高数求极限方法总结
高数求极限运算法则

高数求极限运算法则极限(Limit)是高等数学中非常重要的数学概念,是对函数在某一特定变量无穷接近某个值的概念,是理解微积分及其它研究的基础。
极限的求取是高数教学的重要内容,它不仅提高了学生的数学思维能力,还有助于培养其创新能力。
因此,高数求极限的运算法则的掌握就显得尤为重要。
一、定义极限又称无穷小,是指分母函数值趋近于无穷小,且分子函数值恒不变时,分母函数不变时其商函数极限,记作:$$lim_{xto a}f(x)=L$$其中$xto a$(x逼近a)表示x不断逼近a,当$xto a$时,$f(x)=L$。
二、极限的计算1、无穷小的消去法即在极限的运算中,若分母中出现无穷小,可让其消去,即$lim_{xto a}f(x)=f(a)$,$f(a)$为极限值。
2、无穷大的消去法即若极限运算中出现无穷大,首先判断一下分子和分母的大小,根据大小将分母合理改写,使无穷大可以化简消去,然后将合理改写后的分母和分子相除,得到极限的值。
3、积分型极限计算法则即若函数形式为$frac{f(x_0)+f(x_1)+f(x_2)+cdots+f(x_n)}{x_0+x_1+x_2+cdots+x_n}$,此时函数的极限可以用随机积分法求出。
4、指数函数极限计算法则即若函数形式为$a^x$,其中a为任意正数,当$xto infty$时极限值为无穷大;当$xto -infty$时极限值为0。
5、三角函数极限计算法则即当函数形式为$sin x$或$cos x$等三角函数的极限时,可以运用三角恒等公式,将它们改写成有限值表达式,求出其极限值。
6、指数型函数极限计算法则即当函数形式为$a^x$,其中a为任意正数,此时函数的极限可以用对数函数法求出,其计算方法是将该函数改写成对数函数形式,再用极限运算法则加以求解。
三、总结1、极限定义:极限是指函数在某一特定变量无穷接近某个值的概念,记作:$$lim_{xto a}f(x)=L$$2、求极限的方法:包括无穷小的消去法、无穷大的消去法、积分型极限计算法则、指数函数极限计算法则、三角函数极限计算法则、指数型函数极限计算法则等,其中各种方法有其特色,使用了正确的方法可以满足不同的求解要求。
考研高数求极限的方法总结

考研高数求极限的方法总结(总4页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--考研高数求极限的方法总结这是一篇由网络搜集整理的关于2017考研高数求极限的方法总结的文档,希望对你能有帮助。
1、等价无穷小的转化,(只能在乘除时候使用,但是不是说一定在加减时候不能用,前提是必须证明拆分后极限依然存在,e的X次方-1或者(1+x)的a次方-1等价于Ax等等。
全部熟记(x趋近无穷的时候还原成无穷小)。
2、洛必达法则(大题目有时候会有暗示要你使用这个方法)。
首先他的使用有严格的使用前提!必须是X趋近而不是N趋近!(所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件(还有一点数列极限的n当然是趋近于正无穷的,不可能是负无穷!)必须是函数的导数要存在!(假如告诉你g(x),没告诉你是否可导,直接用,无疑于找死!!)必须是0比0无穷大比无穷大!当然还要注意分母不能为0。
洛必达法则分为3种情况:0比0无穷比无穷时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成第一种的形式了;0的0次方,1的无穷次方,无穷的0次方。
对于(指数幂数)方程方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因,LNx两端都趋近于无穷时候他的幂移下来趋近于0,当他的幂移下来趋近于无穷的时候,LNX趋近于0)。
3、泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特变注意!)E的x展开sina,展开cosa,展开ln1+x,对题目简化有很好帮助。
4、面对无穷大比上无穷大形式的解决办法,取大头原则最大项除分子分母!!!看上去复杂,处理很简单!5、无穷小于有界函数的处理办法,面对复杂函数时候,尤其是正余弦的复杂函数与其他函数相乘的时候,一定要注意这个方法。
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
大一高数函数极限知识点

大一高数函数极限知识点函数极限是高等数学中的重要概念之一,它是分析函数性质和求解各种数学问题的基础。
在大一高数课程中,函数极限是必修内容,下面将介绍几个常见的函数极限知识点。
一、基本极限公式在求解函数极限的过程中,常用的基本极限公式有以下几个:1. 当n趋向于无穷大时,$\lim_{n \to \infty}\frac{1}{n^p} = 0$,其中p是大于0的实数。
2. 当x趋向于无穷大时,$\lim_{x \to \infty}\frac{1}{x^p} = 0$,其中p是大于0的实数。
3. $\lim_{x \to 0}\frac{sinx}{x} = 1$。
4. $\lim_{x \to \infty}(1+\frac{1}{x})^x = e$,其中e是自然对数的底数。
这些基本极限公式在求解各种函数极限时非常常用,熟练掌握它们可以简化计算过程。
二、函数极限的性质函数极限具有一些重要的性质,下面介绍两个常用的性质。
1. 函数极限的唯一性:如果$\lim_{x \to x_0}f(x) = A$,且$\lim_{x \to x_0}f(x) = B$,那么A=B。
即函数在某一点的极限存在时,它的极限值是唯一确定的。
2. 函数极限的四则运算法则:设$\lim_{x \to x_0}f(x) = A$,$\lim_{x \to x_0}g(x) = B$,其中A、B都存在,则有以下四则运算法则:(1)$\lim_{x \to x_0}[f(x) \pm g(x)] = A \pm B$(2)$\lim_{x \to x_0}[f(x) \cdot g(x)] = A \cdot B$(3)$\lim_{x \to x_0}\frac{f(x)}{g(x)} = \frac{A}{B}$,其中B不等于0。
这些性质在计算复杂函数极限时非常有用,可以简化计算步骤。
三、函数极限的求解方法对于一些特殊函数,我们需要使用一些特殊的求解方法来计算其极限。
2-4高数极限运算法则

[ f ( x) g( x)] ( A B) 0. (1)成立.
[ f ( x) g( x)] ( A B) ( A )(B ) AB
例5
求
lim
x
2x3 7x3
3x2 4x2
5 1
.
(型)
解 x 时, 分子,分母的极限都是无穷大.
先用x 3去除分子分母 , 分出无穷小, 再求极限.
lim
x
2x3 7x3
3x2 4x2
ห้องสมุดไป่ตู้ 1
2 lim
x
7
3 x 4 x
5 x3 1 x3
2. 7
二、求极限方法举例
例1
求
lim
x2
x2
x3 1 3x
5
.
解 lim( x 2 3x 5) lim x 2 lim 3x lim 5
x2
x2
x2
x2
(lim x)2 3 lim x lim 5
x2
x2
x2
22 3 2 5 3 0,
令 u (x) a lim ( x)
x x0
lim f (u)
ua
例8
求
lim
xa
3
3
x3 a xa
.
解: 原式 lim
x a3 (x a)2
xa x a (3 x2 3 ax 3 a2 )
高数大一函数的极限知识点

高数大一函数的极限知识点一、极限的定义在数学中,极限是指函数在某一点上逼近特定值的过程。
对于大一学生来说,了解极限的定义对于后续的数学学习至关重要。
根据极限的定义,给定一个函数和一个点,当该函数的自变量无限接近这个点时,函数值趋近于某个确定的值,这个确定的值就是函数在该点的极限。
二、常用的极限运算法则在计算函数极限时,我们可以使用一些常用的运算法则,这些法则可以简化计算过程,提高效率。
1. 基本极限法则:- 常数函数的极限:若k为常数,则lim(f(x)) = k (x-->a)- 恒等函数的极限:lim(x) = a (x-->a)- 幂函数的极限:lim(x^n) = a^n (x-->a),其中n为正整数- 指数函数的极限:lim(a^x) = a^a (x-->a),其中a为正实数2. 四则运算法则:- 和差的极限:lim(f(x)±g(x)) = lim(f(x)) ± lim(g(x)) (x-->a)- 积的极限:lim(f(x)g(x)) = lim(f(x)) · lim(g(x)) (x-->a)- 商的极限:lim(f(x)/g(x)) = lim(f(x))/lim(g(x)) (x-->a),其中g(x) ≠ 03. 复合函数的极限法则:- 复合函数的极限:lim(f(g(x))) = lim(f(u)) (u-->lim(g(x)))三、函数的一致性对于大一函数的极限,函数的一致性也是需要注意的重要概念。
一致性是指当自变量趋于某个特定值时,函数的极限是唯一确定的。
具体来说,对于一个函数f(x),当x趋于a时,如果极限值是L,在邻域内的所有点都有f(x)趋于L,那么函数f(x)在点a处是连续的。
四、无穷极限除了有限极限之外,函数还可能存在无穷极限。
无穷极限包括正无穷大、负无穷大以及无穷小。
当函数在某一点的极限是正无穷大时,我们可以表示为lim(f(x)) = +∞ (x-->a);当极限是负无穷大时,我们可以表示为lim(f(x)) = -∞ (x-->a);当极限是无穷小时,我们可以表示为lim(f(x)) = 0 (x-->a)。
高数中求极限的16种方法

千里之行,始于足下。
高数中求极限的16种方法在高等数学中,求极限是一个格外重要的技巧和考点。
为了解决各种极限问题,数学家们总结出了很多方法和技巧。
以下是高数中求极限的16种方法:1.代换法:将极限中的变量进行代换,使其变成简洁计算的形式。
2.夹逼准则:当函数处于两个已知函数之间时,可以通过比较已知函数的极限来确定未知函数的极限。
3.无穷小量比较法:比较两个函数的无穷小量的大小,以确定它们的极限。
4.利用函数性质:利用函数的对称性、奇偶性等性质来计算极限。
5.利用恒等变形:将极限式子进行恒等变形,以将其转化为简洁计算的形式。
6.利用泰勒开放:将函数开放成无穷级数的形式,以求出极限。
7.利用洛必达法则:对于某些不定型的极限,可以利用洛必达法则将其转化为可计算的形式。
8.利用级数或累次求和:将极限式子转化为级数或累次求和的形式,以求出极限。
9.利用积分计算:将极限式子进行积分计算,以求出极限。
10.利用微分方程:将极限问题转化为求解微分方程的问题,以求出极限。
第1页/共2页锲而不舍,金石可镂。
11.利用积素等价:将极限式子进行积素等价,以求出极限。
12.利用无穷增减变异法:通过凑出一个等价变形,将极限问题转化为比较某些函数值的大小。
13.利用不等式:通过找到合适的不等式,对函数进行估量,以求得极限。
14.利用递推公式:对于递归定义的函数,可以通过递推公式求出极限。
15.利用导数性质:利用函数的导数性质,对极限进行计算。
16.利用对数和指数函数的性质:利用对数和指数函数的特性,求出极限。
除了上述方法外,还有很多其他的方法和技巧,可以依据具体问题来选择使用。
这些方法和技巧的使用需要机敏把握,通过大量的练习和思考,可以在求解极限问题中得到娴熟应用。
高数中求极限的16种方法

高数中求极限的16种方法——好东西首先对极限的总结如下:极限的保号性很重要,就是说在一定区间内,函数的正负与极限一致一、极限分为一般极限,还有数列极限,(区别在于数列极限发散,是一般极限的一种)二、求极限的方法如下:1 .等价无穷小的转化,(一般只能在乘除时候使用,在加减时候用必须证明拆分后极限依然存在) e的X次方-1 或者(1+x)的a次方-1等价于Ax 等等。
全部熟记(x趋近无穷的时候还原成无穷小)2.罗比达法则(大题目有时候会有暗示,要你使用这个方法)首先他的使用有严格的使用前提,必须是 X趋近而不是N趋近!所以面对数列极限时候先要转化成求x趋近情况下的极限,当然n趋近是x趋近的一种情况而已,是必要条件还有一点数列极限的n当然是趋近于正无穷的不可能是负无穷!必须是函数的导数要存在!必须是 0比0 无穷大比无穷大!当然还要注意分母不能为0注意:罗比达法则分为3种情况0比0,无穷比无穷的时候直接用;0乘以无穷,无穷减去无穷(应为无穷大于无穷小成倒数的关系)所以无穷大都写成了无穷小的倒数形式了。
通项之后这样就能变成1中的形式了;0的0次方,1的无穷次方,无穷的0次方;对于(指数幂数)方程,方法主要是取指数还取对数的方法,这样就能把幂上的函数移下来了,就是写成0与无穷的形式了,(这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候LNX趋近于0)3.泰勒公式(含有e的x次方的时候,尤其是含有正余弦的加减的时候要特别注意!!!!)E的x展开,sina 展开,cos 展开,ln1+x展开,对题目简化有很好帮助4.面对无穷大比上无穷大形式的解决办法取大头原则,最大项除分子分母!!!!!!!!!!!5.无穷小于有界函数的处理办法面对复杂函数时候,尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。
面对非常复杂的函数可能只需要知道它的范围结果就出来了!!!6.夹逼定理(主要对付数列极限!)这个主要是看见极限中的函数是方程相除的形式,放缩和扩大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章极限计算方法总结
一、极限定义、运算法则和一些结果 1.定义:
数列极限、函数极限, 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证明,例如:0)1(1
lim
2=+-∞→n n ;5)13(lim 2=-→x x ;1,0lim <=∞
→q q n n 当等。
定义证明按着总结的四个步骤来,缺一不可!(2)在后面求极限时,(1)中提到的简单极限
作为已知结果直接运用,而不需再用极限严格定义证明。
2.极限运算法则
定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在, 且(1)B A x g x f ±=±)]()(lim[(2)B A x g x f ⋅=⋅)()(lim
(3))0(,)()(lim
成立此时需≠=B B
A
x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。
3.两个重要极限
(1)
1sin lim
0=→x
x x (2) e x x
x =+→1
0)1(lim ; e x x
x =+∞→)11(lim
说明:(1)不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式。
(2)一定注意两个重要极限成立的条件。
例如:
133sin lim 0=→x
x x ,e x x x =--→210)21(lim ,e x x
x =+∞→3)31(lim ;等等。
4.等价无穷小
定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。
定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有:
x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x
e 。
说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。
定理4 如果函数
)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且)(x f ~)(1x f ,
)(x g ~)(1x g ,则当)()(lim
110
x g x f x x →存在时,)()
(lim 0x g x f x x →也存在且等于)()(lim 1
10x g x f x x →。
5.连续性
定理5 一切连续函数在其定义去间内的点处都连续,即如果0x 是函数)(x f 的定义去间内
的一点,则有)()(lim
00
x f x f x x =→ 。
求极限的一个方法。
6.极限存在准则
定理6(准则1) 单调有界数列必有极限。
定理7(准则2) 已知}{,}{,}{n n n z y x 为三个数列,且满足:
(1)
),3,2,1(,Λ=≤≤n z x y n n n (2) a y n n =∞
→lim ,a z n n =∞
→lim
则极限∞
→n n x lim
一定存在,且极限值也是a ,即a x n n =∞
→lim 。
二、求极限方法举例
1. 用初等方法变形后,再利用极限运算法则求极限
例1
1
2
13lim
1
--+→x x x
解:原式=4
3)213)(1(33lim )213)(1(2)13(lim 1221=++--=++--+→→x x x x x x x x 。
注:本题也可以用洛比达法则。
例2
)12(lim --+∞
→n n n n
解:原式=2
3
11213lim
1
2)]1()2[(lim
=
-++
=
-++--+∞
→∞
→n
n n n n n n n n
n 分子分母同除以。
例3 n
n n
n n 323)1(lim ++-∞→
解:原式
11)3
2(1)31
(lim 3
=++-=
∞→n
n n n
上下同除以 。
2. 利用函数的连续性(定理6)求极限 例4
x
x e
x 122
lim →
解:因为20=x 是函数x
e
x x f 12)(=的一个连续点,
所以 原式=e e 42
2
12
= 。
3. 利用两个重要极限求极限 例5 2
03cos 1lim
x x
x -→
解:原式=61
)
2
(122sin 2lim 32sin 2lim
22
02
2
=⋅=→→x x
x x x x 。
注:本题也可以用洛比达法则(第三章) 例6
x
x x 20
)sin 31(lim -→
解:原式=6sin 6sin 31
sin 6sin 310
]
)
sin 31[(lim )
sin 31(lim ---→-⋅
-→=-=-e x x x
x x
x x
x
x x 。
例7
n
n n n )1
2(
lim +-∞
→ 解:原式=31
331
1
331])1
31[(lim )1
31(lim -+--+∞→+-⋅
-+∞→=+-+=+-+e n n n n
n n n n
n n 。
4. 利用定理2求极限 例8
x
x x 1
sin
lim 20
→ 解:原式=0 (定理2的结果)。
5. 利用等价无穷小代换(定理4)求极限
例9 )
arctan()
31ln(lim 20x x x x +→
解:)31ln(0x x +→时,Θ
~x 3,)arctan(2x ~2x ,∴ 原式=33lim
2
=⋅→x x
x x 。
例10 x
x e e x
x x sin lim sin 0--→
解:原式=1sin )
sin (lim sin )1(lim sin 0sin sin 0=--=--→-→x
x x x e x x e e x x x x x x 。
注:下面的解法是错误的:
原式=1sin sin lim sin )1()1(lim
0sin 0=--=----→→x x x x x
x e e x x x x 。
正如下面例题解法错误一样:
0lim sin tan lim
3030
=-=-→→x
x
x x x x x x 。
例11
x
x x x sin )
1
sin tan(lim 20→
解:等价与是无穷小,时,当x
x x x x x x 1
sin )1sin tan(1sin
0222
∴→Θ, 所以, 原式=01sin lim 1
sin
lim
020
==→→x
x x x x x x 。
(最后一步用到定理2)
5. 利用极限存在准则求极限
例20 已知),2,1(,2,211
Λ=+==+n x x x n n ,求n n x ∞
→lim
解:易证:数列}{n x 单调递增,且有界(0<n x <2),由准则1极限n n x ∞
→lim 存在,
设 a x n n =∞
→lim 。
对已知的递推公式 n
n x x +=+21两边求极限,得:
a
a +=2,解得:2=a
或1-=a (不合题意,舍去)
所以
2lim =∞
→n n x 。
例21 )12111(lim 2
2
2
n
n n n n ++
+++
+∞
→Λ
解: 易见:
1
12
1
1
1
2
2
2
2
2+<
+++++
+<
+n n n
n n n n
n n Λ
因为
1lim
2
=+∞
→n
n n n ,11
lim
2
=+∞→n n n
所以由准则2得:1)12
1
1
1
(
lim 2
2
2
=++
+++
+∞
→n
n n n n Λ 。
上面对求第一章极限的常用方法进行了比较全面的总结,由此可以看出,求极限方法灵活多样,而且许多题目不只用到一种方法,因此,要想熟练掌握各种方法,必须多做练习,在练习中体会。
另外,求极限还有其它一些方法,如用洛必达、定积分求极限等,后面再作介绍。