 尤其对正余旋的复杂函数与其他函数相乘的形式
相同极限条件下 1.有限个无穷小的和是无穷小,无限个不一定 2.无穷小与有界函数的乘积是无穷小 3.有限个、无限个无穷小的乘积是无穷小
5.应用两个重要极限公式(重要公式法)
sin x lim 1 x0 x
li(1 m 1 )x li(1 m 1 )n li(1 m x )1 x e
x n x
n
x 0
0
第一个重要极限
0
第二个重要极限(1+0)∧∞。
强行代入,定型定法
第二个重要极限主要搞清楚凑的步骤:
那么常数A就叫做函数f(x)当x→x。时的极限。
14、函数的连续性
15、特殊型
x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快 于 对数函数 (画图也能看出速率的快慢) 当x 趋近无穷的时候 他们的比值的极限一眼就能看出来 了
等比等差数列公式应用
(对付数列极限) (q绝对值符号要小于1)
高数函数极限方法总结
周凌伊
1、直接代入法
分母不为零
2.约去零因子法
0 0
3、抓大头法
一般分子分母同除最高次方;对于多项式函数

0
limanxn xbmxm
an1xn1 a0 bm1xm1 b0
an
bn
mn mn mn
4.分子(母)有理化法
分子或分母有理化求极限,是通过有理化化去无理式。 及时分离极限式中的非零因子是解题的关键
+2,……), (2)当n→∞,limYn =a;当n→∞ ,limZn =a, 那么,数列{Xn}的极限存在,且当 n→∞,limXn =a。
二.F(x)与G(x)在Xo连续且存在相同的极限A,
limF(x)=limG(x)=A 则若有函数f(x)在Xo的某邻域内恒有 F(x)≤f(x)≤G(x) 则当X趋近Xo,有limF(x)≤limf(x)≤limG(x) 即 A≤limf(x)≤A 故 limf(Xo)=A
相关文档
最新文档