《勾股定理的逆定理》同步练习2

合集下载

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定2.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:153.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.,3,4D.1,,34.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm5.下列五组数:①4、5、6;②0.6、0.8、1;③7、4、25;④8、15、17;⑤9、40、41,其中是勾股数的组数为()A.2B.3C.4D.56.已知a、b、c为△ABC的三边,且满足(a﹣b)(a2+b2﹣c2)=0,则△ABC是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.△ABC中,已知AB=1,AC=2.要使∠B是直角,BC的长度是()A.B.C.3D.或8.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.17m B.18m C.25m D.26m9.一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口1.5小时后,则两船相距()A.10海里B.20海里C.30海里D.40海里二.填空题10.勾股数为一组连续自然数的是.11.已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.12.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.13.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.14.如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部m处.15.如图,每个小正方形的边长为1,则∠ABC的度数为°.16.若一个三角形的三边长分别为5、12、13,则此三角形的面积为.17.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.18.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为米.三.解答题19.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.20.如图,点C是线段BD上的一点,∠B=∠D=90°,AB=3,BC=2,CD=6,DE=4,AE=,求证:∠ACE=90°.21.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.22.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=S四边形ABCD,求P的坐标.参考答案一.选择题1.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.2.解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.3.解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、()2+32=42,能构成直角三角形,故符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选:C.4.解:这根木棒最长==5(cm),故选:B.5.解:①42+52≠62,故不是勾股数;②0.6、0.8、1不都是正整数,故不是勾股数;③72+42≠252,故不是勾股数;④82+152=172,故是勾股数;⑤92+402=412,故是勾股数;其中勾股数有2组,故选:A.6.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a﹣b=0,或a2+b2﹣c2=0,即a=b或a2+b2=c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.7.解:∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC===.故选:A.8.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17(米).故选:A.9.解:如图所示:∠1=∠2=45°,AB=12×1.5=18(海里),AC=16×1.5=24(海里),∴∠BAC=∠1+∠2=90°,即△ABC是直角三角形,∴BC===30(海里).故选:C.二.填空题10.解:设中间的数是x,那么前面的一个就x﹣1,后面的一个就是x+1,根据题意(x﹣1)2+x2=(x+1)2,解得:x=0(舍去)或x=4;4﹣1=3,4+1=5;故答案为:3、4、5.11.解:∵∠C=90°,∴AC2+BC2=AB2,∵AB=k,AC=k﹣1,BC=3,∴(k﹣1)2+32=k2,解得:k=5,故答案为:5.12.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.13.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.14.解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.15.解:连接AC,由勾股定理得:AC2=22+12=5,BC2=22+12=5,AB2=12+32=10,∴AC2+BC2=5+5=10=BA2,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,故答案为:45.16.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.17.解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.18.解:在直角△ABC中,已知AB=2.5米,BC=0.7米,∴AC===2.4米,在直角△CDE中,已知DE=AB=2.5米,AE=0.9米,∴CE=AC﹣AE=1.5米,∴CD===2米,∴BD=2米﹣0.7米=1.3米故答案为:1.3.三.解答题19.解:连接AC,如图,,在Rt△ABC中,AB=24 m,BC=7 m,∴AC==25 m,在△ADC中,CD=15 m,AD=20 m.AC=25 m,∵CD2+AD2=152+202=252=AC2,∴△ADC为直角三角形,∠D=90°.(2)由(1)知△ADC为直角三角形,∠D=90°,∴S△ADC==150 m²,∵S△ABC=m²,∴S四边形ABCD=S△ADC+S△ABC=150+84=234 m².20.证明:在Rt△ABC中,∠B=90°,AB=3,BC=2,∴AC===.在Rt△EDC中,∠D=90°,CD=6,DE=4,∴CE===2,∵AC2=13,CE2=52,AE2=65,∴AE2=AC2+CE2,∴△ACE是直角三角形,AE是斜边,∴∠ACE=90°.21.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.22.(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=12m,CD=13m,∴BD2+BC2=CD2.∴BD⊥CB;(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=×3×4+×12×5=6+30=36(m2).故这块土地的面积是36m2;(3)∵S△PBD=S四边形ABCD,∴•PD•AB=×36,∴•PD×3=9,∴PD=6,∵D(0,4),点P在y轴上,∴P的坐标为(0,﹣2)或(0,10).。

17.2勾股定理逆定理(2)

17.2勾股定理逆定理(2)
八年级
下册
17.2 勾股定理的逆定理(2)
如果三角形的三边长a、b、c满足
2 a
+
2 b
=
2 c
那么这个三角形是直角三角形.
勾股定理
互逆命题
如果直角三角形两直角边分别为a,b, 斜边为c,那么 a2 + b2 = c2
练习:
1.将直角三角形的三边的长度扩大同样的倍数,则 得到的三角形是 ( A )
A. 是直角三角形;
B. 可能是锐角三角形;
C. 可能是钝角三角形; D. 不可能是直角三角形.
4. 已知∆ABC中BC=41, AC=40, AB=9, 则此三 ∠ A 是最大角. 直角 三角形, ______ 角形为_______ 5. 以∆ABC的三条边为边长向外作正方形, 依次 得到的面积是25, 144 , 169, 则这个三角形是 直角 三角形. ______
(4)全等三角形的对应角相等.
逆命题:对应角相等的两个三角形是全等三角形. 不成立
命题是真命题 ,它逆命题却不一定 是真命题. 感悟: 一个 原命题成立时 , 逆命题有时成立 , 有时不成立
D
A
C
B
小明想要检测雕塑底 座正面的 AD 边和BC边是 否分别垂直于底边AB,但他 随身只带了卷尺. 小明量得AD长是30厘 米,AB长是40厘米, BD长 是50厘米,AD边垂直于 AB边吗?为什么?
∵5²+12²=13² ∴这个三角形是直角三角形。
巩固练习
练习2 如图,在四边形ABCD中,AB=BC=CD=DA, ∠A=∠B=∠C=∠D=90°.点E是BC的中点,点F是CD 1 上一点,且 CF = CD .求证:∠AEF=90°. 4

苏科版数学八年级上3.2勾股定理的逆定理同步练习含答案

苏科版数学八年级上3.2勾股定理的逆定理同步练习含答案

3.2 勾股定理的逆定理1.判断:(1)△ABC的两边AB=5,AC=12,则BC=13.( )(2)在△ABC中,若a=6,b=8,则c=10.( )(3)由于0.3,0.4,0.5不是勾股数,故以0.3,0.4,0.5为边长的三角形不是直角三角形.( )(4)由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数.( )2.已知三角形的三边长分别为5 cm,12 cm,13 cm,则这个三角形是_______.3.三条线段分别长m.n,p,且满足m2-n2=p2,以这三条线段为边组成的三角形为_______.4.在△ABC中,a=9,b=40,c=41,那么△ABC是( ).A.锐角三角形B.直角三角形C.钝角三角形’D.等腰三角形5.分别以下列四组数为一个三角形的边长:①6,8,10;②5,12,13;③8,15,17;④4,5,6,其中能构成直角三角形的有( ).A.4组B.3组C.2组D.1组6.如图,在由单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是( ).A.CD、EF、GH B.AB、EF、GHC.AB、CD、GH D.AB、CD、EF7.判断由线段a,b,c组成的三角形是不是直角三角形:(1)a=7,b=24,c=25;(2)a=1.5,b=2,c=2.5;(3)a=13,b=14,c=15.8.如图,在△DEF中,DE=17 cm,EF=30 cm,边EF上的中线DG=8 cm,试判断△DEF是否为等腰三角形,并说明理由.9.如图,CD⊥AB,垂足为D,如果AD=2,DC=3,BD=4.5,那么∠ACB是直角吗?试说明理由.10.如图是一块地的平面图,其中AD=4 m,CD=3 m,AB=13 m,BC=12 m,∠ADC =90°,求这块地的面积.11.如图,在四边形ABCD中,AB=1,BC=2,CD=2,AD=3,且AB⊥BC.证明:AC⊥CD.12.欲将一根长129 cm的木棒放在长、高、宽分别是40 cm,30 cm,120 cm的木箱中,能放得进去吗?请说明理由.13.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图(1)).图(2)由弦图变化得到,它是用八个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、S2、S3.若S1+S2+S3=10,则S2的值是_______.14.已知,在△ABC中,a=m2=n2,b=2mn,c=m2+n2,其中m,n是正整数,且m>n,试判断:△ABC是否为直角三角形?15.如图,在边长为4的正方形ABCD中,E是边BC的中点,点F在CD上,且DF=3CF,试判断△AEF的形状,并说明理由.16.(1)按规律填表:(2)上表中,每列三个数为一组,这组数有什么特点?(3)如果一个直角三角形的两条直角边长分别为20和99,你能很快得到斜边的长吗?17.已知三组数据:①2,3,4;②3,4.5;③12.分别以每组数据中的三个数为三角形的三边长,构成直角三角形的有( ).A.②B.①②C.①③D.②③参考答案1.(1)×(2)×(3)×(4)×2.直角三角形3.直角三角形4.B 5.B 6.B7.(1)该三角形是直角三角形.(2)该三角形是直角三角形(3)该三角形不是直角三角形.8.是.9.90°.10.24(m2)11.略12.能放得进去.13.10 314.是直角三角形.15.直角三角形16.(1)n2-1 n2+1 (2)都是勾股数组(3)101 17.D。

人教版八年级下册数学勾股定理的逆定理同步练习解析版

人教版八年级下册数学勾股定理的逆定理同步练习解析版

17.2勾股定理的逆定理同步练习参考答案与试题解析一.选择题(共10小题)1.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC的形状为()A.直角三角形 B.锐角三角形C.钝角三角形 D.以上答案都不对选A2.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a﹣b)=c2,则()A.∠A为直角 B.∠C为直角C.∠B为直角 D.不是直角三角形解:∵(a+b)(a﹣b)=c2,∴a2﹣b2=c2,即c2+b2=a2,故此三角形是直角三角形,a为直角三角形的斜边,∴∠A为直角.故选A.3.一艘轮船和一艘渔船同时沿各自的航向从港口O出发,如图所示,轮船从港口O沿北偏西20°的方向行60海里到达点M处,同一时刻渔船已航行到与港口O相距80海里的点N处,若M、N两点相距100海里,则∠NOF的度数为()A.50° B.60° C.70° D.80°解:∵OM=60海里,ON=80海里,MN=100海里,∴OM2+ON2=MN2,∴∠MON=90°,∵∠EOM=20°,∴∠NOF=180°﹣20°﹣90°=70°,故选C.4.在下列条件中:①∠A+∠B=∠C,②∠A:∠B:∠C=1:2:3,③∠A=90°﹣∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A.1个 B.2个 C.3个 D.4个解:①因为∠A+∠B=∠C,则2∠C=180°,∠C=90°,所以△ABC是直角三角形;②因为∠A:∠B:∠C=1:2:3,设∠A=x,则x+2x+3x=180,x=30°,∠C=30°×3=90°,所以△ABC 是直角三角形;③因为∠A=90°﹣∠B,所以∠A+∠B=90°,则∠C=180°﹣90°=90°,所以△ABC是直角三角形;④因为∠A=∠B=∠C,所以三角形为等边三角形.所以能确定△ABC是直角三角形的有①②③共3个.故选:C.5.如图,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子的顶端B到地面的距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于3m,同时梯子的顶端B下降至B′,那么BB′()A.小于1m B.大于1m C.等于1m D.小于或等于1m解:在直角三角形AOB中,因为OA=2,OB=7由勾股定理得:AB=,由题意可知AB=A′B′=,又OA′=3,根据勾股定理得:OB′=,∴BB′=7﹣<1.故选A.6.下列各组数中不是勾股数的是()A.3,4,5 B.4,5,6 C.5,12,13 D.6,8,10 解:A、∵32+42=52,∴以3、4、5为边能组成直角三角形,即3、4、5是勾股数,故本选项错误;B、∵42+52≠62,∴以4、5、6为边不能组成直角三角形,即4、5、6不是勾股数,故本选项正确;C、∵52+122=132,∴以5、12、13为边能组成直角三角形,即5、12、13是勾股数,故本选项错误;D、∵62+82=102,∴以6、8、10为边能组成直角三角形,即6、8、10是勾股数,故本选项错误;故选B.7.如图,一根垂直于地面的旗杆在离地面5m处撕裂折断,旗杆顶部落在离旗杆底部12m处,旗杆折断之前的高度是()A.5m B.12m C.13m D.18m解:旗杆折断后,落地点与旗杆底部的距离为12m,旗杆离地面5m折断,且旗杆与地面是垂直的,所以折断的旗杆与地面形成了一个直角三角形.根据勾股定理,折断的旗杆为=13m,所以旗杆折断之前高度为13m+5m=18m.故选D.8.如图,有两棵树,一棵树高8m,另一棵树高3m,两树相距12m.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行()A.12m B.14m C.13m D.15m解:如图,过点A作AB⊥BC于点B,连接AC,∵一棵树高8m,另一棵树高3m,两树相距12m,∴AB=12m,BC=8﹣3=5m,∴AC==13m.故选C.9.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多米?()A.4 B.8 C.9 D.7解:由勾股定理得:楼梯的水平宽度==4,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是3+4=7米.故选D.10.已知a=3,b=4,若a,b,c能组成直角三角形,则c=()A.5 B. C.5或 D.5或6解:分两种情况:当c为斜边时,c==5;当长4的边为斜边时,c==(根据勾股定理列出算式).故选C.二.填空题(共4小题)11.如图,AD=8,CD=6,∠ADC=90°,AB=26,BC=24,该图形的面积等于96 .解:连接AC,在Rt△ACD中,AD=8,CD=6,∴AC===10,在△ABC中,∵AC2+BC2=102+242=262=AB2,∴△ABC为直角三角形;∴图形面积为:S△ABC﹣S△ACD=×10×24﹣×6×8=96.故答案为:96.12.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm .解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.13.我们把符合等式a2+b2=c2的a、b、c三个称为勾股数.现请你用计算器验证下列各组的数是否勾股数.你能发现其中规律吗?请完成下列空格.3,4,5;5,12,13;7,24,25;9,40,41;11,60 ,61 ;…解:先用计算机验证是勾股数;通过观察得到:这组勾股数用n表示为:2n+1,2n2+2n,2n2+2n+1,11是第5组勾股数的第一个小数,所以其它2个数为:2×52+2×5=60,2×52+2×5+1=61,故答案为:60、61.14.如图,有一个长为50cm,宽为30cm,高为40cm的长方体木箱,一根长70cm的木棍能放入(填“能”或“不能”).解:可设放入长方体盒子中的最大长度是xcm,根据题意,得x2=502+402+302=5000,702=4900,因为4900<5000,所以能放进去.故答案是:能.三.解答题(共6小题)15.已知a、b、c满足|a﹣|++(c﹣4)2=0.(1)求a、b、c的值;(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.解:(1)∵a、b、c满足|a﹣|++(c﹣4)2=0.∴|a﹣|=0,=0,(c﹣4)2=0.解得:a=,b=5,c=4;(2)∵a=,b=5,c=4,∴a+b=+5>4,∴以a、b、c为边能构成三角形,∵a2+b2=()2+52=32=(4)2=c2,∴此三角形是直角三角形,∴S△==.16.已知,如图,在△ABC中,D是BC的中点,DE⊥BC,垂足为D,交AB于点E,且BE2﹣EA2=AC2,①求证:∠A=90°.②若DE=3,BD=4,求AE的长.(1)证明:连接CE,如图,∵D是BC的中点,DE⊥BC,∴CE=BE…(2分)∵BE2﹣EA2=AC2,∴CE2﹣EA2=AC2,∴EA2+AC2=CE2,∴△ACE是直角三角形,即∠A=90°;(2)解:∵DE=3,BD=4,∴BE==5=CE,∴AC2=EC2﹣AE2=25﹣EA2,∵BC=2BD=8,∴在Rt△BAC中由勾股定理可得:BC2﹣BA2=64﹣(5+EA)2=AC2,∴64﹣(5+AE)2=25﹣EA2,解得AE=.17.我们把满足方程x2+y2=z2的正整数的解(x、y、z)叫做勾股数,如,(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:( 6 、8 、10 ),(9 、12 、15 );(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2﹣1,z=n2+1,那么以x,y,z为三边的三角形为直径三角形(即x,y,z为勾股数),请你加以证明.解:(1)写出两组勾股数:( 6,8,10),( 9,12,15).(2)证明:x2+y2=(2n)2+(n2﹣1)2=4n2+n4﹣2n2+1=n4+2n2+1=(n2+1)2=z2,即x,y,z为勾股数.故答案为:6,8,10;9,12,15.18.如图所示,在△ABC中,AC=8cm,BC=6cm;在△ABE中,DE为AB边上的高,DE=12cm,△ABE的面积S=60cm2.(1)求出AB边的长;(2)你能求出∠C的度数吗?请试一试.解:(1)∵DE=12,S△ABE=DE•AB=60,∴AB=10;(2)∵AC=8,BC=6,62+82=102,∴AC2+BC2=AB2,由勾股定理逆定理得∠C=90°.19.如图,在离水面高度为5米的岸上,有人用绳子拉船靠岸,开始时绳子BC的长为13米,此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,问船向岸边移动了多少米?(假设绳子是直的,结果保留根号)解:在Rt△ABC中:∵∠CAB=90°,BC=13米,AC=5米,∴AB==12(米),∵此人以0.5米每秒的速度收绳,10秒后船移动到点D的位置,∴CD=13﹣0.5×10=8(米),∴AD===(米),∴BD=AB﹣AD=12﹣(米),答:船向岸边移动了(12﹣)米.20.如图,有两条公路OM,ON相交成30°角.沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON方向行驶时,在以P为圆心50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大.若已知重型运输卡车P沿道路ON方向行驶的速度为18千米/时.(1)求对学校A的噪声影响最大时卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间.(2)如图以A为圆心50m为半径画圆,交ON于B、C两点,∵AD⊥BC,∴BD=CD=BC,在Rt△ABD中,BD===30m,∴BC=60m,∵重型运输卡车的速度为18千米/时=300米/分钟,∴重型运输卡车经过BC的时间=60÷300=0.2分钟=12秒,答:卡车P沿道路ON方向行驶一次给学校A带来噪声影响的时间为12秒.先制定阶段性目标—找到明确的努力方向每个人的一生,多半都是有目标的,大的目标应该是一个十年、二十年甚至几十年为之奋斗的结果,应该定得比较远大些,这样有利于发挥自己的潜能。

第4讲:(八年级数学上)勾股定理 、勾股定理的逆定理同步练习题(学生版)

第4讲:(八年级数学上)勾股定理 、勾股定理的逆定理同步练习题(学生版)

第4讲:(八年级数学上)勾股定理 、勾股定理的逆定理同步练习题1.△ABC ,∠C =90°,a =9,b =12,则c = .2.△ABC ,AC =6,BC =8, 当AB = 时,∠C =90°.3.等边三角形的边长为6 cm ,则它的高为 .4.△ABC 中,∠C =90°,∠A =30°,则BC ∶AC ∶AB = .5.等腰三角形的顶角为120° ,底边上的高为3,则它的周长为 .6.若直角三角形两直角边之比为3∶4,斜边长为20,则它的面积为 .7.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 .8.在Rt △ABC 中,∠C=90°,(1)若a=5,b=12,则c= ; (2)b=8,c=17 ,则ABC S =9.如图1,△ABC 中,CD ⊥AB 于D图1(1)图中有__________个直角三角形A .0B .1C .2D .3(2)若AD =12,AC =13则CD = .(3)若CD 2=AD ·DB , 求证:△ABC 是直角三角形.10.如图2,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于 .图211.下列各组数中,不能构成直角三角形的一组是( )A .1,2,5B .1,2,3C .3,4,5D .6,8,1212.已知三角形的三边长之比为1∶1∶2,则此三角形一定是( )A .锐角三角形B .钝角三角形C .等边三角形D .等腰直角三角形13.直角三角形的斜边为20cm ,两条直角边之比为3∶4,那么这个直角三角形的周长为( )A . 27cm B. 30cm C. 40cm D. 48cm14.将直角三角形的三边扩大相同的倍数后,得到的三角形是( ) A 直角三角形 B 锐角三角形 C 钝角三角形 D 不能15.如图,以三角形三边为直径向外作三个半圆,若较小的两个半圆面积之和等于较大的半圆面积,则这个三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角三角形或钝角三角形图316.如图3,△ABC 中,AB =AC =10,BD ⊥AC 于D ,CD =2,则BC 等于( )A .210B .6C .8D .517.△ABC 中,∠C =90°,∠A =30°,斜边长为2,斜边上的高为( )A .1B .3C .23D .43 18.若一个直角三角形的一条直角边长是7cm ,另一条直角边比斜边短1cm ,则斜边长为 ( )A.18 cmB.20 cmC.24 cmD.25 cm19.在Rt △ABC 中,∠C =90°,若14=+b a cm ,10=c cm ,则Rt △ABC 的面积为( )A.24cm 2B.36cm 2C.48cm 2D.60cm 220.如图,△ABC 中,AB =15 cm , AC =24 cm ,∠A =60°.求BC 的长.21.小明把一根长为160 cm 的细铁丝剪成三段,作成一个等腰三角形风筝的边框ABC (如图4),已知风筝的高AD =40 cm ,你知道小明是怎样弯折铁丝的吗?图422.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。

《17.2勾股定理的逆定理》同步练习测试及答案解析

《17.2勾股定理的逆定理》同步练习测试及答案解析

《17.2勾股定理的逆定理》同步练习测试及答案解析(第1课时)A.3,4,5 B.6,8,10 C,2, D.5,12,13 C.如果,那么D.等边三角形的三个角都等于600C的逆命题是:如果,那么;3.已知三角形三边长为,如果,则的形状是().A.以为斜边的直角三角形B.以为斜边的直角三角形C.以为斜边的直角三角形 D.不是直角三角形解析:将式子左边变形得: ,因为,,,所以,,,即,,,又因为,所以,所以是以为斜边的直角三角形.解析:因为,所以该三角形为直角三角形且两条直角边分别为5cm、12cm,所以面积=.5.已知为的三边长,且满足,则它的形状为.解析:因为式子可变形为即,所以或,即或,所以为直角三角形或等腰三角形.6.有下列判断:①△ABC中,,则△ABC不是直角三角形;②△ABC是直角三角形,∠C=900,则;③若△ABC中,,则△ABC是直角三角形;④若△ABC是直角三角形,则,以上判断正确的是(填序号).解析:根据勾股定理的逆定理,一个三角形中两条较小边长的平方和等于最大边长的平方,那么这个三角形是直角三角形,①中三边大小关系未知,或有可能成立,故①是错误的;根据勾股定理②是正确的;③中可变形为,④中变形为即,所以③和④都正确;所以正确的序号是②③④.7.已知是的三边长,根据下列条件,判断是不是直角三角形.解析:①∵a>c>b,,∴∵b>c>a,,∴8.在中,,,,其中是正整数,且.试判断是否是直角三角形.答案: 是直角三角形.解析:因为是正整数,且,,所以,,即,因为,又因为,所以,所以是直角三角形.《17.2勾股定理的逆定理》同步练习测试及答案解析(第2课时)一、精心选一选(每小题只有一个正确选项,请把正确选项的代号填在题后的括号内).1.下列四组数据:①8,17,17;②9,12,15;③1.2;1.5,2;④7,24,25,其中是勾股数的有().A.1组 B.2组 C.3组 D.4组A.∠A=∠B-∠C B.a:b:c=1::2C.∠A:∠B:∠C=3:4:5 D.A选项中关系式∠A=∠B-∠C变形为∠A+∠C=∠B,因为∠A+∠C+∠B=180°,所以求得∠B=90°,所以△ABC为直角三角形;B选项中设,则即,所以为直角三角形;C选项中设的度数分别为,则,,所以,,,所以不是直角三角形;D选项变形为,所以为直角三角形.故答案是C.分别8,8,16,④中三边长平方分别为10,13,17,⑤中三边长平方分别为13,13,26,⑥中三边长平方分别为10,13,17.由勾股定理的逆定理可知①③⑤是直角三角形,由勾股定理可知②④⑥均不是直角三角形.答案:或5.解析:当斜边长为4时,第三边长=;当第三边是斜边时,第三边长=.解析:小明所走的三段路程看成是三条线段,三条线段围成一个三角形且三边长度分别是80m,60m,100m,因为,所以这个三角形是直角三角形,所以小明向东走80m后,又走60m的方向是与原方向垂直的方向,所以答案是向南或向北.6.已知的三边分别为,且,,,则的形状是.解析:,,,,即,又因为,所以,所以为直角三角形.7.如图所示的一块地,,,,,,求这块地的面积.答案:.解析:连接,将题目中不规则的四边形面积转化成两个直角三角形的面积差.连,∵∴∵,,∴∴∴这块地的面积为.8.如图,在港有甲、乙两艘渔船,若甲船沿北偏东600方向,以每小时8海里速度前进,乙船沿南偏东某方向以每小时15海里速度前进,1小时后甲船到达岛,乙船到达岛,且岛与岛相距17海里,你能知道乙船沿哪个方向航行吗?,,∵,∴∴∴。

勾股定理逆定理同步测试题(含答案)

勾股定理逆定理同步测试题(含答案)

勾股定理和逆定理专题训练一、选择题1.下列几组数中,能作为直角三角形三边长度的是( ).A .2,3,4B .5,7,9C .8,15,17D .200,300,400 2.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )3.三角形的三边长a 、b 、c ,满足22()2a b c ab +=+,则这个三角形是( ) . A . 锐角三角形 B . 直角三角形 C . 钝角三角形 D . 等边三角形 4.下列结论错误的是( )A .三个角度之比为1∶2∶3的三角形是直角三角形;B .三条边长之比为3∶4∶5的三角形是直角三角形;C .三个角度之比为1∶1∶2的三角形是直角三角形;D .三条边长之比为8∶16∶17的三角形是直角三角形.5.在同一平面上把三边BC =3、AC =4、AB =5的三角形沿最长边AB 翻折后得到△ABC ′,则CC ′的长等于( ).A .125 B .135 C .56 D .2456.小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,小丽走直线用了10分钟,小芳先去家拿了钱在去图书馆,小芳到家用了6分钟,从家到图书馆用了8分钟,小芳从公园到图书馆拐了个( )角.A .锐角B .直角C .钝角D .不能确定7.下列各组线段中的三个长度①9、12、15;②7、24、25;③32、42、52;④3a 、4a 、5a (a >0);⑤22m n -、2mn 、22m n +(m 、n 为正整数,且m >n )其中可以构成直角三角形的有( )A .5组B .4组C .3组D .2组8.直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为( )A .121B .120C .90D .不能确定ABCD二、填空题1.在△ABC 中,若222AB BC AC +=,则∠A +∠C =______度.2.若一个三角形的三边之比为5:12:13,且周长为60cm ,则它的面积为 . 3.已知两条线段的长为5cm 和12cm,当第三条线段的长为 cm 时,这三条线段能组成一个直角三角形.4.如图1,在四边形ABCD 中,AD ⊥DC ,AD =8,DC =6,CB =24,AB =26.则四边形ABCD 的面积为____________.5. 如图2所示,一架5米长的消防梯子斜靠在一竖直的墙AC 上,梯足(点B )离墙底端(C 点)的距离为3米,如果梯足内移1.6米至点B 1处,则梯子顶端沿墙垂直上移_______米.6.直角三角形的三边长为连续偶数,则这三个数分别为__________.7.如图3所示的一块地,已知AD =4m ,CD =3m , AD ⊥DC ,AB =13m ,BC =12m ,则这块地的面积是__________2m .8. 将勾股数3,4,5扩大2倍,3倍,4倍,…,可以得到勾股数6,8,10;9,12,15;12,16,20;…,则我们把3,4,5这样的勾股数称为基本勾股数,请你也写出三组基本勾股数:, , .三、解答题1. 一个零件的形状如图3所示,按规定这个零件中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边尺寸如图4所示,这个零件符合要求吗?2.已知:如图,△ABC 中,AB =5cm ,BC =3 cm ,AC =4cm ,CD ⊥AB 于D , 求CD 的长及△ABC 的面积;图2 图3图4图5图1 图3图 2 2.已知△ABC 的三边为22m n +,22m n -,2mn(1)当m =2,n =1时,△ABC 是否为直角三角形?并说明理由. (2)当m =3,n =2时,△ABC 是否为直角三角形?并说明理由. (3)对于m 、n 为任何正整数时(m >n ),你能说明△ABC 为直角三角形吗? 3.如图5,已知正方形ABCD 中,F 是DC 的中点,E 为BC 的上一点,且EC =14BC .求证:EF ⊥AF .一、选择题(每小题3分,共15分)1.如图1,正方形网格中的△ABC ,若小方格边长为1,则△ABC 是 ( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .以上答案都不对2.已知,如图2,在长方形ABCD 中,AB =3cm ,AD =9cm ,将此长方形折叠,使点B 与点D 重合,折痕为EF ,则△ABE 的面积为( ). A .6cm 2B .8cm 2C .10cm 2D .12cm 2二、填空题(每题3分,共15分)1.如图4,是2002年8月北京第24届国际数学家大会会标,由4个全等的直角三角形拼合而成.如果图中大、小正方形的面积分别为52和4,那么一个直角三角形的两直角边的和等于2. 观察下列表格:请你结合该表格及相关知识,求出b 、c 的值.即b = ,c =三、解答题1.如图5,三个村庄A 、B 、C 之间的距离分别为AB =5km ,BC =12km ,AC =13km .要从B 修一条公路BD 直达AC .已知公路的造价为26000元/km ,求修这条公路的最低造价是多少?图1 图4图52.如图6,甲乙两船从港口A同时出发,甲船以16海里/时速度向北偏东50°航行,乙船以12海里/时向南偏东方向航行,3小时后,甲船到达C岛,乙船到达B岛.若C、B两岛相距60海里,问乙船出发后的航向是南偏东多少度?图63.如图,△ABC的三边分别为AC=5,BC=12,AB=13,将△ABC沿AD折叠,使AC落在AB上,求折痕AD的长.4.(20分)如图,南北向MN为我国领域,即MN以西为我国领海,以东为公海.上午9时50分,我反走私A艇发现正东方向有一走私艇C以13海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B.已知A、C两艇的距离是13海里,A、B两艇的距离是5海里;反走私艇B测得离C艇的距离是12海里.若走私艇C的速度不变,最早会在什么时间进入我国领海?A 卷:一、1.C 2.C 3.B 4.D 5.D二、1. 90° 2.120 3.13 4.144 5.0.8.三、1.答:这个零件符合要求.∵在△ABD 中,22223425AB AD +=+=,22525BD ==.∴222AB AD BD +=,∴∠A =90°.同理可得∠DBC =90°.2.答:(1)△ABC 是直角三角形.∵当m =2,n =1时,222()25m n +=;222()9m n -=;2(2)16mn =.∴2222222()(2)()m n mn m n -+=+,∴△ABC 是直角三角形.(2)当m =3,n =2时,还有2222222()(2)()m n mn m n -+=+,∴△ABC 是直角三角形.(3)∵22224422222()(2)2()m n mn m n m n m n -+=++=+,∴对于m 、n 为任何正整数时(m >n ),△ABC 都是直角三角形.3.解:证明:连接AE ,设正方形边长为4a ,则EC =a ,BE =3a ,CF =DF =2a .在Rt △ABE 中,222222(4)(3)25AE AB BE a a a =+=+=.同理:222222(4)(2)20AF AD DF a a a =+=+=,222222(2)5EF EC CF a a a =+=+=,∴222EF AF AE +=.由勾股定理的逆定理知△AFE 为直角三角形,且∠AFE =90°,即EF ⊥AF . B 卷:一、1.B 2.B 3. C 4.A 5.A二、1.6、8、10 2.24 3.5、12、13 4.10 5.84,85三、1.解:∵2222512169AB BC +=+=,2213169AC ==,∴222AB BC AC +=.由勾股定理的逆定理知△AC 为直角三角形,且∠ABC =90°.由题意,可知BD ⊥AC ,∴AC ·BD =AB ·BC ,BD =6013.6013×26000=120000(元).即修这条公路的最低造价是12万元.2.解:∵AC =16×3=48,AB =12×3=36,∴222222604836BC AC AB +=-== ∴△ABC 为直角三角形且∠CAB =90°,∴乙船出发后的航向是南偏东40° C 卷:解:设MN 交AC 于E ,则∠BEC =90°.又AB 2+BC 2=52+122=169=32=AC 2,∴△ABC 是直角三角形,∠ABC =90°.又∵MN ⊥CE ,∴走私艇C 进入我领海的最近距离是CE ,则CE 2+BE 2=144,(13-CE )2+BE 2=25,得26CE =288,∴CE =13144. 13144÷169144≈0.85(小时),0.85×60=51(分).9时50分+51分=10时41分. 答:走私艇最早在10时41分进入我国领海.。

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.下列几组数据中,不能作为直角三角形的三条边的是()A.1,2,B.3,4,5C.1,,D.4,12,13 2.在△ABC中,若AB=3,BC=5,AC=,则下列说法正确的是()A.△ABC是锐角三角形B.△ABC是直角三角形且∠C=90°C.△ABC是钝角三角形D.△ABC是直角三角形且∠B=90°3.如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定4.下列各组数中,是勾股数的是()A.7,8,9B.6,8,10C.5,12,14D.3,4,65.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=45°6.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=2m.若梯子的顶端沿墙下滑0.5米,这时梯子的底端也恰好外移0.5米,则梯子的长度AB为()A.2.5m B.3m C.1.5m D.3.5m7.如图,在以下四个正方形网格中,各有一个三角形,不是直角三角形的是()A.B.C.D.8.如图,正方形网格中,每一小格的边长为1.网格内有△P AB,则∠P AB+∠PBA的度数是()A.30°B.45°C.50°D.60°二.填空题9.一个三角形的三边长为8cm、17cm、15cm,则其面积为cm2.10.如图,已知∠BAC=90°,BC=,AB=1,AD=CD=1,则∠BAD=.11.如图,长方体木箱的长、宽、高分别为12cm,4cm,3cm,则能放进木箱中的直木棒最长为cm.12.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑤组勾股数为.13.如图,露在水面上的鱼线BC长为6m,钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,若BB'的长为2m,则钓鱼竿AC的长为m.14.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.15.如图是某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=8米,BC=6米,他们踩坏了米的草坪,只为少走米的路.16.图是屋架设计图的一部分,点E、F分别为斜梁AB、AC的中点,D为横梁BC的中点,EM⊥BC于点M,FN⊥BC于点N,若AB=AC=6m,∠BAC=120°,则EM+AD+FN 等于m,四边形AEDC的周长为m.三.解答题17.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.18.为了绿化环境,我市某中学有一块四边形的=空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要300元,问总共需投入多少元?19.“某市道路交通管理条例”规定:小汽车在城市道路上行驶速度不得超过60千米/时,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方24米的C处,过了1.5秒后到达B处(BC⊥AC),测得小汽车与车速检测仪间的距离AB为40米,判断这辆小汽车是否超速?若超速,则超速了多少?若没有超速,说明理由.20.如图,有一艘货船和一艘客船同时从港口A出发,客船与货船速度的比为4:3,出发1小时后,客船比货船多走了5海里.货船沿东偏南10°方向航行,2小时后货船到达B 处,客船到达C处,若此时两船相距50海里.(1)求两船的速度分别是多少?(2)求客船航行的方向.21.《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…;翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺)将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索OB的长度.22.位于沈阳的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?23.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海.上午9时50分,我国反走私艇A发现正东方有一走私艇C以16海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.(1)如图1,若反走私艇A和走私艇C的距离是10海里,A、B两艇的距离是6海里;反走私艇B测得距离C艇8海里,若走私艇C的速度不变,则再过多少小时它会进入我国领海?(2)如图2,若反走私艇A和走私艇C的距离是12海里,A、B两艇的距离是8海里,反走私艇B测得距离C艇10海里,发现走私艇C时,反走私艇B便立即沿领海线MN 对走私艇C进行拦截.若要使拦截成功,假设走私艇C的速度不变,那么反走私艇B的速度至少应为多少海里/时?(结果中若有根号,则保留根号).参考答案一.选择题1.解:A、12+()2=22,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、32+42=52,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、12+()2=()2,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、42+122≠132,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选:D.2.解:在△ABC中,AB=3,BC=5,AC=,∴AC2=34,AB2+BC2=9+25=34,∴AC2=AB2+BC2,∴△ABC是直角三角形,∠B=90°,故选:D.3.解:设原直角三角形的两直角边分别为a,b,斜边为c,则a2+b2=c2,∵三条边长同时扩大10倍为10a,10b,10c,∴(10a)2+(10b)2=100a2+100b2=100(a2+b2)=100c2,∴(10c)2=100c2,∴(10a)2+(10b)2=(10c)2,∴如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是直角三角形,故选:C.4.解:A、72+82≠92,故不是勾股数,故选项不符合题意;B、62+82=102,能构成直角三角形,都是整数,是勾股数,故选项符合题意;C、52+122≠142,故不是勾股数,故选项不符合题意;D、32+42≠62,故不是勾股数,故选项不符合题意.故选:B.5.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.6.解:设BO=xm,依题意得:AC=0.5m,BD=0.5m,AO=2m.在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=22+x2,在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(2﹣0.5)2+(x+0.5)2,∴22+x2=(2﹣0.5)2+(x+0.5)2,解得:x=1.5,∴AB==2.5(m),即梯子的长度AB为2.5m,故选:A.7.解:选项A如图:A、∵AC2=12+32=10,BC2=12+22=5,AB2=12+42=17,∴△ABC不是直角三角形,故本选项符合题意;选项B如图:B、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项不符合题意;选项C如图:C、∵AB2=22+22=8,AC2=22+22=8,BC2=16,∴△ABC是直角三角形,故本选项不符合题意;选项D如图:D、∵AC2=12+32=10,BC2=12+32=10,AB2=22+42=20,∴△ABC是直角三角形,故本选项不符合题意.故选:A.8.解:延长AP到点C,连接BC,如右图所示,由图可得,∠CPB=∠P AB+∠PBA,PC==,BC==,PB==,∴BC2+PC2=PB2,CP=CB,∴△BCP是等腰直角三角形,∴∠CPB=45°,∴∠P AB+∠PBA=45°,故选:B.二.填空题9.解:∵82+152=172,∴此三角形是直角三角形,∴此直角三角形的面积为:×8×15=60(cm2).故答案为:60.10.解:∵∠BAC=90°,BC=,AB=1,∴AC==,∵AD=CD=1,12+12=()2,AD2+CD2=AC2,∴∠D=90°,∴∠DAC=45°,∴∠BAD=90°﹣45°=45°.故答案为:45°.11.解:∵侧面对角线BC2=32+42=52,∴CB=5cm,∵AC=12cm,∴AB==13(cm),∴空木箱能放的最大长度为13cm,故答案为:13.12.解:根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+2),第二个是:(n+1)(n+3),第三个数是:(n+2)2+1,故可得第⑤组勾股数是14,48,50.故答案为:14,48,50.13.解:设AB′=xm,∵AC′=AC,∴AB′2+B′C′2=AB2+BC2,∴x2+82=(x+2)2+62.解得x=6,∴AB=8m,∴AC===10(m),故答案为:10.14.解:若设湖水的深度x尺.则荷花的长是(x+0.5)米.在直角三角形中,根据勾股定理,得:(x+0.5)2=x2+22,解之得:x=3.75,∴湖水的深度为3.75尺.故答案为:3.75.15.解:在Rt△ABC中,∠ABC=90°,AB=8米,BC=6米,∴AC===10(米),∴BC+AB﹣AC=6+8﹣10=4(米),∴他们踩坏了10米的草坪,只为少走4米的路,故答案为:10,4.16.解:∵AB=AC=6m,∠BAC=120°,D为横梁BC的中点,∴∠B=∠C=30°,∠BAD=∠DAC=60°,∵点E、F分别为斜梁AB、AC的中点,EM⊥BC于点M,FN⊥BC于点N,∴AE=AD=AB=3m,FN=EM=BE=AB=1.5m,∴△AED是等边三角形,∴EM+AD+FN=3+1.5+1.5=6(m),∵AD=3m,AC=6m,∴DC==3(m),∴四边形AEDC的周长为:3+3+3+6=(12+3)m.故答案为:6,(12+3).三.解答题17.解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC==5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30﹣6=24.18.解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,则S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC=×4×3+×12×5=36(平方米);(2)需费用36×300=10800(元).19.解:小汽车已超速,理由如下:根据题意得:AC=24米,AB=40米,∠ACB=90°,在Rt△ACB中,根据勾股定理得:BC===32(米),∵小汽车1.5秒行驶32米,∴小汽车行驶速度为76.8千米/时,∵76.8>60,∴小汽车已超速,超速76.8﹣60=16.8(千米/时).20.解:(1)设两船的速度分别是4x海里/小时和3x海里/小时,依题意得4x﹣3x=5.解得x=5,∴4x=20,3x=15,∴两船的速度分别是20海里/小时和15海里/小时;(2)由题可得,AB=15×2=30,AC=20×2=40,BC=50,∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠BAC=90°,又∵货船沿东偏南10°方向航行,∴客船航行的方向为北偏东10°方向.21.解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度为14.5尺.22.解:在Rt△ABC中,∠ABC=90°,BC=8m,AC=17m,∴AB===15(m),∵工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,∴CD=17﹣0.35×20=10(m),∴BD===6(m),∴AD=AB﹣BD=9(m).答:此时游船移动的距离AD的长是9m.23.解:(1)由题意,AC=10海里,AB=6海里,BC=8海里,∴AB2+BC2=AC2,∴∠ABC=90°.由面积法得AC•BE=AB•BC,即10BE=6×8,∴BE=.在Rt△BEC中,CE==,∵艇C的速度为16海里/时,∴所求的时间为÷16=,答:再过小时艇C会进入我国领海.(2)由题意,AC=12海里,AB=8海里,BC=10海里,设CE=x,由勾股定理,得AB2﹣AE2=BC2﹣CE2,即82﹣(12﹣x)2=102﹣x2,解得x=,∴CE==7.5,再由勾股定理,得BE==(海里)设反走私艇B的速度为y海里/时,则=,解得y=.检验可知y=是方程的解,且适合题意.答:反走私艇B的速度至少应为海里/时.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理的逆定理习题
1.请完成以下未完成的勾股数:
(1)8,15,______;(2)10,26,_____.
2.△ABC中,a2+b2=25,a2-b2=7,又c=5,则最大边上的高是______.
3.以下各组数为三边的三角形中,不是直角三角形的是().
A,.7,24,25
C.4,7.5,8.5 D.3.5,4.5,5.5
4.一个三角形的三边长分别为15,20,25,那么它的最长边上的高是().
D.9
A.12.5 B.12 C.
2
5.已知:如图,∠ABD=∠C=90°,AD=12,AC=BC,∠DAB=30°,求BC的长.
6.已知:如图,AB=4,BC=12,CD=13,DA=3,AB⊥AD,求证:BC⊥BD.
7.在四边形ABCD中,AB=3,BC=4,CD=12,AD=13,∠B=90°,求四边形ABCD的面积.
8.一艘轮船以20千米/时的速度离开港口向东北方向航行,另一艘轮船同时离开港口以15千米/时的速度向东南方向航行,它们离开港口2小时后相距多少千米?
9.如图3中的(1)是用硬纸板做成的形状大小完全相同的直角三角形,两直角边的长分别为a和b,斜边长为c;如图3中(2)是以c•为直角边的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明出勾股定理的图形.
(1)画出拼成的这个图形的示意图,写出它是什么图形.
(2)用这个图形推出a2+b2=c2.(勾股定理)
(3)假设图中的(1)中的直角三角形有若干个,你能运用图中的(1)所给的直角三角形拼出另一种能推出a2+b2=c2的图形吗?请画出拼后的示意图.(无需证明)
答案:
1.17,24 2.略 3.D 4.B 5..提示:∵AB⊥AC,AB=4,DA=3,∴BD=5,•又BC=12,CD=13,∴CD2=BC2+BD2,∴∠DBC=90°,∴BC⊥BD 7.36,提示:连结AC得两个直角三角形 8.50千米
9.(2)S梯形=1
2
(a+b)(a+b)=
1
2
(a+b)2,S梯形=
1
2
ab×2+
1
2
c2=ab+
1
2
c2,
∴1
2
(a+b)2=ab+
1
2
c2,得a2+b2=c2.。

相关文档
最新文档