湖北省武汉华中师范大学第一附属中学2014-2015学年高一下学期期中考试数学试题

合集下载

华中师范大学第一附属中学2025届高一化学第一学期期中统考试题含解析

华中师范大学第一附属中学2025届高一化学第一学期期中统考试题含解析

华中师范大学第一附属中学2025届高一化学第一学期期中统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。

回答非选择题时,将答案写在答题卡上,写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题(共包括22个小题。

每小题均只有一个符合题意的选项)1、有关实验的描述,符合事实的是A.金属钠暴露在空气里,表面变暗,生成白色的氧化钠固体B.用坩埚钳夹住打磨过的镁带,在酒精灯上点燃,发出耀眼的白光,放出大量的热,产生黄色粉末C.用坩埚钳夹住铝箔在酒精灯上点燃,发出耀眼的白光,放出大量的热D.用坩埚钳夹住一小块铝箔,在酒精灯上加热至熔化,轻轻晃动,有液态的铝滴落下来2、下列各组离子反应可用H++OH-=H2O表示的是()A.氢氧化钡和硫酸B.氢氧化铁和盐酸C.醋酸和氢氧化钠D.硫酸氢钠和氢氧化钠3、如图所示,广口瓶中盛有气体X,胶头滴管中盛有液体Y,若挤压胶头滴管使液体滴入瓶中,振荡,一段时间后可见小球a膨胀鼓起。

下表中的各组物质不出现上述现象的是( )A.X为一氧化碳、Y为氢氧化钙溶液B.X为二氧化碳、Y为氢氧化钠溶液C.X为氯化氢、Y为氢氧化钡溶液D.X为二氧化硫、Y为氢氧化钠溶液4、在3Cu + 8HNO3(稀) ==3Cu(NO3)2+ 2NO↑+ 4H2O的反应中,氧化剂与还原剂的物质的量之比是A.1:1B.3:8C.2:3D.8:35、下列说法正确的是A.通常状况,1 mol任何气体的体积都约是22.4 LB.H2的摩尔质量是2 g,1mol H2所占的体积是22.4 LC.在标准状况下,1 mol任何物质所占的体积都约是22.4 LD.在标准状况下,1 mol任何气体所占的体积都约是22.4 L6、含H2和Cl2的混合气体共amol,经光照后,所得气体恰好使bmol NaOH 完全转化为盐。

湖北省华中师范大学第一附属中学高一上学期期中考试数学试题 Word版含答案

湖北省华中师范大学第一附属中学高一上学期期中考试数学试题 Word版含答案

华中师大一附中2019-2020学年度上学期高一期中检测数学试题时限:120分钟 满分:150分 Ⅰ卷(共16小题,满分80分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选中,只有一项是符合题目要求的,请将正确答案填涂在答题纸上的相应位置.) 1. 函数()lg 1x f x +=的定义域为( )A . ()1,0-B . ()0,1C . ()1,-+∞D . ()0,+∞2. 与函数24log 2x y -=为同一函数的是( )A . y x =B . 1y x=C . 1y x=D . 1y x=-3. 已知集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B =,则a 的值为( )A . 0B . 1C . 2D . 44. 已知实数2log 3a =,213b ⎛⎫= ⎪⎝⎭,131log 10c =,则它们的大小关系为( )A . a c b >>B . c a b >>C . a b c >>D . b c a >>5. 拟定从甲地到乙地通话m 分钟的电话费(单位:元)由()()1.060.51f m m =⨯⨯+给出,其中0m >,m 是大于或等于m 的最小整数(如33=,3.74=,3.14=).则从甲地到乙地通话时间为5.5分钟的话费为( )A . 3.71B . 3.97C . 4.24D . 4.776. 函数()12f x ⎛= ⎪⎝⎭的单调递增区间为( )A . (],2-∞-B . 12,2⎡⎤--⎢⎥⎣⎦C . 1,12⎡⎤-⎢⎥⎣⎦D . 1,2⎡⎫-+∞⎪⎢⎣⎭7. 已知函数()()13,ln ,a x a x ef x x x e-+<⎧⎪=⎨≥⎪⎩(e 为自然对数的底数)的值域为R ,则实数a 的取值范围是( )A . ,13e e ⎡⎤⎢⎥-⎣⎦B . ,13ee ⎡⎫⎪⎢-⎣⎭C . 1,13e e -⎡⎤⎢⎥-⎣⎦ D . 1,13ee -⎡⎫⎪⎢-⎣⎭8. 给出下列四个说法:①已知函数()f x 是定义在R 上的偶函数,当0x ≤时,()()1f x x x =+,则当0x >时,()2f x x x =-;②若函数()1y f x =-的定义域为()1,2,则函数()2y f x =定义域为10,2⎛⎫ ⎪⎝⎭;③若3log 15a<,则a 的取值范围为3,15⎛⎫ ⎪⎝⎭; ④函数()log 322a y x =-+(0a >且1a ≠)的图象必过定点()1,0. 其中正确说法的个数是( )A . 1B . 2C . 3D . 49. 函数()()23ln f x x x =-+的图象大致为( )A .B .C .D .10. 若对任意的,x y R ∈,有()()()3f x f y f x y +-+=,函数()()21xg x f x x =++,则()()22g g +-的值为( )A . 0B . 4C . 6D . 911. 已知定义在R 上的函数()f x ,()g x ,其中函数()f x 满足()()f x f x -=且在[)0,+∞上单调递减,函数()g x 满足()()11g x g x -=+且在()1,+∞上单调递减,设函数()()()()()12F x f x g x f x g x ⎡⎤=++-⎣⎦,则对任意x R ∈,均有( ) A . ()()11F x F x -≥+ B . ()()11F x F x -≤+ C . ()()2211F xF x -≥+D . ()()2211F xF x -≤+12. 设函数()22,0,0x x x f x x x ⎧+<⎪=⎨-≥⎪⎩,()g x 为定义在R 上的奇函数,且当0x <时,()225g x x x =--,若()()2f g a ≤,则实数a 的取值范围是( )A . (],10,221⎡⎤-∞--⎣⎦B . 1⎡⎤-⎣⎦C . (](,10,221⎤-∞--⎦D. 11⎡⎤--⎣⎦二、填空题(本大题共4小题,每小题5分,共20分.请把结果填在答题纸上的相应位置.)13. 12log 311lg 26100+=______. 14. 已知幂函数()()()22321n n f x m xn Z -++=-∈为偶函数,且满足()()35f f <,则m n +=______.15. 已知0a >,且1a ≠,若函数()()2l n 23x x f x a-+=有最大值,则关于x 的不等式()2log 570a x x -+>的解集为______.16. 已知0a >且1a ≠,b 为实数,函数()22,01,0x x x x f x a x -⎧-+≥⎪=⎨-<⎪⎩,若关于x 的不等式()()220f x af x b +-<⎡⎤⎣⎦恰有1个整数解,则实数a 的取值范围为______. Ⅱ卷(共6小题,满分70分)三、解答题(本大题共6小题,共70分,解答应写出文字说明过程或演算步骤,请将答案写在答题纸上的相应位置.)17. 已知全集U R =,集合5|02x A x x -⎧⎫=≤⎨⎬-⎩⎭,(){}22|210B x x ax a =-+-<. (Ⅰ)当2a =时,求()()U U C A C B ;(Ⅱ)若AB A =,求实数a 的取值范围.18. 已知()311log 1xf x x-=++.(1)求1120192019f f ⎛⎫⎛⎫+-⎪ ⎪⎝⎭⎝⎭的值;(2)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,求函数()y f x =的最大值. 19. 某工厂生产一种仪器的元件,由于受生产能力和技术水平等因素的限制,会产生一些次品.根据经验知道,次品数P (万件)与日产量x (万件)之间满足函数关系:2,146325,412x x P x x x ⎧≤<⎪⎪=⎨⎪+-≥⎪⎩.已知每生产1万件合格元件可盈利20万元,但每生产1万件次品将亏损10万元.(利润=盈利额-亏损额)(1)试将该工厂每天生产这种元件所获得的利润T (万元)表示为日产量x (万件)的函数; (2)当工厂将该元件的日产量x (万件)定为多少时获得的日利润最大,最大日利润为多少万元?20. 对于函数()f x ,若在定义域D 内存在实数0x 满足()()002f x f x -=-,则称函数()y f x =为“类对称函数”.(1)判断函数()221g x x x =-+是否为“类对称函数”?若是,求出所有满足条件的0x 的值;若不是,请说明理由;(2)若函数()3xh x t =+为定义在[)1,3-上的“类对称函数”,求实数t 的取值范围.21. 定义在()(),00,-∞+∞上的函数()f x 满足:①对任意()(),,00,x y ∈-∞+∞恒有()()()f xy f x f y =+;②当1x >时,()0f x <,且()21f =-.(1)判断()f x 的奇偶性和单调性,并加以证明; (2)求关于x 的不等式()()3240f x f x -++≥的解集. 22. 已知函数()()2f x x mx m R =-∈,()lng x x =-.(1)若存在实数x ,使得()()22xxf f -=-成立,试求m 的最小值;(2)若对任意的[]12,1,1x x ∈-,都有()()122f x f x -≤恒成立,试求m 的取值范围; (3)用{}min ,m n 表示m ,n 中的最小者,设函数()()()()1min ,04h x f x g x x ⎧⎫=+>⎨⎬⎩⎭,讨论关于x 的方程()0h x =的实数解的个数.。

湖北省武汉市华中师范大学第一附属中学2022-2023学年高一下学期期中数学试题

湖北省武汉市华中师范大学第一附属中学2022-2023学年高一下学期期中数学试题

西方向上的笔直公路自东向西以 30 3km/h 的速度前进,6 分钟后到达 N 点.在 M 点时
测得 A 点位于北偏西 45° 方向上,B 点位于北偏西15° 方向上;在 N 点时测得 A 点位于
北偏东15° 方向上,B 点位于北偏东 45° 方向上,且在 N 点时观测 A 的仰角的正切值为
2 .设 A 点在地表水平面上的正投影为 A¢ ,B 点在地表水平面上的正投影为 B¢ , A¢ , 15
( ) D.若△ABC 的面积 S=
3 4
b2 + c2 - a2
,则
A
=
π 3
11.一对不共线的向量
ar

r b
的夹角为
θ,定义
ar
´
r b
为一个向量,其模长
ar
´
r b
=
ar
×
r b
sin q
,其方向同时与向量 ar
r ,b
垂直(如图
1
所示).在平行六面体
OACB - O¢A¢C¢B¢ 中(如图 2 所示),下列结论正确的是( )
sinq
=2
3sinq cosq ,

2 (cosq - sinq )(cosq + sinq ) = 2
2 2
(
cosq
-
sin
q
)
3sinq cosq ,
∴ cosq + sinq = 3sinq cosq ,
两边同时平方,得 cos2 q + 2sinq cosq + sin2 q = 3(sinq cosq )2 ,

uuur OC
表示
uuuur OM

湖北省华中师范大学第一附属中学2020~2021学年第一学期期中检测高一数学试题及答案

湖北省华中师范大学第一附属中学2020~2021学年第一学期期中检测高一数学试题及答案

华中师大一附中2020~2021学年度上学期期中检测高一年级数学试题试卷总分150分 考试时间120分钟一、单选题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.已知A ={3-,0,1 },B ={4-,3-,1},则A ∪B 的真子集的个数为( )A .3B .7C .15D .312.钱大姐常说“便宜没好货”,她这句话中,“不便宜”是“好货”的( )A .充分条件B .必要条件C .充要条件D .既不充分也不必要条件3.已知函数()f x 的定义域为(1,1)-,函数()(21)g x f x =-,则函数()g x 的定义域为 ( )A .(1,1)-B .(0, 1)C .(3,1)-D .((3),(1))f f - 4.若正实数a ,b 满足1a b +=,则12a b+的最小值为( )A.B .6C .D .3+5.函数(f x( )A .(,2]-∞B .[2,)+∞C .[0,2]D .[2,4]6.若关于x 的不等式2|1||2|1()x x a a a -+-≤++∈R 的解集为空集,则实数a 的取值范围是( ) A .10a -<<B .01a <<C .12a <<D .1a <-7.已知函数()f x 是定义在R 上的偶函数,且在(0,)+∞上单调递减,(2)0f -=,则不等式()0xf x > 的解集为( )A .(,2)(0,2)-∞-B .(,2)(2,)-∞-+∞C .(2,0)(0,2)-D .(2,0)(2,)-+∞8.已知函数2()2+1,[0,2]f x x x x =-+∈,函数()1,[1,1]g x ax x =-∈-,对于任意1[0,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( )A .(,3]-∞-B .[3,)+∞C .(,3][3,)-∞-+∞D .(,3)(3,)-∞-+∞二、多选题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有若干个选项符合题目要求,全部选对的得5分,选对但不全的得3分,有选错的得0分. 9.已知a ,b ,c 为互不相等的正数,且222a c bc +=,则下列关系中可能成立的是 ( )A .a b c >>B .c b a >>C .b a c >>D .a c b >> 10.下列各结论中正确的是( ) A .“0ab >”是“0ab>”的充要条件. B.函数y =2.C .命题“1x ∀>,20x x ->”的否定是“01x ∃≤,200x x -≤” . D .若函数21y x ax =-+有负值,则实数a 的取值范围是2a >或2a <-.11.定义域为R 的函数()f x 满足()()()f x y f x f y +=+,且当0x >时,()0f x >.以下结论正确的是( )A .()f x 为奇函数B .()f x 为偶函数C .()f x 为增函数D .()f x 为减函数12.设定义域为R 的函数1, 1|1|()1, 1x x f x x ⎧≠-⎪+=⎨⎪=-⎩,若关于x 的方程2[()]()0f x af x b ++=有且仅有三个不同的实数解x 1,x 2,x 3,且x 1 < x 2 < x 3.下列说法正确的是 ( )A .2221235x x x ++=B .10a b ++=C .1322x x x +>D .132x x +=-三、填空题(本大题共4小题,每小题5分,共20分) 13.已知集合{2,1}A =-,{|2}B x ax ==,若AB B =,则实数a 的取值集合为____________.14.关于x 的一元二次方程2210x kx k ++-=在区间(1,2)-内、外各有一个实数根,则实数k 的取值范围是___________.15.两次购买同一种物品,可以用两种不同的策略,第一种是不考虑物品价格的升降,每次购买这种物品的数量一定;第二种是不考虑物品价格的升降,每次购买这种物品所花的钱数一定.则第______种购物方式比较经济.16.已知函数2()=x ax a f x x++在(]0,1上单调递减,则实数a 的取值范围为____________.四、解答题(本大题共6小题,共70分) 17.(本小题满分10分)已知集合26{||1|2}{|1}4x A x x B x x -=-≤=<-,,定义{|}A B x x A x B -=∈∉且. (1)求A B -;(2)求B A -.18.(本题满分12分)已知非空集合()(){}2|312310A x x a x a =-++-<,集合(){}223|220B x x a a x a a =-++++<.命题p :x A ∈,命题q :x B ∈,若p 是q 的充分条件,求实数a 的取值范围.19.(本题满分12分)已知函数2()1mx nf x x +=+是定义在[1,1]-上的奇函数,且(1)1f = (1)求m ,n 的值;判断函数()f x 的单调性并用定义加以证明; (2)求使2(1)(1)0f a f a -+-<成立的实数a 的取值范围.20.(本题满分12分)已知函数2()(1)()f x x a x a =-++∈R .(1)若对于任意[1,2]x ∈,恒有2()2f x x ≥成立,求实数a 的取值范围; (2)若2a ≥,求函数()f x 在区间[0, 2]上的最大值()g a .21.(本题满分12分)华师一附中为了迎接建校70周年校庆,决定在学校艺术中心利用一侧原有墙体,建造一间墙高为3米,底面积为24平方米,且背面靠墙的长方体形状的荣誉室.由于荣誉室的后背靠墙,无需建造费用,甲工程队给出的报价为:荣誉室前面新建墙体的报价为每平方米400元,左右两面新建墙体报价为每平方米300元,屋顶和地面以及其他报价共计14400元.设荣誉室的左右两面墙的长度均为x 米(36)x ≤≤.(1)当左右两面墙的长度为多少时,甲工程队的整体报价最低?并求最低报价; (2)现有乙工程队也要参与此荣誉室的建造竞标,其给出的整体报价为1800(1)a x x+元(a>0),若无论左右两面墙的长度为多少米,乙工程队都能竞标成功(乙工程队的整体报价比甲工程队的整体报价更低),试求实数a 的取值范围.22.(本题满分12分)若函数()y f x =自变量的取值区间为[a , b ]时,函数值的取值区间恰为22[,]b a,就称区间[a , b ]为()y f x =的一个“和谐区间”.已知函数()g x 是定义在R 上的奇函数,当(0,)x ∈+∞时,()3g x x =-+.(1)求()g x 的解析式;(2)求函数()g x 在(0,)+∞内的“和谐区间”;(3)若以函数()g x 在定义域内所有“和谐区间”上的图像作为函数()y h x =的图像,是否存在实数m ,使集合2{(,)|()}{(,)|}x y y h x x y y x m ==+恰含有2个元素.若存在,求出实数m 的取值集合;若不存在,说明理由.高一年级数学试题参考答案一、单选题1.C 2.B 3.B 4.D 5.D 6.A 7.A 8.C 二、多选题9.BC 10.AD 11. AC 12.ABD 三、填空题13.{-1,0,2} 14.3,04⎛⎤- ⎥⎝⎦15.二 16.12a ≤-或1a ≥四、解答题17.解:{||1|2}{|13}A x x x x =-≤=-≤≤, (2)分26{|1}{|24}4x B x x x x -=<=<<- (4)分(1){|12}A B x x -=-≤≤ (7)分(2){|34}B A x x -=<< (10)分18.解:()(){}|2310A x x x a =---<⎡⎤⎣⎦,()(){}2|20B x x a x a ⎡⎤=--+<⎣⎦.∵22172024a a a ⎛⎫+-=-+> ⎪⎝⎭,∴22a a +>.∴{}2|2B x a x a =<<+. (2)分∵p 是q 的充分条件,∴A B ⊆. (3)分① 当1a =时,312a -=,A =∅,不符合题意; (5)分② 当1a >时,312a ->,{}|231A x x a =<<-,要使A B ⊆,则212312a a a a ⎧>⎪≤⎨⎪-≤+⎩ ∴12a <≤. (8)分③ 当1a <时,312a -<,{}|312A x a x =-<<,要使A B ⊆,则213122a a a a ⎧<⎪≤-⎨⎪≤+⎩ ∴112a ≤<. (11)分综上所述,实数a 的取值范围是1[,1)(1,2]2. (12)分19.(1)解法一:因为函数()f x 是定义在[-1,1]上的奇函数,则()()0011f f ⎧=⎪⎨=⎪⎩,得012n m n =⎧⎪⎨+=⎪⎩,解得20m n =⎧⎨=⎩, (2)分经检验2m =,0n =时,()221xf x x =+是定义在[1,1]-上的奇函数. (3)分法二:()f x 是定义在[1,1]-上的奇函数,则()()f x f x -=-,即2211mx n mx nx x -+--=++,则0n =,所以()21mxf x x =+,又因为()11f =,得2m =,所以2m =,0n =. ………………3分设12,[1,1]x x ∀∈-且12x x <,则()()22121221211212222222121212222(1)2(1)2()(1)11(1)(1)(1)(1)x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++1211x x -≤<≤ 222112120,10,(1)(1)0x x x x x x ∴->-<++>()()120f x f x ∴-< ()()12f x f x ∴< ()f x ∴在[1,1]-上是增函数 (6)分(2)由(1)知()221xf x x =+,()f x 在[1,1]-上是增函数, 又因为()f x 是定义在[]1,1-上的奇函数,由()()2110f a f a -+-<,得()()211f a f a -<-, (7)分2211111111a a a a -≤-≤⎧⎪∴-≤-≤⎨⎪-<-⎩, (10)分即2020221a a a ≤≤⎧⎪≤≤⎨⎪-<<⎩,解得01a ≤<. 故实数a 的取值范围是[0,1). (12)分20.(1)解法一:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分构造函数()23(1)g x x a x =-+,其中[]1,2x ∈,则()max0g x ≤,即()()1020g g ⎧≤⎪⎨≤⎪⎩,…… 4分 即3(1)0122(1)0a a -+≤⎧⎨-+≤⎩,解得5a ≥,因此,实数a 的取值范围是[)5,+∞.………………6分解法二:对任意的[]1,2x ∈,恒有()22f x x ≥,即22(1)2x a x x -++≥,整理得23(1)0x a x -+≤对任意的[]1,2x ∈恒成立, (2)分max 1(3)6a x ∴+≥= (5)分因此,实数a 的取值范围是[)5,+∞. (6)分(2)()()22211(1)24a a f x x a x x ++⎛⎫=-++=--+⎪⎝⎭. 2a ≥ 102a +∴> (7)分①当122a +<,即23a ≤<时,函数()y f x =在10,2a +⎡⎤⎢⎥⎣⎦上单调递增, 在1,22a +⎡⎤⎢⎥⎣⎦上单调递减,此时()()21124a a g a f ++⎛⎫== ⎪⎝⎭; (9)分②当122a +≥,即3a ≥时,()y f x =在[0, 2]上单调递增,此时()()222g a f a ==-.………………11分 综上所述,2(1),23()422,3a a g a a a ⎧+≤<⎪=⎨⎪-≥⎩. (12)分21.(1)设甲工程队的总造价为y 元, 则72163006400144001800()14400(36)y x x x x x =⨯+⨯+=++≤≤, ………………2分161800()14400180021440028800x x ++≥⨯=, ………………4分 当且仅当16x x =,即x = 4时等号成立. ………………5分故当左右两侧墙的长度为4米时,甲工程队的报价最低,最低报价为28800元. ……6分(2)由题意可得161800(1)1800()14400a x x x x+++>对任意的[3,6]x ∈恒成立. 故2(4)(1)x a x x x ++>,从而2(4)1x a x +>+恒成立, ………………8分令1x t +=,22(4)(3)961x t t x t t++==+++,[4,7]t ∈. 又96y t t =++在[4,7]t ∈为增函数,故min 494y =. ………………11分所以a 的取值范围为49(0,)4. (12)分22.(1)因为()g x 为R 上的奇函数,∴(0)0g =又当(0,)x ∈+∞时,()3g x x =-+所以,当(,0)x ∈-∞时,()()(3)3g x g x x x =--=-+=--;3,0()0,03,0x x g x x x x --<⎧⎪∴==⎨⎪-+>⎩ (3)分 (2)设0a b <<,∵()g x 在(0,)+∞上递单调递减,2()32()3g b b b g a a a⎧==-+⎪⎪∴⎨⎪==-+⎪⎩,即,a b 是方程23x x =-+的两个不等正根. ∵0a b << ∴12a b =⎧⎨=⎩ ∴()g x 在(0,)+∞内的“和谐区间”为[1,2]. ………………6分 (3)设[a , b ]为()g x 的一个“和谐区间”,则22a b b a <⎧⎪⎨<⎪⎩,∴a ,b 同号. 当0a b <<时,同理可求()g x 在(,0)-∞内的“和谐区间”为[2,1]--.[1,2]3,()[2,1]3,h x x x x x -+∈⎧⎨----∈∴=⎩ (8)分依题意,抛物线2y x m =+与函数()h x 的图象有两个交点时,一个交点在第一象限,一个交点在第三象限.因此,m 应当使方程23x m x +=-+在[1,2]内恰有一个实数根,并且使方程23x m x +=--,在[2,1]--内恰有一个实数.由方程23x m x +=-+,即230x x m ++-=在[1,2]内恰有一根,令2()3F x x x m =++-,则(1)10(2)30F m F m =-≤⎧⎨=+≥⎩,解得31m -≤≤;由方程23x m x +=--,即230x x m +++=在[2,1]--内恰有一根,令2()3G x x x m =+++,则(1)30(2)50G m G m -=+≤⎧⎨-=+≥⎩,解得53m -≤≤-. 综上可知,实数m 的取值集合为{3}-. ………………12分(用图象法解答也相应给分)。

湖北省武汉市华中师范大学第一附属中学2022-2023学年高一下学期5月月考数学试题

湖北省武汉市华中师范大学第一附属中学2022-2023学年高一下学期5月月考数学试题

湖北省武汉市华中师范大学第一附属中学2022-2023学年高一下学期5月月考数学试题学校:___________姓名:___________班级:___________考号:___________.64m B .74m C .52m .已知锐角ABCV ,23AB =,π3C =,则AB 边上的高的取值范围为(.(]0,3B .()0,3C .(]2,3.已知向量a r ,b r ,c r 满足1a =r ,2a b +=r r ,||3a c -=r r ,则16.在ABCV中,角A,B,C的对边分别为a,观察图形知,||||||12b c b c ×££r r r r ,当且仅当点,B C 都在直线OA 上,且,b c r r方向相反,即点B 与D 重合,点C 与E 重合时取等号,即||||12b c b c -×££r r r r ,解得12b c ׳-r r,当且仅当点,B C 都在直线OA 上,且,b c r r方向相同,若点B 与A 重合,点C 与E 重合时,4b c ×=r r,若点B 与D 重合,点C 与F 重合时,6b c ×=r r ,因此6b c ×£r r,所以b c ×r r 的取值范围是126b c -£×£r r .故选:A 8.D【分析】利用余弦定理和数量积定义化简得出三角形三边a ,b ,c 的关系,利用基本不等式求出cos C 的最小值,显然C 为锐角,要使tan C 取最大值,则cos C 取最小值,从而得出sin C 的最大值,即可求出tan C 的最大值.【详解】因为()()2AC AB BC CB CA AB ×-=×-uuu r uuu r uuu r uuu r uuu r uuu r ,所以22AC AB AC BC CB CA CB AB ×-×=×-×uuu r uuu r uuu r uuu r uuu r uuu r uuu r uuu r,。

湖北省武汉市华中师范大学第一附属中学2023-2024学年高一下学期期中生物试题含解析

湖北省武汉市华中师范大学第一附属中学2023-2024学年高一下学期期中生物试题含解析
【详解】A、细胞分裂间期,染色体复制的实质是DNA复制,DNA的数目增加一倍,染色体的数目不变,A错误;
B、赤道板是一个假想的结构,不是真实存在的,B错误;
C、因为没有纺锤丝的牵引,无丝分裂时核DNA可能出现随机分配,导致核DNA不会精确分配,C正确;
D、根尖分生区细胞有丝分裂临时装片制作流程是“解离→漂洗→染色→制片”,可能正确,而不具有必然性,原因在于检验假说是非常重要的,也是很复杂的,不能单靠一两个实验来说明问题。即利用“假说-演绎”法研究科学问题时,实验结果与预测结果可能会不吻合,D正确。
故选D。
5.中医文化博大精深,中医用针刺的方法可治疗因卵巢颗粒细胞凋亡引发的卵巢早衰(POF)。有学者对针刺治疗的科学原理进行了实验探索,实验过程中检测了部分细胞凋亡的关键基因表达情况,结果如图示。下列说法不正确的是( )
B.将乙、丙小桶摸取的小球进行组合表示非等位基因自由组合
C.选用乙、丙进行实验,既可模拟分离定律还可模拟自由组合定律
D 选用甲、乙进行模拟实验时,甲桶小球数量必须相等于乙小桶小球数量
【答案】D
【解析】
【分析】模拟性状分离的实验时,用两个小桶分别代表雌雄生殖器官,两小桶内的彩球分别代表雌雄配子,用不同彩球的随机结合,模拟生物在生殖过程中,雌雄配子的随机组合。
故选C。
2.很多研究者用其他植物重复孟德尔分离定律的实验,但有些实验现象却不符合孟德尔实验的分离比,原因不可能是( )
A.决定相关性状的基因位于性染色体上
B.选择观察的性状可能由细胞质基因控制
C.不同配子的受精能力或后代的存活率存在差异
D.选择 植物有时进行有性生殖,有时进行无性生殖
【答案】A
【解析】
【分析】基因分离定律的实质:在杂合子的细胞中,位于一对同源染色体上的等位基因,具有一定的独立性;在减数分裂形成配子的过程中。等位基因随同源染色体的分开而分离,分别进入两个不同的配子中,独立的遗传给后代。(1)F1个体形成的配子数目相等且生活力相同;(2)雌雄配子结合的机会相等;(3)F2不同基因型的个体存活率相同;(4)遗传因子显隐性关系为完全显性;(5)观察子代样本数目足够多。

【全国百强校】湖北省武汉市华中师范大学第一附属中学2017-2018学年高一下学期期中考试化学试题

【全国百强校】湖北省武汉市华中师范大学第一附属中学2017-2018学年高一下学期期中考试化学试题

【全国百强校】湖北省武汉市华中师范大学第一附属中学2017-2018学年高一下学期期中考试化学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.以下说法中不正确的是A.大气中SO2、NO2随雨水降下可能形成酸雨,酸雨的pH值小于5.6B.冬天烧煤时可在煤中加入生石灰减少二氧化硫的排放C.开发清洁能源汽车能减少和控制汽车尾气污染D.空气质量报告的指标中,有可吸入颗粒物、SO2、NO2、CO2等物质的指数2.中国科学技术名词审定委员会已确定第116号元素Lv的名称为鉝。

关于Lv的叙述错误的是()A.原子序数116B.中子数177C.最外层电子数6D.相对原子质量2933.下列各组物质的溶液,不用其他试剂通过互滴即可鉴别的是①NaOH、MgCl2、AlCl3、K2SO4①CuSO4、Na2CO3、Ba(OH)2、H2SO4①HNO3、NaAlO2或Na[Al(OH)4]、NaHSO4、NaCl①NaOH、(NH4)2CO3、BaCl2、MgSO4A.①①B.①①C.①①①D.①①①4.某装有红色溶液的试管,加热时溶液颜色逐渐变浅,则原溶液可能是①滴有酚酞的氨水溶液①滴有酚酞的氢氧化钠溶液①溶有SO2的品红溶液①滴有酚酞的饱和氢氧化钙溶液①酚酞溶液中滴加少量NaClO溶液A.①①①B.①①C.①①①D.①①5.X、Y、Z、W 有如图所示的转化关系,则X、W可能的组合有()①C、O2①Na、O2①Fe、HNO3①S、O2 ①N2、O2 ①H2S、O2 ①NH3、O2A.四项B.五项C.六项D.七项6.在化学反应中,存在“一种物质过量,另一种物质不能完全反应”的特殊情况。

下列反应中,属于这种特殊情况的是①过量的锌粒与少量18mol/L硫酸溶液反应①过量的氢气与少量氮气在催化剂作用下合成氨气①少量浓盐酸与过量的软锰矿反应(软锰矿主要成分是MnO2)①过量的铜粉与浓硝酸反应①过量的铜粉与少量浓硫酸反应①硫化氢与二氧化硫以体积比1:2混合A.①①①B.①①①C.①①①D.①①①7.下列反应的离子方程式表示正确的是A.用足量的氨水处理工业制硫酸的尾气:SO2+2NH3⋅H2O=2NH4++SO32-+H2OB.向Fe(NO3)2和KI混合溶液中加入少量稀盐酸:3Fe2++4H++NO3-=3Fe3++2H2O+NO↑C.漂白粉溶液中通入少量SO2:Ca2++2ClO-+SO2+H2O===CaSO3↓+2HClO D.NH4HCO3溶液中加足量的Ba(OH)2溶液:NH4++ HCO3-+2OH-===CO32-+ NH3⋅H2O +H2O8.如图所示装置中,干燥烧瓶内盛有某种气体,烧杯和滴管内盛放某种溶液。

湖北省武汉市华中师范大学第一附属中学2025届高三下学期期末考试数学试题(A卷)

湖北省武汉市华中师范大学第一附属中学2025届高三下学期期末考试数学试题(A卷)

湖北省武汉市华中师范大学第一附属中学2025届高三下学期期末考试数学试题(A 卷)注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。

用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。

将条形码粘贴在答题卡右上角"条形码粘贴处"。

2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。

答案不能答在试题卷上。

3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

4.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为3(21)-,则b c +=( ) A .5B .22C .4D .162.《普通高中数学课程标准(2017版)》提出了数学学科的六大核心素养.为了比较甲、乙两名高二学生的数学核心素养水平,现以六大素养为指标对二人进行了测验,根据测验结果绘制了雷达图(如图,每项指标值满分为5分,分值高者为优),则下面叙述正确的是( )A .甲的数据分析素养高于乙B .甲的数学建模素养优于数学抽象素养C .乙的六大素养中逻辑推理最差D .乙的六大素养整体平均水平优于甲3.若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A .36 cm 3B .48 cm 3C .60 cm 3D .72 cm 34.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”意思为有一个人要走378里路,第一天健步行走,从第二天起脚痛,每天走的路程为前一天的一半,走了六天恰好到达目的地,请问第二天比第四天多走了( ) A .96里B .72里C .48里D .24里5.双曲线22221(0,0)x y a b a b -=>>的左右焦点为12,F F ,一条渐近线方程为:b l y x a=-,过点1F 且与l 垂直的直线分别交双曲线的左支及右支于,P Q ,满足11122OP OF OQ =+,则该双曲线的离心率为( ) A 10B .3C 5D .26.已知0x >,0y >,23x y +=,则23x yxy+的最小值为( )A .322-B .221C 21D 217.在函数:①cos |2|y x =;②|cos |y x =;③cos 26y x π⎛⎫=+ ⎪⎝⎭;④tan 24y x π⎛⎫=-⎪⎝⎭中,最小正周期为π的所有函数为( ) A .①②③B .①③④C .②④D .①③8.设抛物线24y x =上一点P 到y 轴的距离为1d ,到直线:34120l x y ++=的距离为2d ,则12d d +的最小值为( ) A .2B .153C .163D .39.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有 A .72种B .36种C .24种D .18种10.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( ) A .1-B .1CD .211.设双曲线22221x y a b-=(a>0,b>0)的右焦点为F ,右顶点为A,过F 作AF 的垂线与双曲线交于B,C 两点,过B,C分别作AC ,AB 的垂线交于点D .若D 到直线BC的距离小于a ( ) A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞ C.((0,2) D.(,(2,)-∞+∞12.已知集合{}|124A x x =<≤,|B x y ⎧⎫==⎨⎩,则A B =( ) A .{}5|x x ≥ B .{}|524x x <≤ C .{|1x x ≤或}5x ≥D .{}|524x x ≤≤二、填空题:本题共4小题,每小题5分,共20分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华中师大一附中2014—2015学年度第二学期期中检测高一年级数学试题考试限时:120分钟 卷面满分:150分一、选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是满足题目要求的 1.数列23,45-,87,169-,…的一个通项公式为 A .n n nn a 212)1(+⋅-=B .n n n n a 212)1(+⋅-= C .n n n n a 212)1(1+⋅-=+D .n n n n a 212)1(1+⋅-=+2.等差数列{a n }中,a 2 + a 8 =16,则{a n }的前9项和为 A .56B .96C .80D .723.下列命题中正确的是 A .两两相交的三条直线共面B .两条相交直线上的三个点可以确定一个平面C .梯形是平面图形D .一条直线和一个点可以确定一个平面 4.数列{a n }满足a 1=0,2421--=+n n n a a a ,则=2015aA .0B .34 C .1 D .25.下列命题中正确的个数是(1)空间中如果两个角的两边分别对应平行,那么这两个角相等 (2)若直线l 与平面α平行,则直线l 与平面α内的直线平行或异面 (3)夹在两个平行平面间的平行线段相等(4)垂直于同一条直线的两条直线平行 A .0B .1C .2D .36.已知0<a ,不等式04222<-+a ax x 的解集为A .)6,7(aa -B .)7,6(a a -C .)72,7(a a -D .∅7.如右图是正方体的平面展开图,则在这个正方体中N MDC①BM 与ED 平行 ②CN 与BE 是异面直线 ③CN 与BM 成︒60角④DM 与BN 是异面直线以上四个结论中,正确结论的序号是 A .①②③B .②④C .③④D .①③④8.已知0>x ,则x x y 162+=的最小值为 A .12B .16C .20D .109.关于x 的不等式a a x x 3|3||1|2->---的解集为非空数集,则实数a 的取值范围是 A .21<<aB .21732173+<<-a C .1<a 或2>aD .1≤a 或2≥a10.)2141211()41211()211(110+++++++++++ 的值为A .92118+B .102120+C .112122+D .102118+11.正项数列{a n },a 1=1,前n 项和S n 满足)2(2111≥⋅=⋅-⋅---n S S S S S S n n n n n n ,则=10a A .72 B .80C .90D .8212.已知正数x , y , z 满足1222=++z y x ,则xyzzs 21+=的最小值为 A .3B .2)13(3+ C .4 D .)12(2+二、填空题:本大题共4小题,每小题5分,共20分13.已知实数x , y 满足41≤+≤-y x 且32≤-≤y x ,则y x 32-的取值范围是 . 14.等差数列{a n }中,||||93a a =,公差0<d ,则使前n 项和S n 取得最大值的正整数n 的值是 . 15.已知)2(21>-+=a a a m ,)0(222≠=-b n b ,则m , n 之间的大小关系为 . 16.定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。

已知数列{a n }是等和数列,且a 1=2,公和为5,则数列{a n }的前n 项和S n = .三、解答题:本大题共6小题,共70分。

解答应写出文字说明、证明过程或演算步骤17.(本小题满分10分)已知a ,∈b R +,12=+b a ,求ba 11+的最小值.18.(本小题满分12分)在正方体1111D C B A ABCD -中,G 是C 1D 1的中点,H 是A 1B 1的中点 (1)求异面直线AH 与BC 1所成角的余弦值;(2)求证:BC 1∥平面B 1DG .19.(本小题满分12分)已知等比数列{a n }满足1243=+a a ,3261=⋅a a 且公比1>q , (1)求{a n }的通项公式; (2)若nn a nb =,求{b n }的前n 项和T n .20.(本小题满分12分)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑 物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源 消耗费用C (单位:万元)与隔热层厚度x (单位:cm)满足关系:)100(53)(≤≤+=x x kx C ,若不 建隔热层,每年能源消耗费用为8万元.设)(x f 为隔热层建造费用与20年的能源消耗费用之和. (1)求k 的值及)(x f 的表达式;(2)隔热层修建多厚时,总费用)(x f 达到最小,并求最小值.21.(本小题满分12分)HGD 1C 1B 1A 1DC BA数列{a n }满足31=a ,121+=+n n a a , (1)求证:}21{+-n n a a 成等比数列; (2)若02≥--mt t a n 对一切∈n N *及]1,1[-∈m 恒成立,求实数t 的取值范围.22.(本小题满分12分)已知数列{a n }的前n 项和S n 满足121-=n n a S ,(1)求数列{a n }的通项公式;(2)求证:数列{a n }中的任意三项不可能成等差数列; (3)设2)1(-=n nn a a b ,T n 为{b n }的前n 项和,求证3<n T .华中师大一附中2014—2015学年度下学期高一期中检测数学试题答案一.选择题DDCBCA CABBAC 二.填空题13. []3,8 14. 5或6 15. m n ≥ 16. 5,251,22n n n S n n ⎧⎪⎪=⎨⎪-⎪⎩为偶数为奇数三.解答题17.解:11112(2)()33a ba b a b a b b a+=++=++≥+ ……………….7分当且仅当a =且21a b +=即112b a =-=时取“=”……………..9分 所以11a b+的最小值为3+ ……………………………………………10分 (说明:若没有求出,a b 的具体值,本题最多给8分)18.解:(1)连结1AD ,1HD ,∵AB ∥C 1D 1 AB =C 1D 1∴四边形11ABC D 为平行四边形, ∴AD 1∥BC 1,∴1D AH ∠为异面直线AH 与1BC 所成的角,…….….2分 设正方体棱长为1,在1AD H ∆中,1AD =1AH D H ==,∴2221111cos 25D A AH D H D AH D A AH +-∠==⋅ ……………..….5分∴异面直线AH 与1BC…………….6分 ABCDA 1B 1C 1D 1GH(2)连结1BD 交1B D 于点O , 连结OG ,易知O 为1BD 的中点,在11BC D ∆中,OG 为中位线,∴OG ∥BC 1又OG ⊂平面1B DG 且1BC ⊄平面1B DG ∴BC 1∥平面1B DG ………………….12分 19.解:(1)16343232a a a a ⋅=∴⋅=又343412,14,8a a q a a +=>∴==31*322,n n n q a a q n N --∴=∴=⋅=∈ ………………………………………5分 (2)由(1)知12n n nb -=0121123(1)2222n n nT -=+++⋅⋅⋅+12n T = 121121(2)2222n n n n--++⋅⋅⋅++(1)(2)-得211111122222n n n n T -=+++⋅⋅⋅+-11()22212212nn nn n -+=-=-- 1242n n n T -+∴=- ……………………………12分(说明:第(2)问如果结果错误不给分) 20.解:(1)设隔热层厚度为x cm , 再由(0)8C =,得40k =, ………………..2分因此40()35C x x =+. 隔热层建造费用与20年的能源消耗费用之和为 140800()20()()2066(010)3535f x C x C x x x x x x =+=⨯+=+≤≤++……….6分 (2)8001600()6(610)10107035610f x x x x x =+=++-≥=++ 当且仅当2(610)1600x +=即5x =时取""= ……………….11分 所以当隔热层修建5cm 厚时, 总费用达到最小值为70万元 ………………..12分OHGD 1C 1B 1A 1DCA21.解:(1)证明:1111211111122242222111nn n n n n n nn n n n n n a a a a a a a a a a a a a a +++-+--+++-===-⋅++++++++1{}2n n a a -∴+是等比数列,首项为25,公比为12-……………………….5分(2)由1)知1121()252n n n a a --=⋅-+得132211()52n n a -=--⋅- …………………..6分当n 为奇数时,32411()52n n a =--⋅ 单减 13n a ∴<≤当n 为偶数时,32411()52n na =-+⋅ 单增112n a ∴≤<所以12n a ≥(当2n =时取等号) …………………………9分由题212t mt +≤对[1,1]m ∈-恒成立记2(),[1,1]g m tm t m =+∈-,要使1()2g m ≤需 1(1)21(1)2g g ⎧-≤⎪⎪⎨⎪≤⎪⎩得1122t ≤≤……………………………..12分 (说明:第(2)问中如果不讨论n 的奇偶性,即使最终答案正确,最多给9分)22. 解:(1)11111(1)1(2)22n n n n S a S a --=-=-, (1)(2)-得12(2)nn a n a -=≥又12a = {}n a ∴为等比数列,首项为2,公比为2,*2,n n a n N ∴=∈……………..3分 (2)假设{}n a 中存在三项,,()r s t a a a r s t <<按某种顺序成等差数列2n n a =单增 r s t a a a ∴<<2s r t a a a ∴=+即2222s r t ⋅=+同除以2r得2212s rt r --⋅=+1,1s r t r -≥-≥∴左端为偶数,右端为奇数,矛盾所以任意三项不可能成等差数列 ……………………7分(3)22(21)nn n b =- 当1n =时,1123T b ==<,不等式成立 ………………………8分当2n ≥时,11222(21)(21)(21)(22)(21)(21)n n n n n n n n nn b --=<=------ 1112121n n -=---122311111112[()()()]212121212121n n n T -∴<+-+-+⋅⋅⋅+------- 1121332121nn =+-=-<-- 综上 ,对于一切*n N ∈有3n T <成立 …………………………12分。

相关文档
最新文档