精品解析:【校级联考】云南省昆明市四校联考2019届九年级中考二模数学试题(原卷版)

合集下载

2019版九年级数学下学期第二次联考试卷(含解析)

2019版九年级数学下学期第二次联考试卷(含解析)

2019版九年级数学下学期第二次联考试卷(含解析)一.选择题(共8小题,满分24分,每小题3分)1.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣42.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④3.下列图形中,不是中心对称图形的是()A.B.C.D.4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B.C.D.5.下列各式属于最简二次根式的是()A.B.C.D.6.在⊙O中,P为其内一点,过点P的最长弦的长为8cm,最短的弦的长为4cm,则OP的长为()A.cm B.cm C.2cm D.1cm7.如图,在四个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这四个三角形中,形状与众不同的是()A.B.C.D.8.如图,两个半圆,大半圆中长为16cm的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为()A.34πcm2B.128πcm2C.32πcm2D.16πcm2二.填空题(共8小题,满分24分,每小题3分)9.方程(x+5)(x﹣7)=﹣26,化成一般形式是,其二次项的系数和一次项系数的和是.10.选做题(从下面两题中任选一题,如果做了两题的,只按第(1)题评分)(Ⅰ)计算:=(Ⅱ)用计算器计算:≈(保留三位有效数字).11.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:12.如图,在Rt△ABC中,AB=3,BC=4,∠ABC=90°,过B作A1B⊥AC,过A1作A1B1⊥BC,得阴影Rt△A1B1B;再过B1作B1A2⊥AC,过A2作A2B2⊥BC,得阴影Rt△A2B2B1;…如此下去.请猜测这样得到的所有阴影三角形的面积之和为.13.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是.14.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=.15.如图所示:AP、PB、AB分别是三个半圆的直径,PQ⊥AB,面积为9π的圆O与两个半圆及PQ 都相切,而阴影部分的面积是39π,则AB的长是.16.如图,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P、A、B为顶点的三角形与△ABC相似但不全等,则格点P的坐标是.三.解答题(共9小题,满分72分)17.(6分)已知a=,b=,(1)求ab,a+b的值;(2)求的值.18.(6分)已知:△ABC的两边AB、BC的长是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个实数根,第三边长为10.问当k为何值时,△ABC是等腰三角形?19.(6分)如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).(1)求反比例函数的解析式及E点的坐标;(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.20.(6分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.21.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.22.(8分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.23.(8分)某小区在绿化工程中有一块长为20m、宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.24.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.25.(12分)如图,点E在菱形ABCD的对角线BD上,连接AE,且AE=BE,⊙O是△ABE的外接圆,连接OB.(1)求证:OB⊥BC;(2)若BD=,tan∠OBD=2,求⊙O的半径.xx江西省南昌市八一中学九年级(下)第二次联考数学试卷参考答案与试题解析一.选择题(共8小题,满分24分,每小题3分)1.方程x2=4x的根是()A.x=4 B.x=0 C.x1=0,x2=4 D.x1=0,x2=﹣4【分析】原式利用因式分解法求出解即可.【解答】解:方程整理得:x(x﹣4)=0,可得x=0或x﹣4=0,解得:x1=0,x2=4,故选:C.【点评】此题考查了一元二次方程﹣因式分解法,熟练掌握因式分解的方法是解本题的关键.2.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是()A.①②B.②③C.①③D.①②③④【分析】根据抛物线与x轴的交点坐标为(1,0)对①进行判断;根据对称轴方程为x=﹣=﹣1对②进行判断;根据抛物线的对称性得到抛物线与x轴的交点坐标为(﹣3,0)和(1,0),由此对③进行判断;根据抛物线与y轴的交点在x轴下方,得到c<0,而a+b+c=0,则a﹣2b+c =﹣3b,由b>0,于是可对④进行判断.【解答】解:∵x=1时,y=0,∴a+b+c=0,所以①正确;∵x=﹣=﹣1,∴b=2a,所以②错误;∵点(1,0)关于直线x=﹣1对称的点的坐标为(﹣3,0),∴抛物线与x轴的交点坐标为(﹣3,0)和(1,0),∴ax2+bx+c=0的两根分别为﹣3和1,所以③正确;∵抛物线与y轴的交点在x轴下方,∴c<0,而a+b+c=0,b=2a,∴c=﹣3a,∴a﹣2b+c=﹣3b,∵b>0,∴﹣3b<0,所以④错误.故选:C.【点评】本题考查了二次函数的图象与系数的关系:二次函数y=ax2+bx+c(a≠0)的图象为抛物线,当a>0,抛物线开口向上;对称轴为直线x=﹣;抛物线与y轴的交点坐标为(0,c).3.下列图形中,不是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念求解.【解答】解:A、是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项正确;C、是中心对称图形,故本选项错误;D、是中心对称图形,故本选项错误;故选:B.【点评】本题考查了中心对称的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4.小王抛一枚质地均匀的硬币,连续抛4次,硬币均正面朝上落地,如果他再抛第5次,那么硬币正面朝上的概率为()A.1 B.C.D.【分析】直接利用概率的意义分析得出答案.【解答】解:因为一枚质地均匀的硬币只有正反两面,所以不管抛多少次,硬币正面朝上的概率都是,故选:B.【点评】此题主要考查了概率的意义,明确概率的意义是解答的关键.5.下列各式属于最简二次根式的是()A.B.C.D.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,由此结合选项可得出答案.【解答】解:A、含有能开方的因式,不是最简二次根式,故本选项错误;B、符合最简二次根式的定义,故本选项正确;C、含有能开方的因式,不是最简二次根式,故本选项错误;D、被开方数含分母,故本选项错误;故选:B.【点评】此题考查了最简二次根式的知识,解答本题的关键是熟练掌握最简二次根式满足的两个条件,属于基础题,难度一般.6.在⊙O中,P为其内一点,过点P的最长弦的长为8cm,最短的弦的长为4cm,则OP的长为()A.cm B.cm C.2cm D.1cm【分析】根据直径是圆中最长的弦,知该圆的直径是8cm;最短弦即是过点P且垂直于过点P的直径的弦;根据垂径定理即可求得CP的长,再进一步根据勾股定理,可以求得OP的长.【解答】解:如图所示,CD⊥AB于点P.根据题意,得:AB=8cm,CD=4cm.∵CD⊥AB,∴CP=CD=2.根据勾股定理,得OP ==2(cm).故选:A.【点评】此题综合运用了垂径定理和勾股定理.解题关键是正确理解圆中过一点的最长的弦和最短的弦.7.如图,在四个均由16个小正方形组成的网格正方形中,各有一个格点三角形,那么这四个三角形中,形状与众不同的是()A.B.C.D.【分析】分别求A、B、C、D选项中各边长,可以判定B、C、D中三角形为直角三角形,A为钝角三角形,即可解题.【解答】解:图A中三角形各边长为、、,故该三角形为钝角三角形;图B中各边长2、4、,故该三角形为直角三角形,且两直角边的比值为1:2;图C中各边长长、、,故该三角形为直角三角形,且两直角边的比值为1:2;图D中各边、2、5,故该三角形为直角三角形,且两直角边的比值为1:2,故B、C、D选项中的三角形均相似,故选:A.【点评】本题中考查了勾股定理的逆定理判定直角三角形,考查了相似三角形的证明,考查了勾股定理在直角三角形中的运用,本题中求证B、C、D选项中的直角三角形相似是解题的关键.8.如图,两个半圆,大半圆中长为16cm的弦AB平行于直径CD,且与小半圆相切,则图中阴影部分的面积为()A.34πcm2B.128πcm2C.32πcm2D.16πcm2【分析】作辅助线,连接OE和OB,根据已知条件,可知△OEB为直角三角形,根据勾股定理可将直角三角形的各边长表示出来,阴影的面积等于以OB和OE为半径的半圆的面积差.【解答】解:若大半圆的圆心为O,过点O作OE⊥AB于点E,连接OB,∵弦AB与小半圆相切,AB∥CD,∴小圆半径为OE,∴OE⊥AB,EB=AB=8cm,在Rt△OBE中,OB2=OE2+EB2,∴OB2﹣OE2=EB2=64,S阴影=﹣==32πcm2;故图中阴影部分的面积为32πcm2.故选C.【点评】注意:不规则图形面积的求法可用几个规则图形面积相加或相减求得.二.填空题(共8小题,满分24分,每小题3分)9.方程(x+5)(x﹣7)=﹣26,化成一般形式是x2﹣2x﹣9=0 ,其二次项的系数和一次项系数的和是﹣1 .【分析】一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项,其中a,b,c分别叫二次项系数,一次项系数,常数项.【解答】解:①由方程(x+5)(x﹣7)=﹣26,得x2﹣2x﹣35=﹣26,即x2﹣2x﹣9=0;②x2﹣2x﹣9=0的二次项系数是1,一次项系数是﹣2,所以其二次项的系数和一次项系数的和是1+(﹣2)=﹣1;故答案为:x2﹣2x﹣9=0;﹣1.【点评】本题主要考查了一元二次方程的一般形式,在去括号的过程中要注意符号的变化,不要漏乘,移项时要注意符号的变化.10.选做题(从下面两题中任选一题,如果做了两题的,只按第(1)题评分)(Ⅰ)计算:=0.1(Ⅱ)用计算器计算:≈0.316 (保留三位有效数字).【分析】(1)此题需根据二次根式的乘法法则进行计算,再把所得结果进行化简即可得出答案.(2)此题须先把转化成,再与进行相乘,即可求出答案.【解答】解:(Ⅰ)===0.1;(Ⅱ)==≈0.316,故答案为:0.1,0.316.【点评】此题考查了二次根式的乘除法,此题较简单,在解题时要注意最后结果要化简.11.将抛物线y=﹣5x2先向左平移5个单位.再向下平移3个单位,可以得到新的抛物线是:y=﹣5x2﹣50x﹣128【分析】根据向左平移横坐标减,向下平移纵坐标减求出新抛物线的顶点坐标,再利用顶点式解析式写出即可.【解答】解:∵抛物线y=﹣5x2先向左平移5个单位长度,再向下平移3个单位长度,∴新抛物线顶点坐标为(﹣5,﹣3),∴所得到的新的抛物线的解析式为y=﹣5(x+5)2﹣3,即y=﹣5x2﹣50x﹣128,故答案为y=﹣5x2﹣50x﹣128.【点评】本题考查了二次函数图象与几何变换,平移的规律:左加右减,上加下减,利用顶点的变化求解更简便.12.如图,在Rt△ABC中,AB=3,BC=4,∠ABC=90°,过B作A1B⊥AC,过A1作A1B1⊥BC,得阴影Rt△A1B1B;再过B1作B1A2⊥AC,过A2作A2B2⊥BC,得阴影Rt△A2B2B1;…如此下去.请猜测这样得到的所有阴影三角形的面积之和为2.【分析】根据相似三角形的性质,相似三角形的面积比等于相似比的平方,那么阴影部分面积与空白部分面积之比为16:25,那么所有的阴影部分面积之和可求了.【解答】解:易得△ABA1∽△BA1B1,∴相似比为A1B:AB=sin∠A=4:5,那么阴影部分面积与空白部分面积之比为16:25,同理可得到其他三角形之间也是这个情况,那么所有的阴影部分面积之和应等于=3×4÷2×=.【点评】本题主要考查了相似三角形的性质,相似三角形面积的比等于相似比的平方.13.已知抛物线y=2x2﹣5x+3与y轴的交点坐标是(0,3).【分析】y轴上点的坐标特点为横坐标为0,纵坐标为y,把x=0代入即可求得交点坐标为(0,3).【解答】解:当x=0时,y=3,即交点坐标为(0,3).【点评】本题考查了函数图象上的点的坐标与函数解析式的关系,要明确y轴上点的坐标横坐标为0.14.如图,在△ABC中,∠CAB=75°,在同一平面内,将△ABC绕点A旋转到△AB′C′的位置,使得CC′∥AB,则∠BAB′=30°.【分析】首先证明∠ACC′=∠AC′C;然后运用三角形的内角和定理求出∠CAC′=30°即可解决问题.【解答】解:由题意得:AC=AC′,∴∠ACC′=∠AC′C;∵CC′∥AB,且∠BAC=75°,∴∠ACC′=∠AC′C=∠BAC=75°,∴∠CAC′=180°﹣2×75°=30°;由题意知:∠BAB′=∠CAC′=30°,故答案为30°.【点评】此题主要考查了旋转的性质以及平行线的性质,得出AC=AC′,∠BAC=∠ACC′=75°是解题关键.15.如图所示:AP、PB、AB分别是三个半圆的直径,PQ⊥AB,面积为9π的圆O与两个半圆及PQ 都相切,而阴影部分的面积是39π,则AB的长是32 .【分析】设最大圆的圆心O1,中园圆心O2,小圆O3,小圆半径y,中圆半径x,过O点作ON ⊥AB于N,根据相切两圆的性质求出则OO1、OO3、O1N、O3N的长,由勾股定理得到方程求出xy=3(x+y),根据已知求出xy=48,代入即可求出AB.【解答】解:设最大圆的圆心O1,中园圆心O2,小圆O3,小圆半径y,中圆半径x,过O点作ON⊥AB于N,则OO1=x+y﹣3 OO3=y+3 O1N=O1P+PN=X﹣Y+3,O3N=Y﹣3,由勾股定理根据ON2=OO12﹣O1N2=OO32﹣O3N2,∴(x+y﹣3)2﹣(x﹣y+3)2=(y+3)2﹣(y﹣3)2,解方程得:xy=3(x+y),因为图中阴影部分的面积是39π,所以[π(x+y)2﹣πx2﹣πy2]﹣9π=39π,∴xy=48,x+y=16,∴AB=32,故答案为:32.【点评】本题主要考查对相切两圆的性质,勾股定理等知识点的理解和掌握,能推出xy=3(x+y)和xy=48是解此题的关键.16.如图,△ABC是格点三角形(三角形的三个顶点都是小正方形的顶点),若以格点P、A、B为顶点的三角形与△ABC相似但不全等,则格点P的坐标是(1,4)或(3,4).【分析】根据题意作图,因为不全等,可以作相似比为1:2的相似三角形,根据图形即可得解.【解答】解:如图:此时AB对应PA或PB,且相似比为1:2.故点P的坐标为:(1,4)或(3,4).【点评】此题考查了相似三角形的性质.解题的关键是数形结合思想的应用即根据题意作图解此题.还要注意别漏解.三.解答题(共9小题,满分72分)17.(6分)已知a=,b=,(1)求ab,a+b的值;(2)求的值.【分析】(1)直接利用平方差公式分别化简各式进而计算得出答案;(2)利用(1)中所求,结合分母有理化的概念得出有理化因式,进而化简得出答案.【解答】解:(1)∵a===+,b===﹣,∴ab=(+)×(﹣)=1,a+b=++﹣=2;(2)=+=(﹣)2+(+)2=5﹣2+5+2=10.【点评】此题主要考查了分母有理化,正确得出有理化因式是解题关键.18.(6分)已知:△ABC的两边AB、BC的长是关于x的一元二次方程x2﹣(2k+2)x+k2+2k=0的两个实数根,第三边长为10.问当k为何值时,△ABC是等腰三角形?【分析】因为方程有两个实根,所以△>0,从而用k的式子表示方程的解,根据△ABC是等腰三角形,分AB=AC,BC=AC,两种情况讨论,得出k的值.【解答】解法一:∵△=[﹣(2k+2)]2﹣4(k2+2k)=4k2+8k+4﹣4k2﹣8k≥0,(2分)∴x=∴x1=k+2,x2=k,(4分)设AB=k+2,BC=k,显然AB≠BC而△ABC的第三边长AC为10(1)若AB=AC,则k+2=10,得k=8,即k=8时,△ABC为等腰三角形;(2)若BC=AC,则k=10,即k=10时.△ABC为等腰三角形.(9分)解法二:由已知方程得:(x﹣k﹣2)(x﹣k)=0∴x1=k+2,x2=k(4分)[以下同解法一].【点评】解本题要充分利用条件,选择适当的方法求解k的值,从而证得△ABC为等腰三角形.19.(6分)如图,已知矩形OABC的两边OA,OC分别在x轴,y轴的正半轴上,且点B(4,3),反比例函数y=图象与BC交于点D,与AB交于点E,其中D(1,3).(1)求反比例函数的解析式及E点的坐标;(2)若矩形OABC对角线的交点为F,请判断点F是否在此反比例函数的图象上,并说明理由.【分析】(1)把已知点代入反比例函数的解析式,求出其解析式;再进一步把当x=4时代入,从而求出E点的坐标.(2)利用矩形及相似三角形的性质,判断出F点与反比例函数图象的关系.【解答】解:(1)把D(1,3)代入y=,得3=,∴k=3.∴y=.∴当x=4时,y=,∴E(4,).(2)点F在反比例函数的图象上.理由如下:连接AC,OB交于点F,过F作FH⊥x轴于H.∵四边形OABC是矩形,∴OF=FB=OB.又∵∠FHO=∠BAO=90°,∠FOH=∠BOA,∴△OFH∽△OBA.∴===,∴OH=2,FH=.∴F(2,).即当x=2时,y==,∴点F在反比例函数y=的图象上.【点评】本题比较复杂,把反比例函数y =的图象、矩形的性质及相似三角形的性质相结合,考查了学生对所学知识的综合运用能力.20.(6分)小明和小亮是一对双胞胎,他们的爸爸买了两套不同品牌的运动服送给他们,小明和小亮都想先挑选.于是小明设计了如下游戏来决定谁先挑选.游戏规则是:在一个不透明的袋子里装有除数字以外其它均相同的4个小球,上面分别标有数字1,2,3,4.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为奇数,则小明先挑选;否则小亮先挑选.(1)用树状图或列表法求出小明先挑选的概率;(2)你认为这个游戏公平吗?请说明理由.【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即小明先挑选或小亮先挑选的概率是否相等,求出概率比较,即可得出结论.【解答】解:(1)根据题意可列表或树状图如下:第一次12 3 4第二次1(1,2)(1,3)(1,4)2(2,1)(2,3)(2,4)3(3,1)(3,2)(3,4)4(4,1)(4,2)(4,3)(5分)从表可以看出所有可能结果共有12种,且每种结果发生的可能性相同,符合条件的结果有8种,∴P (和为奇数)=;(2)不公平.(8分)∵小明先挑选的概率是P(和为奇数)=,小亮先挑选的概率是P(和为偶数)=,∵,∴不公平.(10分)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.21.(8分)如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,﹣1).(1)把△ABC向上平移5个单位后得到对应的△A1B1C1,画出△A1B1C1,并写出C1的坐标;(2)以原点O为对称中心,再画出与△A1B1C1关于原点O对称的△A2B2C2,并写出点C2的坐标.【分析】根据平移作图的方法作图即可.根据图形特征或平移规律可求得坐标为①C1(4,4);②C2(﹣4,﹣4).【解答】解:根据平移定义和图形特征可得:①C1(4,4);②C2(﹣4,﹣4).【点评】本题考查的是平移变换与旋转变换作图.作平移图形时,找关键点的对应点也是关键的一步.平移作图的一般步骤为:①确定平移的方向和距离,先确定一组对应点;②确定图形中的关键点;③利用第一组对应点和平移的性质确定图中所有关键点的对应点;④按原图形顺序依次连接对应点,所得到的图形即为平移后的图形.作旋转后的图形的依据是旋转的性质,基本作法是:①先确定图形的关键点;②利用旋转性质作出关键点的对应点;③按原图形中的方式顺次连接对应点.要注意旋转中心,旋转方向和角度.中心对称是旋转180度时的特殊情况.22.(8分)如图,已知三角形ABC的边AB是⊙O的切线,切点为B.AC经过圆心O并与圆相交于点D、C,过C作直线CE丄AB,交AB的延长线于点E.(1)求证:CB平分∠ACE;(2)若BE=3,CE=4,求⊙O的半径.【分析】(1)证明:如图1,连接OB,由AB是⊙0的切线,得到OB⊥AB,由于CE丄AB,的OB∥CE,于是得到∠1=∠3,根据等腰三角形的性质得到∠1=∠2,通过等量代换得到结果.(2)如图2,连接BD通过△DBC∽△CBE,得到比例式,列方程可得结果.【解答】(1)证明:如图1,连接OB,∵AB是⊙0的切线,∴OB⊥AB,∵CE丄AB,∴OB∥CE,∴∠1=∠3,∵OB=OC,∴∠1=∠2∴∠2=∠3,∴CB平分∠ACE;(2)如图2,连接BD,∵CE丄AB,∴∠E=90°,∴BC===5,∵CD是⊙O的直径,∴∠DBC=90°,∴∠E=∠DBC,∴△DBC∽△CBE,∴,∴BC2=CD•CE,∴CD==,∴OC==,∴⊙O的半径=.【点评】本题考查了切线的性质,勾股定理,相似三角形的判定和性质,圆周角定理,平行线的判定和性质,正确的作出辅助线是解题的关键.23.(8分)某小区在绿化工程中有一块长为20m、宽为8m的矩形空地,计划在其中修建两块相同的矩形绿地,使它们的面积之和为56m2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),求人行通道的宽度.【分析】根据矩形的面积和为56平方米列出一元二次方程求解即可.【解答】解:设人行道的宽度为x米,根据题意得,(20﹣3x)(8﹣2x)=56,解得:x1=2,x2=(不合题意,舍去).答:人行道的宽为2米.【点评】本题考查了一元二次方程的应用,利用两块矩形的面积之和为56m2得出等式是解题关键.24.(12分)已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a <b.(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.【分析】(1)把M点坐标代入抛物线解析式可得到b与a的关系,可用a表示出抛物线解析式,化为顶点式可求得其顶点D的坐标;(2)把点M(1,0)代入直线解析式可先求得m的值,联立直线与抛物线解析式,消去y,可得到关于x的一元二次方程,可求得另一交点N的坐标,根据a<b,判断a<0,确定D、M、N 的位置,画图1,根据面积和可得△DMN的面积即可;(3)先根据a的值确定抛物线的解析式,画出图2,先联立方程组可求得当GH与抛物线只有一个公共点时,t的值,再确定当线段一个端点在抛物线上时,t的值,可得:线段GH与抛物线有两个不同的公共点时t的取值范围.【解答】解:(1)∵抛物线y=ax2+ax+b有一个公共点M(1,0),∴a+a+b=0,即b=﹣2a,∴y=ax2+ax+b=ax2+ax﹣2a=a(x+)2﹣,∴抛物线顶点D的坐标为(﹣,﹣);(2)∵直线y=2x+m经过点M(1,0),∴0=2×1+m,解得m=﹣2,∴y=2x﹣2,则,得ax2+(a﹣2)x﹣2a+2=0,∴(x﹣1)(ax+2a﹣2)=0,解得x=1或x=﹣2,∴N点坐标为(﹣2,﹣6),∵a<b,即a<﹣2a,∴a<0,如图1,设抛物线对称轴交直线于点E,∵抛物线对称轴为x=﹣=﹣,∴E(﹣,﹣3),∵M(1,0),N(﹣2,﹣6),设△DMN的面积为S,∴S=S△DEN+S△DEM=|(﹣2)﹣1|•|﹣﹣(﹣3)|=,(3)当a=﹣1时,抛物线的解析式为:y=﹣x2﹣x+2=﹣(x+)2+,有,﹣x2﹣x+2=﹣2x,解得:x1=2,x2=﹣1,∴G(﹣1,2),∵点G、H关于原点对称,∴H(1,﹣2),设直线GH平移后的解析式为:y=﹣2x+t,﹣x2﹣x+2=﹣2x+t,x2﹣x﹣2+t=0,△=1﹣4(t﹣2)=0,t=,当点H平移后落在抛物线上时,坐标为(1,0),把(1,0)代入y=﹣2x+t,t=2,∴当线段GH与抛物线有两个不同的公共点,t的取值范围是2≤t<.【点评】本题为二次函数的综合应用,涉及函数图象的交点、二次函数的性质、根的判别式、三角形的面积等知识.在(1)中由M的坐标得到b与a的关系是解题的关键,在(2)中联立两函数解析式,得到关于x的一元二次方程是解题的关键,在(3)中求得GH与抛物线一个交点和两个交点的分界点是解题的关键,本题考查知识点较多,综合性较强,难度较大.25.(12分)如图,点E在菱形ABCD的对角线BD上,连接AE,且AE=BE,⊙O是△ABE的外接圆,连接OB.(1)求证:OB⊥BC;(2)若BD=,tan∠OBD=2,求⊙O的半径.【分析】(1)根据圆周角定理求出∠AOE=∠BOE,求出OE平分AB且垂直于AB,即可得出结论;(2)解直角三角形求出CG和EF,根据勾股定理得出方程,求出r即可.【解答】(1)证明:连接OA、OE,设OE交AB于F,∵AE=BE,∴∠AOE=∠BOE,∵OA=OB,∴AF=BF,OE⊥AB,∴∠OFB=∠BFE=90°,∴∠BEF+∠EBF=90°,∵四边形ABCD是菱形,∴∠CBD=∠ABD,∵OB=OE,∴∠OBE=CEB,∴∠OBE+∠CBD=90°,∴∠OBC=90°,∴OB⊥BC;(2)解:连接AC交BD于G,∵四边形ABCD是菱形,∴AB=BC,AC⊥BD,BG=BD=,∴∠BGC=90°,∴∠GCB+∠GBC=90°,∵∠OBD+∠CBG=90°,∴∠GCB=∠OBD,在Rt△BCG中,tan∠GCB=tan∠OBD=2,∴=2,∴CG=,∴BC===8,∴AB=8,∴BF=4,在Rt△BEF中,tan∠BEF=tan∠OBD=2,∴=2,∴EF=2,设⊙O的半径为r,在Rt△BOF中,OF2+BF2=OB2,(r﹣2)2+42=r2,解得:r=5,即⊙O的半径为5.【点评】本题考查了菱形性质、解直角三角形、勾股定理、圆周角定理等知识点,能综合运用定理进行推理是解此题的关键.。

云南省昆明市2019-2020学年中考数学第二次调研试卷含解析

云南省昆明市2019-2020学年中考数学第二次调研试卷含解析

云南省昆明市2019-2020学年中考数学第二次调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在Rt△ABC中,BC=2,∠BAC=30°,斜边AB的两个端点分别在相互垂直的射线OM,ON 上滑动,下列结论:①若C,O两点关于AB对称,则OA=23;②C,O两点距离的最大值为4;③若AB平分CO,则AB⊥CO;④斜边AB的中点D运动路径的长为π.其中正确的是()A.①②B.①②③C.①③④D.①②④2.下列运算正确的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3 D.a2•a4=a63.如图是某个几何体的展开图,该几何体是()A.三棱柱B.三棱锥C.圆柱D.圆锥4.对于一组统计数据:1,6,2,3,3,下列说法错误的是( )A.平均数是3 B.中位数是3 C.众数是3 D.方差是2.55.下列运算不正确的是A.B.C.D.6.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A .B .C .D . 7.已知关于x 的方程2222x x a x x x x x +-+=--恰有一个实根,则满足条件的实数a 的值的个数为( ) A .1 B .2 C .3 D .48.如图,圆O 是等边三角形内切圆,则∠BOC 的度数是( )A .60°B .100°C .110°D .120°9.世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.0000000076克,将数0.0000000076用科学记数法表示为( )A .7.6×10﹣9B .7.6×10﹣8C .7.6×109D .7.6×10810.如图是一个几何体的主视图和俯视图,则这个几何体是( )A .三棱柱B .正方体C .三棱锥D .长方体11.如图,△ABC 的面积为8cm 2 , AP 垂直∠B 的平分线BP 于P ,则△PBC 的面积为( )A .2cm 2B .3cm 2C .4cm 2D .5cm 212.如图,在ABC ∆中,90ACB ∠=o ,6AC =,8BC =,点,P Q 分别在,AB BC 上,AQ CP ⊥于D ,45CQ BP =则ACP ∆的面积为( )A .232B .252C .272D .292二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知 a 、b 是方程 x 2﹣2x ﹣1=0 的两个根,则 a 2﹣a+b 的值是_______.14.如图,已知在平行四边形ABCD 中,E 是边AB 的中点,F 在边AD 上,且AF :FD=2:1,如果AB →=a →,BC →=b →,那么EF →=_____.15.如图,△ABC 中,AB=AC ,以AC 为斜边作Rt △ADC ,使∠ADC=90°,∠CAD=∠CAB=26°,E 、F 分别是BC 、AC 的中点,则∠EDF 等于__________°.16.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[1.3]=1,(1.3)=3,[1.3)=1.则下列说法正确的是________.(写出所有正确说法的序号)①当x=1.7时,[x]+(x )+[x )=6;②当x=﹣1.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.17.点A (a ,b )与点B (﹣3,4)关于y 轴对称,则a+b 的值为_____.18.若关于x 的一元二次方程230x x m -+=有实数根,则m 的取值范围是________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,⊙O 是△ABC 的外接圆,点O 在BC 边上,∠BAC 的平分线交⊙O 于点D ,连接BD 、CD ,过点D 作BC 的平行线与AC 的延长线相交于点P .求证:PD 是⊙O 的切线;求证:△ABD ∽△DCP ;当AB=5cm ,AC=12cm 时,求线段PC 的长.20.(6分)如图,海中有一个小岛 A ,该岛四周 11 海里范围内有暗礁.有一货轮在海面上由西向正东方向航行,到达B 处时它在小岛南偏西60°的方向上,再往正东方向行驶10海里后恰好到达小岛南偏西45°方向上的点C 处.问:如果货轮继续向正东方向航行,是否会有触礁的危险?(参考数据:2≈1.41,3≈1.73)21.(6分)先化简,再求值:2211()111x x x x -÷+--,其中12x =-. 22.(8分)观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯= ⋯⋯2222211111(1)(1)(1)(1)(1)2345n-----=L L ______(用含n 的代数式表示,n 是正整数,且 n ≥ 2) 23.(8分)计算:(-1)-127012⎛⎫- ⎪⎝⎭324.(10分)如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O ,A ,B 均为网格线的交点.在给定的网格中,以点O 为位似中心,将线段AB 放大为原来的2倍,得到线段11A B (点A ,B 的对应点分别为11A B 、).画出线段11A B ;将线段11A B 绕点1B 逆时针旋转90°得到线段21A B .画出线段21A B ;以112A A B A 、、、为顶点的四边形112AA B A 的面积是 个平方单位.25.(10分)每到春夏交替时节,雌性杨树会以满天飞絮的方式来传播下一代,漫天飞舞的杨絮易引发皮肤病、呼吸道疾病等,给人们造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如下尚不完整的统计图.治理杨絮一一您选哪一项?(单选)A.减少杨树新增面积,控制杨树每年的栽种量B.调整树种结构,逐渐更换现有杨树C.选育无絮杨品种,并推广种植D.对雌性杨树注射生物干扰素,避免产生飞絮E.其他根据以上统计图,解答下列问题:(1)本次接受调查的市民共有人;(2)扇形统计图中,扇形E的圆心角度数是;(3)请补全条形统计图;(4)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.26.(12分)如图1,在四边形ABCD中,AD∥BC,AB=CD=13,AD=11,BC=21,E是BC的中点,P是AB上的任意一点,连接PE,将PE绕点P逆时针旋转90°得到PQ.(1)如图2,过A点,D点作BC的垂线,垂足分别为M,N,求sinB的值;(2)若P是AB的中点,求点E所经过的路径弧EQ的长(结果保留π);(3)若点Q落在AB或AD边所在直线上,请直接写出BP的长.27.(12分)如图,小华和同伴在春游期间,发现在某地小山坡的点E 处有一棵盛开的桃花的小桃树,他想利用平面镜测量的方式计算一下小桃树到山脚下的距离,即DE 的长度,小华站在点B 的位置,让同伴移动平面镜至点C 处,此时小华在平面镜内可以看到点E ,且BC =2.7米,CD =11.5米,∠CDE =120°,已知小华的身高为1.8米,请你利用以上的数据求出DE 的长度.(结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:①先根据直角三角形30°的性质和勾股定理分别求AC 和AB ,由对称的性质可知:AB 是OC 的垂直平分线,所以23OA AC ==;②当OC 经过AB 的中点E 时,OC 最大,则C 、O 两点距离的最大值为4;③如图2,当∠ABO=30°时,易证四边形OACB 是矩形,此时AB 与CO 互相平分,但所夹锐角为60°,明显不垂直,或者根据四点共圆可知:A 、C 、B 、O 四点共圆,则AB 为直径,由垂径定理相关推论:平分弦(不是直径)的直径垂直于这条弦,但当这条弦也是直径时,即OC 是直径时,AB 与OC 互相平分,但AB 与OC 不一定垂直;④如图3,半径为2,圆心角为90°,根据弧长公式进行计算即可.详解:在Rt △ABC 中,∵°2,30BC BAC ,=∠=∴224,4223AB AC ,==-=①若C.O 两点关于AB 对称,如图1,∴AB 是OC 的垂直平分线,则23OA AC ==;所以①正确;②如图1,取AB 的中点为E ,连接OE 、CE ,∵°90AOB ACB ,∠=∠= ∴12,2OE CE AB === 当OC 经过点E 时,OC 最大,则C.O 两点距离的最大值为4;所以②正确;③如图2,当°30ABO ∠=时, °90OBC AOB ACB ∠=∠=∠=,∴四边形AOBC 是矩形,∴AB 与OC 互相平分,但AB 与OC 的夹角为°°60120、,不垂直, 所以③不正确;④如图3,斜边AB 的中点D 运动路径是:以O 为圆心,以2为半径的圆周的1,4则:90π2π, 180⨯=所以④正确;综上所述,本题正确的有:①②④;故选D.点睛:属于三角形的综合体,考查了直角三角形的性质,直角三角形斜边上中线的性质,轴对称的性质,弧长公式等,熟练掌握直角三角形斜边的中线等于斜边的一半是解题的关键.2.D【解析】【分析】根据幂的乘方法则:底数不变,指数相乘;完全平方公式:(a±b)2=a2±2ab+b2;合并同类项的法则:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变;同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加分别进行计算即可.【详解】A、(a2)5=a10,故原题计算错误;B、(x﹣1)2=x2﹣2x+1,故原题计算错误;C、3a2b和3ab2不是同类项,不能合并,故原题计算错误;D、a2•a4=a6,故原题计算正确;故选:D.【点睛】此题主要考查了幂的乘方、完全平方公式、合并同类项和同底数幂的乘法,关键是掌握各计算法则.3.A【解析】【分析】侧面为长方形,底面为三角形,故原几何体为三棱柱.【详解】解:观察图形可知,这个几何体是三棱柱.故本题选择A.【点睛】会观察图形的特征,依据侧面和底面的图形确定该几何体是解题的关键.4.D【解析】【分析】根据平均数、中位数、众数和方差的定义逐一求解可得.【详解】解:A、平均数为=3,正确;B、重新排列为1、2、3、3、6,则中位数为3,正确;C、众数为3,正确;D、方差为×[(1-3)2+(6-3)2+(2-3)2+(3-3)2+(3-3)2]=2.8,错误;故选:D.【点睛】本题考查了众数、平均数、中位数、方差.平均数平均数表示一组数据的平均程度.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数);方差是用来衡量一组数据波动大小的量.5.B【解析】,B是错的,A、C、D运算是正确的,故选B6.B【解析】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=,故选B.7.C【解析】【分析】先将原方程变形,转化为整式方程后得2x2-3x+(3-a)=1①.由于原方程只有一个实数根,因此,方程①的根有两种情况:(1)方程①有两个相等的实数根,此二等根使x(x-2)≠1;(2)方程①有两个不等的实数根,而其中一根使x(x-2)=1,另外一根使x(x-2)≠1.针对每一种情况,分别求出a的值及对应的原方程的根.【详解】去分母,将原方程两边同乘x(x﹣2),整理得2x2﹣3x+(3﹣a)=1.①方程①的根的情况有两种:(1)方程①有两个相等的实数根,即△=9﹣3×2(3﹣a)=1.解得a=238.当a=238时,解方程2x2﹣3x+(﹣72+3)=1,得x1=x2=34.(2)方程①有两个不等的实数根,而其中一根使原方程分母为零,即方程①有一个根为1或2.(i)当x=1时,代入①式得3﹣a=1,即a=3.当a=3时,解方程2x2﹣3x=1,x(2x﹣3)=1,x1=1或x2=1.4.而x1=1是增根,即这时方程①的另一个根是x=1.4.它不使分母为零,确是原方程的唯一根.(ii)当x=2时,代入①式,得2×3﹣2×3+(3﹣a)=1,即a=5.当a=5时,解方程2x2﹣3x﹣2=1,x1=2,x2=﹣12.x1是增根,故x=﹣12为方程的唯一实根;因此,若原分式方程只有一个实数根时,所求的a的值分别是238,3,5共3个.故选C.【点睛】考查了分式方程的解法及增根问题.由于原分式方程去分母后,得到一个含有字母的一元二次方程,所以要分情况进行讨论.理解分式方程产生增根的原因及一元二次方程解的情况从而正确进行分类是解题的关键.8.D【解析】【分析】由三角形内切定义可知OB 、OC 是∠ABC 、∠ACB 的角平分线,所以可得到关系式∠OBC+∠OCB=12(∠ABC+∠ACB ),把对应数值代入即可求得∠BOC 的值.【详解】解:∵△ABC 是等边三角形,∴∠A=∠ABC=∠ACB=60°,∵圆O 是等边三角形内切圆,∴OB 、OC 是∠ABC 、∠ACB 的角平分线,∴∠OBC+∠OCB=12(∠ABC+∠ACB )=12(180°﹣60°)=60°, ∴∠BOC=180°﹣60=120°,故选D .【点睛】此题主要考查了三角形的内切圆与内心以及切线的性质.关键是要知道关系式∠OBC+∠OCB=12(∠ABC+∠ACB ).9.A【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将0.0000000076用科学计数法表示为97.610-⨯.故选A.【点睛】本题考查了用科学计数法表示较小的数,一般形式为a×10n -,其中110a ≤<,n 为由原数左边起第一个不为0的数字前面的0的个数所决定.10.A【解析】【分析】根据三视图的知识使用排除法即可求得答案.【详解】如图,由主视图为三角形,排除了B 、D ,由俯视图为长方形,可排除C ,故选A .【点睛】本题考查了由三视图判断几何体的知识,做此类题时可利用排除法解答.11.C【解析】【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE 等底同高,可以证明两三角形面积相等,即可求得△PBC的面积.【详解】延长AP交BC于E.∵AP垂直∠B的平分线BP于P,∴∠ABP=∠EBP,∠APB=∠BPE=90°.在△APB和△EPB中,∵,∴△APB≌△EPB(ASA),∴S△APB=S△EPB,AP=PE,∴△APC和△CPE等底同高,∴S△APC=S△PCE,∴S△PBC=S△PBE+S△PCE S△ABC=4cm1.故选C.【点睛】本题考查了三角形面积和全等三角形的性质和判定的应用,关键是求出S△PBC=S△PBE+S△PCE S△ABC.12.C【解析】【分析】先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE,最后用面积的差即可得出结论;【详解】∵45 CQBP,∴CQ=4m,BP=5m,在Rt△ABC中,sinB=35,tanB=34,如图2,过点P作PE⊥BC于E,在Rt△BPE中,PE=BP•sinB=5m×35=3m,tanB=PEBE,∴334 mBE=,∴BE=4m,CE=BC-BE=8-4m,同(1)的方法得,∠1=∠3,∵∠ACQ=∠CEP,∴△ACQ∽△CEP,∴CQ AC PE CE=,∴46384mm m=-,∴m=78,∴PE=3m=218,∴S△ACP=S△ACB-S△PCB=12BC×AC-12BC×PE=12BC(AC-PE)=12×8×(6-218)=272,故选C.【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ∽△CEP是解题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据一元二次方程的解及根与系数的关系,可得出a2-2a=1、a+b=2,将其代入a2-a+b中即可求出结论.【详解】∵a、b是方程x2-2x-1=0的两个根,∴a2-2a=1,a+b=2,∴a2-a+b=a2-2a+(a+b)=1+2=1.故答案为1.【点睛】本题考查根与系数的关系以及一元二次方程的解,牢记两根之和等于-b a 、两根之积等于c a是解题的关键. 14.2132b a -r r 【解析】【分析】根据 EF EA AF=+u u u v u u u v u u u v ,只要求出AE u u u r 、AF u u u r 即可解决问题;【详解】∵四边形ABCD 是平行四边形,,AD BC AD BC ∴=P ,AD BC b ∴==u u u v u u u v v ,2AF DF =Q ,23AF b ∴=u u u v v , ,AB a AE EB ==u u u v v Q ,12AE a ∴=u u u v v , EF EA AF =+u u u v u u u v Q u u u v ,2132EF b a =-u u u v v v Q . 故答案为2132b a -r r . 【点睛】本题考查的知识点是平面向量,平行四边形的性质,解题关键是表达出AE u u u r 、AF u u u r .15.51【解析】Q E 、F 分别是BC 、AC 的中点.12EF AB ∴P , Q ∠CAB=26°26EFC ∴∠=︒又90ADC ∠=︒Q12DF AC AF ∴== Q ∠CAD =26°52CFD ∴∠=︒78EFD ∴∠=︒AB AC =QEF FD ∴= 18078512EDF ︒-︒∴∠==︒ !16.②③【解析】试题解析:①当x=1.7时,[x]+(x )+[x )=[1.7]+(1.7)+[1.7)=1+1+1=5,故①错误;②当x=﹣1.1时,[x]+(x )+[x )=[﹣1.1]+(﹣1.1)+[﹣1.1)=(﹣3)+(﹣1)+(﹣1)=﹣7,故②正确;③当1<x <1.5时,4[x]+3(x )+[x )=4×1+3×1+1=4+6+1=11,故③正确;④∵﹣1<x <1时,∴当﹣1<x <﹣0.5时,y=[x]+(x )+x=﹣1+0+x=x ﹣1,当﹣0.5<x <0时,y=[x]+(x )+x=﹣1+0+x=x ﹣1,当x=0时,y=[x]+(x )+x=0+0+0=0,当0<x <0.5时,y=[x]+(x )+x=0+1+x=x+1,当0.5<x <1时,y=[x]+(x )+x=0+1+x=x+1,∵y=4x ,则x ﹣1=4x 时,得x=;x+1=4x 时,得x=;当x=0时,y=4x=0,∴当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误, 故答案为②③.考点:1.两条直线相交或平行问题;1.有理数大小比较;3.解一元一次不等式组.17.1【解析】【分析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”解答即可.【详解】解:∵点(,)A a b 与点()3,4B - 关于y 轴对称,∴3,4a b ==7a b +=故答案为1.【点睛】考查关于y 轴对称的点的坐标特征,纵坐标不变,横坐标互为相反数.18.94m ≤ 【解析】【分析】由题意可得,△=9-4m≥0,由此求得m 的范围.【详解】∵关于x 的一元二次方程x 2-3x+m=0有实数根,∴△=9-4m≥0,求得 m≤.故答案为:94m ≤【点睛】本题考核知识点:一元二次方程根判别式. 解题关键点:理解一元二次方程根判别式的意义.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)证明见解析;(3)CP=16.9cm .【解析】【分析】(1)先判断出∠BAC=2∠BAD ,进而判断出∠BOD=∠BAC=90°,得出PD ⊥OD 即可得出结论;(2)先判断出∠ADB=∠P ,再判断出∠DCP=∠ABD ,即可得出结论;(3)先求出BC ,再判断出BD=CD ,利用勾股定理求出BC=BD=1322,最后用△ABD ∽△DCP 得出比例式求解即可得出结论.【详解】(1)如图,连接OD ,∵BC 是⊙O 的直径,∴∠BAC=90°,∵AD 平分∠BAC ,∴∠BAC=2∠BAD,∵∠BOD=2∠BAD,∴∠BOD=∠BAC=90°,∵DP∥BC,∴∠ODP=∠BOD=90°,∴PD⊥OD,∵OD是⊙O半径,∴PD是⊙O的切线;(2)∵PD∥BC,∴∠ACB=∠P,∵∠ACB=∠ADB,∴∠ADB=∠P,∵∠ABD+∠ACD=180°,∠ACD+∠DCP=180°,∴∠DCP=∠ABD,∴△ABD∽△DCP;(3)∵BC是⊙O的直径,∴∠BDC=∠BAC=90°,在Rt△ABC中,,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴BD=CD,在Rt△BCD中,BD2+CD2=BC2,∴BD=CD=2BC=2,∵△ABD∽△DCP,∴AB BDCD CP=,22CP=,∴CP=16.9cm.【点睛】本题考查了切线的判定、相似三角形的判定与性质等,熟练掌握切线的判定方法、相似三角形的判定与性质定理是解题的关键.20.不会有触礁的危险,理由见解析.【解析】分析:作AH⊥BC,由∠CAH=45°,可设AH=CH=x,根据BHtan BAHAH∠=可得关于x的方程,解之可得.详解:过点A作AH⊥BC,垂足为点H.由题意,得∠BAH=60°,∠CAH=45°,BC=1.设AH=x,则CH=x.在Rt△ABH中,∵1060310BH xtan BAH tan x xAH x∠+=∴︒==+,,,解得:53513.65x=≈.∵13.65>11,∴货轮继续向正东方向航行,不会有触礁的危险.点睛:本题考查了解直角三角形的应用﹣方向角问题,解一般三角形的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.21.2x -,4.【解析】【分析】先括号内通分,然后计算除法,最后代入化简即可.【详解】原式=()2221112=-1x x xxx x--+-⨯-.当12x=-时,原式=4.【点睛】此题考查分式的化简求值,解题关键在于掌握运算法则.22.12n n+ 【解析】【分析】由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣12)和(1+1n )相乘得出结果. 【详解】 2222211111111112345n -----L L ()()()()() =1111111111111111223344n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L =132431...22334n n+⨯⨯⨯⨯⨯⨯ =12n n+. 故答案为:12n n+. 【点睛】本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.23.-1【解析】试题分析:根据运算顺序先分别进行负指数幂的计算、二次根式的化简、0次幂的运算、绝对值的化简,然后再进行加减法运算即可.试题解析:原式=-1-11+=-1.24.(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA 并延长至A 1,使OA 1=2OA ,同样的方法得到B1,连接A 1B 1即可得;(2)结合网格特点根据旋转作图的方法找到A 2点,连接A 2B 1即可得;(3)根据网格特点可知四边形AA 1 B 1 A 2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA 1 B 1 A 2是正方形,AA 1=所以四边形AA 1 B 1 A 2的面积为:(2=20,故答案为20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.25.(1)2000;(2)28.8°;(3)补图见解析;(4)36万人.【解析】分析:(1)将A选项人数除以总人数即可得;(2)用360°乘以E选项人数所占比例可得;(3)用总人数乘以D选项人数所占百分比求得其人数,据此补全图形即可得;(4)用总人数乘以样本中C选项人数所占百分比可得.详解:(1)本次接受调查的市民人数为300÷15%=2000人,(2)扇形统计图中,扇形E的圆心角度数是360°×1602000=28.8°,(3)D选项的人数为2000×25%=500,补全条形图如下:(4)估计赞同“选育无絮杨品种,并推广种植”的人数为90×40%=36(万人).点睛:本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.26.(1);(2)5π;(3)PB的值为或.【解析】【分析】(1)如图1中,作AM⊥CB用M,DN⊥BC于N,根据题意易证Rt△ABM≌Rt△DCN,再根据全等三角形的性质可得出对应边相等,根据勾股定理可求出AM的值,即可得出结论;(2)连接AC,根据勾股定理求出AC的长,再根据弧长计算公式即可得出结论;(3)当点Q落在直线AB上时,根据相似三角形的性质可得对应边成比例,即可求出PB的值;当点Q 在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G,设PB=x,则AP=13﹣x,再根据全等三角形的性质可得对应边相等,即可求出PB的值.【详解】解:(1)如图1中,作AM⊥CB用M,DN⊥BC于N.∴∠DNM=∠AMN=90°,∵AD∥BC,∴∠DAM=∠AMN=∠DNM=90°,∴四边形AMND是矩形,∴AM=DN,∵AB=CD=13,∴Rt△ABM≌Rt△DCN,∴BM=CN,∵AD=11,BC=21,∴BM=CN=5,∴AM==12,在Rt△ABM中,sinB==.(2)如图2中,连接AC.在Rt△ACM中,AC===20,∵PB=PA,BE=EC,∴PE=AC=10,∴的长==5π.(3)如图3中,当点Q落在直线AB上时,∵△EPB∽△AMB,∴==,∴==,∴PB=.如图4中,当点Q在DA的延长线上时,作PH⊥AD交DA的延长线于H,延长HP交BC于G.设PB=x,则AP=13﹣x.∵AD∥BC,∴∠B=∠HAP,∴PG=x,PH=(13﹣x),∴BG=x,∵△PGE≌△QHP,∴EG=PH,∴﹣x=(13﹣x),∴BP=.综上所述,满足条件的PB的值为或.【点睛】本题考查了相似三角形与全等三角形的性质,解题的关键是熟练的掌握相似三角形与全等三角形的判定与性质.27.DE 的长度为63+1.【解析】【分析】根据相似三角形的判定与性质解答即可.【详解】解:过E 作EF ⊥BC ,∵∠CDE =120°,∴∠EDF =60°,设EF 为x ,DF 3, ∵∠B =∠EFC =90°,∵∠ACB =∠ECD ,∴△ABC ∽△EFC ,∴BC CF AB EF=, 即1.82.7311.5x =+, 解得:x =3∴DE =(239233+3, 答:DE 的长度为3.【点睛】本题考查相似三角形性质的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.。

云南昆明市2019年中考数学模拟试卷

云南昆明市2019年中考数学模拟试卷

云南昆明市2019届中考数学二模试卷一.选择题(每题4分,满分32分)1.中国倡导“一带一路”建设将促进我国与世界各国的互利合作,根据规划“一带一路”地区覆盖总人口约为44亿人,数据44亿用科学记数法表示为()A.44×108B.4.4×109C.4.4×108D.44×10102.如图,是某个几何体从不同方向看到的形状图(视图),这个几何体的表面能展开成下面的哪个平面图形?()A.B.C.D.3.下列运算正确的是()A.a2⋅a3=a6B.(a2)3=a6C.(﹣ab2)6=a6b6D.(a+b)2=a2+b24.下表是皖西某中学八年级(1)、(2)两班学生同一次单元测试的成绩统计表.从表中的数据知,成绩较为稳定的班级是()A.八(1)班B.八(2)班C.两班成绩一样稳定D.无法比较5.如果分式的值为零,那么x等于()A.1 B.﹣1 C.0 D.±16.菱形的两条对角线长分别为6,8,则它的周长是()A.5 B.10 C.20 D.247.不解方程,判别方程2x2﹣3x=3的根的情况()A.有两个相等的实数根B.有两个不相等的实数根C.有一个实数根D.无实数根8.如图所示,四边形OABC为正方形,边长为6,点A,C分别在x轴,y轴的正半轴上,点D在OA上,且D的坐标为(2,0),P是OB上的一动点,试求PD+PA和的最小值是()A.2B.C.4 D.6二.填空题(满分24分,每小题4分)9.相反数是它本身的数是;绝对值是它本身的数是;倒数是它本身的数是.10.小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一块带去,就能配一块与原来一样大小的三角形?应该带第块.11.分式方程的解为.12.将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.13.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组.14.如图,从一个直径为1m的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为m.三.解答题15.已知不等式组,并求此不等式组的整数解.16.为更好地开展选修课,戏剧社的张老师统计了近五年该社团学生参加市级比赛的获奖情况,并绘制成如下两幅不完整的统计图,请根据图中的信息,完成下列问题:(1)该社团2017年获奖学生人数占近五年获奖总人数的百分比为,补全折线统计图;(2)该社团2017年获奖学生中,初一、初二年级各有一名学生,其余全是初三年级学生,张老师打算从2017年获奖学生中随机抽取两名学生参加学校的艺术节表演,请你用列表法或画树状图的方法,求出所抽取两名学生恰好都来自初三年级的概率.17.一只不透明的袋子中装有4个质地,大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:解答下列问题:(1)如果实验继续进行下去,根据上表提供数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是.(2)如果摸出这两个小球上数字之和为9的概率是,那么x 的值可以取7吗?请用列表或画树状图的方法说明理由.18.(5分)一艘轮船由南向北航行,如图,在A 处测得小岛P 在北偏西15°方向上,两个小时后,轮船在B 处测得小岛P 在北偏西30°方向上,在小岛周围18海里内有暗礁,问若轮船按20海里/时的速度继续向北航行,有无触礁的危险?19.(5分)观察下列式子: 0×2+1=12……① 1×3+1=22……② 2×4+1=32……③ 3×5+1=42……④ ……(1)第⑤个式子 ,第⑩个式子 ;(2)请用含n (n 为正整数)的式子表示上述的规律,并证明: (3)求值:(1+)(1+)(1+)(1+) (1)).20.(5分)如图,一次函数y =kx +b (k ≠0)与反比例函数y =(a ≠0)的图象在第一象限交于A 、B 两点,A 点的坐标为(m ,4),B 点的坐标为(3,2),连接OA 、OB ,过B 作BD ⊥y 轴,垂足为D ,交OA 于C .若OC =CA ,(1)求一次函数和反比例函数的表达式; (2)求△AOB 的面积;(3)在直线BD 上是否存在一点E ,使得△AOE 是直角三角形,求出所有可能的E 点坐标.21.(5分)如图,点D 在⊙O 的直径AB 的延长线上,点C 在⊙O 上,且AC =CD ,∠ACD =120°. (1)求证:CD 是⊙O 的切线;(2)若⊙O 的半径为2,求图中阴影部分的面积.22.(5分)某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式; (2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?23.设关于x 的方程2x 2﹣kx ﹣2=0有两个不同的实根x 1,x 2(x 1<x 2).(1)若m =x 1+x 2,求证:2m 2﹣km ﹣2<0;(2)若x 1<a <b <x 2,求证:<.参考答案一.选择题1.解:44亿=4.4×109故选:B.2.解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱,因此图A是圆柱的展开图.故选:A.3.解:A、同底数幂的乘法底数不变值数相加,故A错误;B、幂的乘方底数不变指数相乘,故B正确;C、积的乘方等于乘方的积,故C错误;D、和的平方等于平方和加积的二倍,故D错误;故选:B.4.解:∵S2八(1)>5,S2八(2),∴成绩比较稳定的是八(2)班.故选:B.5.解:∵分式的值为零,∴,解得x=﹣1.故选:B.6.解:由于菱形的两条对角线的长为6和8,∴菱形的边长为:=5,∴菱形的周长为:4×5=20,故选:C.7.解:方程整理得2x2﹣3x﹣3=0,∵△=(﹣3)2﹣4×2×(﹣3)=18+24>0,∴方程有两个不相等的实数根.故选:B.8.解:连接CD,交OB于P.则CD就是PD+PA和的最小值.∵在直角△OCD中,∠COD=90°,OD=2,OC=6,∴CD==2,∴PD+PA=PD+PC=CD=2.∴PD+PA和的最小值是2.故选:A.二.填空题(共6小题,满分24分,每小题4分)9.解:∵0的相反数是0,∴相反数是它本身的数是0;∵非负数的绝对值是它本身,∴绝对值是它本身的数是非负数;∵±1的倒数是它本身,∴倒数是它本身的数是±1.故答案为:0,非负数,±1.10.解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故答案为:2.11.解:去分母得:x+2=6,解得:x=4,经检验x=4是分式方程的解.故答案为:x=412.解:∵对边平行,∴∠2=∠α,由折叠可得,∠2=∠3,∴∠α=∠3,又∵∠1=∠4=52°,∴∠α=(180°﹣52°)=64°,故答案为:64°.13.解:设租住三人间x间,租住两人间y间,由题意,得,故答案是:.14.解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为: m,∴扇形的弧长为:=πm,∴圆锥的底面半径为:π÷2π=m.三.解答题(共9小题,满分39分)15.解:解不等式①得,x≥﹣;解不等式②得,x<1,∴不等式组的解集为﹣≤x<1,∴不等式组的整数解是0.16.(1)近五年获奖总人数=7÷35%=20(人)该社团2013年获奖占近五年获奖总人数的百分比==5%,所以该社团2017年获奖占近五年获奖总人数的百分比=25%﹣5%=20%,所以该社团2017年获奖总人数=20×20%=4,补全折线统计图为:故答案为20%;(2)画树状图为:(用A表示初一学生、用B表示初二学生,用C、C表示初三学生)共有12种等可能的结果数,其中所抽取两名学生恰好都来自初三年级的结果数为2,所以所抽取两名学生恰好都来自初三年级的概率==.17.解:(1)根据随着实验的次数不断增加,出现“和为8”的频率是,故出现“和为8”的概率是;故答案为:(2)假设x=7,则P(和为9)=≠,所以,x的值不能为7.18.解:如图,作PD⊥AB交AB延长线于D点,∵∠PBC=30°,∴∠PAB=15°,∴∠APB=∠PBC﹣∠PAB=15°,∴PB=AB=20×2=40 (海里),在Rt△BPD中,∴PD=PB=20(海里),∵20>18,∴不会触礁.19.解:(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102,故答案为:4×6+1=52,9×11+1=102;(2)第n个式子为(n﹣1)(n+1)+1=n2,证明:左边=n2﹣1+1=n2,右边=n2,∴左边=右边,即(n﹣1)(n+1)+1=n2.(3)原式=×××…×=×××……×==.20.解:(1)∵点B(3,2)在反比例函数y=的图象上,∴a=3×2=6,∴反比例函数的表达式为y =,∵点A 的纵坐标为4,∵点A 在反比例函数y =图象上,∴A (,4),∴,∴,∴一次函数的表达式为y =﹣x +6;(2)如图1,过点A 作AF ⊥x 轴于F 交OB 于G , ∵B (3,2),∴直线OB 的解析式为y =x ,∴G (,1),A (,4),∴AG =4﹣1=3,∴S △AOB =S △AOG +S △ABG =×3×3=.(3)如图2中,①当∠AOE 1=90°时,∵直线AC 的解析式为y =x ,∴直线OE 1的小时为y =﹣x ,当y =2时,x =﹣,∴E 1(﹣,2).②当∠OAE 2=90°时,可得直线AE 2的解析式为y =﹣x +,当y =2时,x =,∴E 2(,2).③当∠OEA =90°时,易知AC =OC =CE =, ∵C (,2),∴可得E 3(,2),E 4(,2),综上所述,满足条件的点E 坐标为(﹣,2)或(,2)或(,2)或(,2).21.证明:(1)连接OC ,∵CD =AC ,∴∠CAD =∠D ,又∵∠ACD =120°,∴∠C AD =(180°﹣∠ACD )=30°,∵OC =OA ,∴∠A =∠1=30°,∴∠COD =60°,又∵∠D =30°,∴∠OCD =180°﹣∠COD ﹣∠D =90°,∴CD 是⊙O 的切线;(2)∵∠A =30°,∴∴∠1=2∠A =60°∠1=2∠A =60°.∴∴,在Rt △OCD 中,.∴.∴图中阴影部分的面积为2﹣π.22.解:(1)y =(x ﹣50)[50+5(100﹣x )] =(x ﹣50)(﹣5x +550)=﹣5x 2+800x ﹣27500,∴y =﹣5x 2+800x ﹣27500(50≤x ≤100);(2)y =﹣5x 2+800x ﹣27500=﹣5(x ﹣80)2+4500, ∵a =﹣5<0,∴抛物线开口向下.∵50≤x ≤100,对称轴是直线x =80,∴当x =80时,y 最大值=4500;(3)当y =4000时,﹣5(x ﹣80)2+4500=4000, 解得x 1=70,x 2=90.∴当70≤x ≤90时,每天的销售利润不低于4000元.23.解:(1)∵x 1<x 2,∴x 1+x 1<x 1+x 2<x 2+x 2,即x 1<m <x 2, ∵在函数y =2x 2﹣kx ﹣2中,即抛物线的开口向上, ∴当x =m 时,y =2m 2﹣km ﹣2<0;(2)﹣=(4ab ﹣ka ﹣kb ﹣4),∵a <b , ∴b ﹣a >0,又∵a 2+1>0、b 2+1>0,∴>0,由(1)知,∵x 1<a <b <x 2,∴,∴2a 2﹣ka ﹣2+2b 2﹣kb ﹣2<0,∵a 2+b 2>2ab ,∴4ab ﹣ka ﹣kb ﹣4<2a 2﹣ka ﹣2+2b 2﹣kb ﹣2<0,则﹣<0,即<.。

云南昆明市2019年九年级数学中考模拟试卷含答案及详细解析

云南昆明市2019年九年级数学中考模拟试卷含答案及详细解析

云南昆明市2019年九年级数学中考模拟试卷(含答案)一、选择题1、如图,△ABC 中,D 、E 是BC 边上的点,BD :DE :EC=3:2:1,M 在AC 边上,CM :MA=1:2,BM 交AD ,AE 于H ,G ,则BH :HG :GM 等于( ) A. 4:2:1 B. 5:3:1 C. 25:12:5 D. 51:24:102、丽华根据演讲比赛中九位评委所给的分数作了如下表格:如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( ) A .平均数 B .众数 C .方差 D .中位数 3、若点M (﹣3,a ),N (4,﹣6)在同一个反比例函数的图象上,则a 的值为( ) A .8 B .﹣8 C .﹣7 D .5 4、下列二次根式中,不能与合并的是( )A .B .C .D .5、沿圆柱体上底面直径截去一部分后的物体如图所示,它的俯视图是( )A .B .C .D .6、在函数y=中,自变量x 的取值范围是( )A .x ≥﹣2且x ≠0B .x ≤2且x ≠0C .x ≠0D .x ≤﹣2 7、计算:,归纳各计算结果中的个位数字规律,猜测的个位数字是( )A .1B .3C .7D .5……○……※※请※……○……8、下列各图中,既可经过平移,又可经过旋转,由图形①得到图形②的是( )。

A .B .C .D .9、分解因式:3a 3﹣12a 2b+12ab 2=___________。

二、填空题10、某种零件,标明要求是φ20±0.02 mm (φ表示直径,单位:毫米),经检查,一个零件的直径是19.9 mm ,该零件______(填“合格”或“不合格”)。

11、如图,△ABC 是边长为1的正三角形,弧AB 和弧AC 所对圆心角均为120°,则图中阴影部分面积为_______。

12、已知x 1、x 2是方程x 2﹣4x ﹣12=0的解,则x 1+x 2=_____。

云南省昆明市2019-2020学年中考数学二月模拟试卷含解析

云南省昆明市2019-2020学年中考数学二月模拟试卷含解析

云南省昆明市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,已知E ,F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,O 为BD 的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB ;③∠BMO=90°;④MD=2AM=4EM ;⑤23AM MF =.其中正确结论的是( )A .①③④B .②④⑤C .①③⑤D .①③④⑤2.共享单车为市民短距离出行带来了极大便利.据2017年“深圳互联网自行车发展评估报告”披露,深圳市日均使用共享单车2590000人次,其中2590000用科学记数法表示为( )A .259×104B .25.9×105C .2.59×106D .0.259×1073.实数a 在数轴上的位置如图所示,则22(4)(11)a a ---化简后为( )A .7B .﹣7C .2a ﹣15D .无法确定4.下列各数中是无理数的是( )A .cos60°B .·1.3C .半径为1cm 的圆周长D .385.下列图形是轴对称图形的有( )A .2个B .3个C .4个D .5个6.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm ,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )A .12cmB .2cmC .24cmD .2cm7.欧几里得的《原本》记载,形如22x ax b +=的方程的图解法是:画Rt ABC ∆,使90ACB ∠=o ,2a BC =,,再在斜边上截取a BD =.则该方程的一个正根是( )A .AC 的长B .AD 的长C .BC 的长D .CD 的长 8.π这个数是( )A .整数B .分数C .有理数D .无理数9.如图,在正三角形ABC 中,D,E,F 分别是BC,AC,AB 上的点,DE ⊥AC,EF ⊥AB,FD ⊥BC ,则△DEF 的面积与△ABC 的面积之比等于( )A .1∶3B .2∶3C .3∶2D .3∶310.如图,已知AOB ∠,用尺规作图作2AOC AOB ∠=∠.第一步的作法以点O 为圆心,任意长为半径画弧,分别交OA ,OB 于点E ,F 第二步的作法是( )A .以点E 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DB .以点E 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点DC .以点F 为圆心,OE 长为半径画弧,与第1步所画的弧相交于点DD .以点F 为圆心,EF 长为半径画弧,与第1步所画的弧相交于点D11.如图,在矩形ABCD 中,AD=2AB ,∠BAD 的平分线交BC 于点E ,DH ⊥AE 于点H ,连接BH并延长交CD 于点F ,连接DE 交BF 于点O ,下列结论:①∠AED=∠CED ;②OE=OD ;③BH=HF ;④BC ﹣CF=2HE ;⑤AB=HF ,其中正确的有( )A .2个B .3个C .4个D .5个12.下列计算正确的是()2222二、填空题:(本大题共6个小题,每小题4分,共24分.)13.使分式的值为0,这时x=_____.14.若正六边形的内切圆半径为2,则其外接圆半径为__________.15.因式分解:9a 3b ﹣ab =_____.16.一个等腰三角形的两边长分别为4cm 和9cm ,则它的周长为__cm .17.已知关于x 的方程x 2+kx ﹣3=0的一个根是x=﹣1,则另一根为_____.18.太极揉推器是一种常见的健身器材.基本结构包括支架和转盘,数学兴趣小组的同学对某太极揉推器的部分数据进行了测量:如图,立柱AB 的长为125cm ,支架CD 、CE 的长分别为60cm 、40cm ,支点C 到立柱顶点B 的距离为25cm .支架CD ,CE 与立柱AB 的夹角∠BCD=∠BCE=45°,转盘的直径FG=MN=60cm ,D ,E 分别是FG ,MN 的中点,且CD ⊥FG ,CE ⊥MN ,则两个转盘的最低点F ,N 距离地面的高度差为_____cm .(结果保留根号)三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简后求值:已知:x=3﹣2,求2284111[(1)()]442x x x x+--÷--的值. 20.(6分)已知,如图所示直线y=kx+2(k≠0)与反比例函数y=m x (m≠0)分别交于点P ,与y 轴、x 轴分别交于点A 和点B ,且cos ∠ABO=5,过P 点作x 轴的垂线交于点C ,连接AC , (1)求一次函数的解析式.(2)若AC 是△PCB 的中线,求反比例函数的关系式.21.(6分)在△ABC 中,90︒∠=C ,以边AB 上一点O 为圆心,OA 为半径的圈与BC 相切于点D ,分别交AB ,AC 于点E ,F 如图①,连接AD ,若25CAD ︒∠=,求∠B 的大小;如图②,若点F 为»AD 的22.(8分)如图,AB 是半圆O 的直径,过点O 作弦AD 的垂线交半圆O 于点E ,交AC 于点C ,使∠BED =∠C .(1)判断直线AC 与圆O 的位置关系,并证明你的结论;(2)若AC =8,cos ∠BED =,求AD 的长.23.(8分)如图,可以自由转动的转盘被它的两条直径分成了四个分别标有数字的扇形区域,其中标有数字“1”的扇形圆心角为120°.转动转盘,待转盘自动停止后,指针指向一个扇形的内部,则该扇形内的数字即为转出的数字,此时,称为转动转盘一次(若指针指向两个扇形的交线,则不计转动的次数,重新转动转盘,直到指针指向一个扇形的内部为止)转动转盘一次,求转出的数字是-2的概率;转动转盘两次,用树状图或列表法求这两次分别转出的数字之积为正数的概率.24.(10分)如图,矩形ABCD 中,对角线AC ,BD 相交于点O ,且8cm AB =,6cm BC =.动点P ,Q 分别从点C ,A 同时出发,运动速度均为lcm/s .点P 沿C D A →→运动,到点A 停止.点Q 沿A O C →→运动,点Q 到点O 停留4s 后继续运动,到点C 停止.连接BP ,BQ ,PQ ,设BPQ V 的面积为()2cm y (这里规定:线段是面积为0的三角形),点P 的运动时间为()x s . (1)求线段PD 的长(用含x 的代数式表示);(2)求514x 剟时,求y 与x 之间的函数解析式,并写出x 的取值范围; (3)当12BDP y S =△时,直接写出x 的取值范围.25.(10分)为奖励优秀学生,某校准备购买一批文具袋和圆规作为奖品,已知购买1个文具袋和2个圆规需21元,购买2个文具袋和3个圆规需39元。

云南省昆明市2019-2020学年中考二诊数学试题含解析

云南省昆明市2019-2020学年中考二诊数学试题含解析

云南省昆明市2019-2020学年中考二诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若关于x的不等式组255 332xxxx a+⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a的取值范围( )A.1162a-<-„B.116a2-<<-C.1162a-<-„D.1162a--剟2.如图,在平面直角坐标系xOy中,点C,B,E在y轴上,Rt△ABC经过变化得到Rt△EDO,若点B 的坐标为(0,1),OD=2,则这种变化可以是()A.△ABC绕点C顺时针旋转90°,再向下平移5个单位长度B.△ABC绕点C逆时针旋转90°,再向下平移5个单位长度C.△ABC绕点O顺时针旋转90°,再向左平移3个单位长度D.△ABC绕点O逆时针旋转90°,再向右平移1个单位长度3.如图所示的几何体的主视图是()A.B.C.D.4.为了解某校初三学生的体重情况,从中随机抽取了80名初三学生的体重进行统计分析,在此问题中,样本是指()A.80 B.被抽取的80名初三学生C.被抽取的80名初三学生的体重D.该校初三学生的体重5.剪纸是我国传统的民间艺术.下列剪纸作品既不是中心对称图形,也不是轴对称图形的是()A.B.C.D.6.一元二次方程3x 2-6x+4=0根的情况是A .有两个不相等的实数根B .有两个相等的实数根C .有两个实数根D .没有实数根7.如图,点D 在△ABC 边延长线上,点O 是边AC 上一个动点,过O 作直线EF ∥BC ,交∠BCA 的平分线于点F ,交∠BCA 的外角平分线于E,当点O 在线段AC 上移动(不与点A ,C 重合)时,下列结论不一定成立的是( )A .2∠ACE=∠BAC+∠BB .EF=2OC C .∠FCE=90°D .四边形AFCE是矩形 8.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm ,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )A .12cmB .122cmC .24cmD .242cm9.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b c y x++=在同一坐标系内的图象大致为( )A .B .C .D .10.甲、乙两人沿相同的路线由A 地到B 地匀速前进,A 、B 两地间的路程为40km .他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法不正确的是( )A.甲的速度是10km/h B.乙的速度是20km/hC.乙出发13h后与甲相遇D.甲比乙晚到B地2h11.抚顺市中小学机器人科技大赛中,有7名学生参加决赛,他们决赛的成绩各不相同,其中一名参赛选手想知道自己能否进入前4名,他除了知道自己成绩外还要知道这7名学生成绩的()A.中位数B.众数C.平均数D.方差12.如图,A点是半圆上一个三等分点,B点是弧AN的中点,P点是直径MN上一动点,⊙O的半径为1,则AP+BP的最小值为A.1 B.2C.2D.31二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如果正比例函数y=(k-2)x的函数值y随x的增大而减小,且它的图象与反比例函数y=kx的图象没有公共点,那么k的取值范围是______.14.若一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,则是k的值可以是_____.(写出一个即可).15.已知AD、BE是△ABC的中线,AD、BE相交于点F,如果AD=6,那么AF的长是_____.16.如图,ABCDE是正五边形,已知AG=1,则FG+JH+CD=_____.17.如图,CD是Rt△ABC斜边AB上的高,将△BCD沿CD折叠,B点恰好落在AB的中点E处,则∠A等于____度.18.如图,⊙M的半径为2,圆心M(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)先化简,再求值:22144(1)1a aa a a-+-÷--,其中a是方程a(a+1)=0的解.20.(6分)已知:如图,AB为⊙O的直径,C是BA延长线上一点,CP切⊙O于P,弦PD⊥AB于E,过点B作BQ⊥CP于Q,交⊙O于H,(1)如图1,求证:PQ=PE;(2)如图2,G是圆上一点,∠GAB=30°,连接AG交PD于F,连接BF,若tan∠BFE=33,求∠C 的度数;(3)如图3,在(2)的条件下,PD=63,连接QC交BC于点M,求QM的长.21.(6分)如图,△BAD是由△BEC在平面内绕点B旋转60°而得,且AB⊥BC,BE=CE,连接DE.求证:△BDE≌△BCE;试判断四边形ABED的形状,并说明理由.22.(8分)珠海某企业接到加工“无人船”某零件5000个的任务.在加工完500个后,改进了技术,每天加工的零件数量是原来的1.5倍,整个加工过程共用了35天完成.求技术改进后每天加工零件的数量.23.(8分)如图,AB为⊙O的直径,点D、E位于AB两侧的半圆上,射线DC切⊙O于点D,已知点E是半圆弧AB上的动点,点F是射线DC上的动点,连接DE、AE,DE与AB交于点P,再连接FP、FB ,且∠AED =45°.(1)求证:CD ∥AB ;(2)填空:①当∠DAE = 时,四边形ADFP 是菱形;②当∠DAE = 时,四边形BFDP 是正方形.24.(10分)如图,在平面直角坐标系xOy 中,函数m y x=(0x <)的图象经过点(4,)A n -,AB ⊥x 轴于点B ,点C 与点A 关于原点O 对称, CD ⊥x 轴于点D ,△ABD 的面积为8.(1)求m ,n 的值;(2)若直线y kx b =+(k≠0)经过点C ,且与x 轴,y 轴的交点分别为点E ,F ,当2CF CE=时,求点F 的坐标.25.(10分)一次函数()y kx b k 0=+≠的图象经过点()A 11-,和点()B 15,,求一次函数的解析式.26.(12分)先化简,再求值:(231x x --﹣2)÷11x -,其中x 满足12x 2﹣x ﹣4=0 27.(12分)如图,AB 是半圆O 的直径,D 为弦BC 的中点,延长OD 交弧BC 于点E ,点F 为OD 的延长线上一点且满足∠OBC =∠OFC ,求证:CF 为⊙O 的切线;若四边形ACFD 是平行四边形,求sin ∠BAD 的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可.【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20解②得x >3-2a ,∵不等式组只有5个整数解,∴不等式组的解集为3-2a <x <20,∴14≤3-2a <15,1162a ∴-<-… 故选:A【点睛】 本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.2.C【解析】【分析】Rt △ABC 通过变换得到Rt △ODE,应先旋转然后平移即可【详解】∵Rt △ABC 经过变化得到Rt △EDO ,点B 的坐标为(0,1),OD =2,∴DO =BC =2,CO =3,∴将△ABC绕点C顺时针旋转90°,再向下平移3个单位长度,即可得到△DOE;或将△ABC绕点O顺时针旋转90°,再向左平移3个单位长度,即可得到△DOE;故选:C.【点睛】本题考查的是坐标与图形变化旋转和平移的知识,解题的关键在于利用旋转和平移的概念和性质求坐标的变化3.A【解析】【分析】找到从正面看所得到的图形即可.【详解】解:从正面可看到从左往右2列一个长方形和一个小正方形,故选A.【点睛】本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4.C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【详解】样本是被抽取的80名初三学生的体重,故选C.【点睛】此题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5.A【解析】试题分析:根据轴对称图形和中心对称图形的概念可知:选项A既不是中心对称图形,也不是轴对称图形,故本选项正确;选项B不是中心对称图形,是轴对称图形,故本选项错误;选项C既是中心对称图形,也是轴对称图形,故本选项错误;选项D既是中心对称图形,也是轴对称图形,故本选项错误.故选A.考点:中心对称图形;轴对称图形.6.D【解析】【分析】根据∆=b2-4ac,求出∆的值,然后根据∆的值与一元二次方程根的关系判断即可.【详解】∵a=3,b=-6,c=4,∴∆=b2-4ac=(-6)2-4×3×4=-12<0,∴方程3x2-6x+4=0没有实数根.故选D.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式∆=b2﹣4ac:当∆>0时,一元二次方程有两个不相等的实数根;当∆=0时,一元二次方程有两个相等的实数根;当∆<0时,一元二次方程没有实数根. 7.D【解析】【分析】依据三角形外角性质,角平分线的定义,以及平行线的性质,即可得到2∠ACE=∠BAC+∠B,EF=2OC,∠FCE=90°,进而得到结论.【详解】解:∵∠ACD是△ABC的外角,∴∠ACD=∠BAC+∠B,∵CE平分∠DCA,∴∠ACD=2∠ACE,∴2∠ACE=∠BAC+∠B,故A选项正确;∵EF∥BC,CF平分∠BCA,∴∠BCF=∠CFE,∠BCF=∠ACF,∴∠ACF=∠EFC,∴OF=OC,同理可得OE=OC,∴EF=2OC,故B选项正确;∵CF平分∠BCA,CE平分∠ACD,∴∠ECF=∠ACE+∠ACF=12×180°=90°,故C选项正确;∵O 不一定是AC 的中点,∴四边形AECF 不一定是平行四边形,∴四边形AFCE 不一定是矩形,故D 选项错误,故选D .【点睛】本题考查三角形外角性质,角平分线的定义,以及平行线的性质.8.D【解析】【分析】过A 作AD ⊥BF 于D,根据45°角的三角函数值可求出AB 的长度,根据含30°角的直角三角形的性质求出斜边AC 的长即可.【详解】如图,过A 作AD ⊥BF 于D ,∵∠ABD=45°,AD=12, ∴sin 45AD AB ︒==122, 又∵Rt △ABC 中,∠C=30°,∴AC=2AB=242,故选:D .【点睛】本题考查解直角三角形,在直角三角形中,30°角所对的直角边等于斜边的一半,熟记特殊角三角函数值是解题关键.9.D【解析】【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解.【详解】∵二次函数图象开口方向向上,∴a>0, ∵对称轴为直线02b x a =->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0,∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b c y x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键. 10.B【解析】由图可知,甲用4小时走完全程40km ,可得速度为10km/h ;乙比甲晚出发一小时,用1小时走完全程,可得速度为40km/h .故选B11.A【解析】【分析】7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【详解】由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少,故选A .【点睛】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义,熟练掌握相关的定义是解题的关键.12.C【解析】作点A 关于MN 的对称点A′,连接A′B ,交MN 于点P ,则PA+PB 最小,连接OA′,AA′.∵点A 与A′关于MN 对称,点A 是半圆上的一个三等分点,∴∠A′ON=∠AON=60°,PA=PA′,∵点B 是弧AN ∧的中点,∴∠BON=30 °,∴∠A′OB=∠A′ON+∠BON=90°,又∵OA=OA′=1,∴2∴2故选:C.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.02k <<【解析】【分析】先根据正比例函数y=(k-1)x 的函数值y 随x 的增大而减小,可知k-1<0;再根据它的图象与反比例函数y=k x 的图象没有公共点,说明反比例函数y=k x的图象经过一、三象限,k >0,从而可以求出k 的取值范围.【详解】∵y=(k-1)x 的函数值y 随x 的增大而减小,∴k-1<0∴k <1而y=(k-1)x 的图象与反比例函数y=k x的图象没有公共点,∴k >0综合以上可知:0<k<1.故答案为0<k<1.【点睛】本题考查的是一次函数与反比例函数的相关性质,清楚掌握函数中的k的意义是解决本题的关键.14.1【解析】【分析】由一次函数图象经过第一、三、四象限,可知k>0,﹣1<0,在范围内确定k的值即可.【详解】解:因为一次函数y=kx﹣1(k是常数,k≠0)的图象经过第一、三、四象限,所以k>0,﹣1<0,所以k可以取1.故答案为1.【点睛】根据一次函数图象所经过的象限,可确定一次项系数,常数项的值的符号,从而确定字母k的取值范围.15.4【解析】由三角形的重心的概念和性质,由AD、BE为△ABC的中线,且AD与BE相交于点F,可知F点是三角形ABC的重心,可得AF=23AD=23×6=4.故答案为4.点睛:此题考查了重心的概念和性质:三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.16【解析】【详解】根据对称性可知:GJ∥BH,GB∥JH,∴四边形JHBG是平行四边形,∴JH=BG,同理可证:四边形CDFB是平行四边形,∴CD=FB,∴FG+JH+CD=FG+BG+FB=2BF,设FG=x,∵∠AFG=∠AFB,∠FAG=∠ABF=36°,∴△AFG∽△BFA,∴AF2=FG•BF,∵AF=AG=BG=1,∴x(x+1)=1,∴x=51-(负根已经舍弃),∴BF=51-+1=51+,∴FG+JH+CD=5+1.故答案为5+1.17.30【解析】试题分析:根据直角三角形斜边上的中线等于斜边的一半可得:AE=CE,根据折叠可得:BC=CE,则BC=AE=BE=AB,则∠A=30°.考点:折叠图形的性质18.6【解析】【分析】点P在以O为圆心OA为半径的圆上,P是两个圆的交点,当⊙O与⊙M外切时,AB最小,根据条件求出AO即可求解;【详解】解:点P在以O为圆心OA为半径的圆上,∴P是两个圆的交点,当⊙O与⊙M外切时,AB最小,∵⊙M的半径为2,圆心M(3,4),∴PM=5,∴OA=3,∴AB=6,故答案为6;【点睛】本题考查圆与圆的位置关系;能够将问题转化为两圆外切时AB最小是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.1 3【分析】根据分式运算性质,先化简,再求出方程的根a=0或-1,分式有意义分母不等于0,所以将a=-1代入即可求解. 【详解】解:原式=()()2a a1 a11a1a2---⨯--=a a2 -∵a(a+1)=0,解得:a=0或-1,由题可知分式有意义,分母不等于0, ∴a=-1,将a=-1代入aa2-得,原式=1 3【点睛】本题考查了分式的化简求值,中等难度,根据分式有意义的条件代值计算是解题关键.20.(1)证明见解析(2)30°【解析】试题分析:(1)连接OP,PB,由已知易证∠OBP=∠OPB=∠QBP,从而可得BP平分∠OBQ,结合BQ⊥CP于点Q,PE⊥AB于点E即可由角平分线的性质得到PQ=PE;(2)如下图2,连接OP,则由已知易得∠CPO=∠PEC=90°,由此可得∠C=∠OPE,设EF=x,则由∠GAB=30°,∠AEF=90°可得,在Rt△BEF中,由tan∠BFE=BE=,从而可得AB=,则OP=OA=,结合可得,这样即可得到sin∠OPE=12 OEOP=,由此可得∠OPE=30°,则∠C=30°;(3)如下图3,连接BG,过点O作OK⊥HB于点K,结合BQ⊥CP,∠OPQ=90°,可得四边形POKQ为矩形.由此可得QK=PO,OK∥CQ从而可得∠KOB=∠C=30°;由已知易证PE=Rt△EPO中结合(2)可解得PO=6,由此可得OB=QK=6;在Rt△KOB中可解得KB=3,由此可得QB=9;在△ABG 中由已知条件可得BG=6,∠ABG=60°;过点G作GN⊥QB交QB的延长线于点N,由∠ABG=∠CBQ=60°,可得∠GBN=60°,从而可得解得GN=BN=3,由此可得QN=12,则在Rt△BGN中可解得QG=,由∠ABG=∠CBQ=60°可知△BQG中BM是角平分线,由此可得QM:GM=QB:GB=9:6由此即可求得QM的长了.(1)如下图1,连接OP ,PB ,∵CP 切⊙O 于P ,∴OP ⊥CP 于点P ,又∵BQ ⊥CP 于点Q ,∴OP ∥BQ ,∴∠OPB=∠QBP ,∵OP=OB ,∴∠OPB=∠OBP ,∴∠QBP=∠OBP ,又∵PE ⊥AB 于点E ,∴PQ=PE ;(2)如下图2,连接OP ,∵CP 切⊙O 于P ,∴90OPC OPQ ∠=∠=︒∴90C COP ∠+∠=︒∵PD ⊥AB∴ 90PEO AEF BEF ∠=∠=∠=︒∴90EPO COP ∠+∠=︒∴C EPO ∠=∠在Rt FEA ∆中,∠GAB=30°∴设EF=x ,则tan303AE EF x =÷︒=在Rt FEB ∆中,tan ∠3∴·tan 33BE EF BFE x =∠= ∴43AB AE BE x =+= ∴23AO PO x == ∴3EO AO AE x =-=∴在Rt ∆PEO 中, 1sin 2EO EPO PO ∠== ∴C EPO ∠=∠=30°;(3)如下图3,连接BG ,过点O 作OK HB ⊥于K ,又BQ ⊥CP ,∴90OPQ Q OKQ ∠=∠=∠=︒,∴四边形POKQ 为矩形,∴QK=PO,OK//CQ ,∴C KOB ∠=∠=30°,∵⊙O 中PD ⊥AB 于E ,3,AB 为⊙O 的直径,∴PE= 123 根据(2)得30EPO ∠=︒,在Rt ∆EPO 中,cos PE EPO PO ∠=, ∴cos 33cos306PO PE EPO =÷∠=︒=,∴OB=QK=PO=6,∴在Rt KOB ∆中,sin KB KOB OB ∠=, ∴01sin30632KB OB =⋅=⨯=, ∴QB=9,在△ABG 中,AB 为⊙O 的直径,∴∠AGB=90°,∵∠BAG=30°,∴BG=6,∠ABG=60°, 过点G 作GN ⊥QB 交QB 的延长线于点N ,则∠N=90°,∠GBN=180°-∠CBQ-∠ABG=60°,∴BN=BQ·cos ∠GBQ=3,GN=BQ·sin ∠GBQ=33∴QN=QB+BN=12,∴在Rt △QGN 中,2212(33)319+=,∵∠ABG=∠CBQ=60°,∴BM 是△BQG 的角平分线,∴QM:GM=QB:GB=9:6,∴QM=9919 31915⨯=.点睛:解本题第3小题的要点是:(1)作出如图所示的辅助线,结合已知条件和(2)先求得BQ、BG的长及∠CBQ=∠ABG=60°;(2)再过点G作GN⊥QB并交QB的延长线于点N,解出BN和GN的长,这样即可在Rt△QGN中求得QG的长,最后在△BQG中“由角平分线分线段成比例定理”即可列出比例式求得QM的长了.21.证明见解析.【解析】【分析】(1)根据旋转的性质可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根据垂直可得出∠DBE=∠CBE=30°,继而可根据SAS证明△BDE≌△BCE;(2)根据(1)以及旋转的性质可得,△BDE≌△BCE≌△BDA,继而得出四条棱相等,证得四边形ABED 为菱形.【详解】(1)证明:∵△BAD是由△BEC在平面内绕点B旋转60°而得,∴DB=CB,∠ABD=∠EBC,∠ABE=60°,∵AB⊥EC,∴∠ABC=90°,∴∠DBE=∠CBE=30°,在△BDE和△BCE中,∵DB CBDBE CBE BE BE=⎧⎪∠=∠⎨⎪=⎩,∴△BDE≌△BCE;(2)四边形ABED为菱形;由(1)得△BDE≌△BCE,∵△BAD是由△BEC旋转而得,∴△BAD≌△BEC,∴BA=BE,AD=EC=ED,又∵BE=CE,∴BA=BE=ED= AD∴四边形ABED为菱形.考点:旋转的性质;全等三角形的判定与性质;菱形的判定.22.技术改进后每天加工1个零件.【解析】分析:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意列出分式方程,从而得出方程的解并进行检验得出答案.详解:设技术改进前每天加工x个零件,则改进后每天加工1.5x个,根据题意可得5005000500351.5x x-+=,解得x=100,经检验x=100是原方程的解,则改进后每天加工1.答:技术改进后每天加工1个零件.点睛:本题主要考查的是分式方程的应用,属于基础题型.根据题意得出等量关系是解题的关键,最后我们还必须要对方程的解进行检验.23.(1)详见解析;(2)①67.5°;②90°.【解析】【分析】(1)要证明CD∥AB,只要证明∠ODF=∠AOD即可,根据题目中的条件可以证明∠ODF=∠AOD,从而可以解答本题;(2)①根据四边形ADFP是菱形和菱形的性质,可以求得∠DAE的度数;②根据四边形BFDP是正方形,可以求得∠DAE的度数.【详解】(1)证明:连接OD,如图所示,∵射线DC切⊙O于点D,∴OD⊥CD,即∠ODF=90°,∵∠AED=45°,∴∠AOD =2∠AED =90°,∴∠ODF =∠AOD ,∴CD ∥AB ;(2)①连接AF 与DP 交于点G ,如图所示,∵四边形ADFP 是菱形,∠AED =45°,OA =OD ,∴AF ⊥DP ,∠AOD =90°,∠DAG =∠PAG ,∴∠AGE =90°,∠DAO =45°,∴∠EAG =45°,∠DAG =∠PEG =22.5°,∴∠EAD =∠DAG+∠EAG =22.5°+45°=67.5°,故答案为:67.5°;②∵四边形BFDP 是正方形,∴BF =FD =DP =PB ,∠DPB =∠PBF =∠BFD =∠FDP =90°,∴此时点P 与点O 重合,∴此时DE 是直径,∴∠EAD =90°,故答案为:90°.【点睛】本题考查菱形的判定与性质、切线的性质、正方形的判定,解答本题的关键是明确题意,找出所求问题需要的条件,利用菱形的性质和正方形的性质解答.24.(1)m=8,n=-2;(2) 点F 的坐标为1(0,6)F ,2(0,2)F【解析】分析:(1)利用三角形的面积公式构建方程求出n ,再利用 待定系数法求出m 的的值即可;(2)分两种情形分别求解如①图,当k<0时,设直线y=kx+b 与x 轴,y 轴的交点分别为1E ,1F . ②图中,当k>0时,设直线y=kx+b 与x 轴,y 轴的交点分别为点2E ,2F .详解:(1)如图②∵ 点A 的坐标为()4,A n -,点C 与点A 关于原点O 对称, ∴ 点C 的坐标为()4,C n -.∵ AB ⊥x 轴于点B ,CD ⊥x 轴于点D ,∴ B ,D 两点的坐标分别为()4,0B -,()4,0D . ∵ △ABD 的面积为8,()118422ABD S AB BD n n =⨯=⨯-⨯=-V , ∴ 48n -=.解得 2n =-. ∵ 函数m y x=(0x <)的图象经过点()4,A n -, ∴ 48m n =-=.(2)由(1)得点C 的坐标为()4,2C .① 如图,当0k <时,设直线y kx b =+与x 轴,y 轴的交点分别为点1E ,1F .由 CD ⊥x 轴于点D 可得CD ∥1OF .∴ △1E CD ∽△1E 1F O .∴ 1111E C DC OF E F =. ∵ 112CF CE =,∴ 113DC OF =. ∴ 136OF DC ==.∴ 点1F 的坐标为()10,6F .②如图,当0k >时,设直线y kx b =+与x 轴,y 轴的交点分别为点2E ,2F .同理可得CD ∥2OF ,2222E C DC OF E F =. ∵ 222CF CE =, ∴ 2E 为线段2CF 的中点,222E C E F =.∴ 22OF DC ==.∴ 点2F 的坐标为()20,2F -.综上所述,点F 的坐标为()10,6F ,()20,2F -.点睛:本题考查了反比例函数综合题、一次函数的应用、三角形的面积公式等知识,解题的关键是会用方程的思想思考问题,会用分类讨论的思想思考问题,属于中考压轴题.25.y=2x+1.【解析】【分析】直接把点A (﹣1,1),B (1,5)代入一次函数y=kx+b (k≠0),求出k 、b 的值即可.【详解】∵一次函数y=kx+b (k≠0)的图象经过点A (﹣1,1)和点B (1,5),∴15k b k b -+=⎧⎨+=⎩,解得:23k b =⎧⎨=⎩. 故一次函数的解析式为y=2x+1.【点睛】本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.26.1【解析】【分析】首先运用乘法分配律将所求的代数式去括号,然后再合并化简,最后整体代入求解. 【详解】解:(231xx--﹣2)÷11x-==x2﹣3﹣2x+2 =x2﹣2x﹣1,∵12x2﹣x﹣4=0,∴x2﹣2x=8,∴原式=8﹣1=1.【点睛】分式混合运算要注意先去括号;分子、分母能因式分解的先因式分解;除法要统一为乘法运算.注意整体代入思想在代数求值计算中的应用.27.(1)见解析;(2)1 3 .【解析】【分析】(1)连接OC,根据等腰三角形的性质得到∠OCB=∠B,∠OCB=∠F,根据垂径定理得到OF⊥BC,根据余角的性质得到∠OCF=90°,于是得到结论;(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=12AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=2x,求得BD=2x,根据勾股定理得到AD=226AC CD+=x,于是得到结论.【详解】解:(1)连接OC,∵OC=OB,∴∠OCB=∠B,∵∠B=∠F,∴∠OCB=∠F,∵D 为BC 的中点,∴OF ⊥BC ,∴∠F+∠FCD=90°,∴∠OCB+∠FCD=90°,∴∠OCF=90°,∴CF 为⊙O 的切线;(2)过D 作DH ⊥AB 于H ,∵AO=OB ,CD=DB ,∴OD=12AC , ∵四边形ACFD 是平行四边形,∴DF=AC ,设OD=x ,∴AC=DF=2x ,∵∠OCF=90°,CD ⊥OF ,∴CD 2=OD•DF=2x 2,∴x ,∴x ,∴=,∵OD=x ,x ,∴,∴DH=CD BD OB ⋅=x , ∴sin ∠BAD=DH AD =13. 【点睛】 本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.。

2019年云南省中考数学模拟试卷(二)(解析版) (1)

2019年云南省中考数学模拟试卷(二)(解析版) (1)
17.(6分)某中学为了了解学生平均每天“诵读经典”的时间,在全校范围内随机抽查了部分学生进行调查统计,并将调查统计的结果分为四类,每天诵读时间t≤20分钟的学生记为A类,20分钟<t≤40分钟的学生记为B类,40分钟<t≤60分钟的学生记为C类,t>60分钟的学生记为D类.将收集的数据绘制成如下两幅不完整的统计图.请根据图中提供的信息,解答下列问题:
(1)用列表或画树状图的方法写出点Q的所有可能坐标;
(2)求点Q落在直线y=﹣x上的概率.
22.(9分)已知:如图,在▱ABCD中,AD=4,AB=8,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于点G.
(1)求证:△ADE≌△CBF;
(2)若四边形BEDF是菱形,求四边形AGBD的面积.
2019年云南省中考数学模拟试卷(二)
一、空题(每小题3分,满分18分)
1.﹣ 的绝对值是.
2.如图,AB∥CD,点E在线段BC上,若∠B=40°,∠D=30°,则∠BED的度数是.
3.因式分解:2x2﹣2=.
4.如果关于x的一元二次方程x2+a+2=0没有实数根,那么实数a的取值范围为.
5.如果圆锥的侧面展开图的扇形半径是6,弧长是4π,那么这个扇形的圆心角为.
20.(8分)如图所示,AB是⊙O的直径,点D是弧AC的中点,∠COB=60° ,过点C作CE⊥AD,交AD的延长线于点E.
(1)求证:CE为⊙O的切线;
(2)若CE= ,求⊙O的半径长.
21.(8分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和2.B布袋中有三个完全相同的小球,分别标有数字﹣1,﹣2和2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).

2019年云南省昆明市中考数学模拟试卷(二)解析版

2019年云南省昆明市中考数学模拟试卷(二)解析版

2019年云南省昆明市中考数学模拟试卷(二)一、填空题(每小题3分,共6个题,共18分)1.(3分)若|a|=3,|b|=5,且a、b异号,则a•b=.2.(3分)据统计,2017年国庆节期间,云南省共接待游客约2015万人.将2015万人用科学记数法表示为人.3.(3分)分解因式mn2﹣8mn+16m=.4.(3分)如图所示,在▱ABCD中,点E在边DC上,DE:EC=7:2,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为.5.(3分)云南某蔬菜养殖基地准备搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.如果不考虑塑料薄膜埋在土里的部分,那么搭建十个这样的蔬菜大棚需用塑料薄膜的面积是.6.(3分)观察下列图形规律:当n=时,图形“●”的个数和“△”的个数相等.二、选择题(每小题4分,共8个小题,共32分)7.(4分)在平面直角坐标系中,点P(﹣,6)在()A.第一象限B.第二象限C.第三象限D.第四象限8.(4分)8个完全相同的小正方体组成的几何体如图所示,则该几何体的俯视图是()A.B.C.D.9.(4分)下列运算正确的是()A.3﹣1÷3=1B.(﹣a3)2=a6C.=a D.|3﹣π|=3﹣π10.(4分)若一个正多边形的每个内角度数是方程﹣2x+140=﹣130的解,则这个正多边形的边数是()A.9B.8C.7D.611.(4分)如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在正比例函数y=x的图象上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若函数y=的图象与△ABC有交点,则k的取值范围是()A.1<k<2B.1≤k≤3C.1≤k≤4D.1≤k<412.(4分)△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1)B.=3C.B2C=2D.∠AC2O=45°13.(4分)为了解昆明市某区12000名学生参加的数学考试的成绩情况,从中抽取了300名考生的成绩进行统计,在这个问题中,下列说法:(1)这12000名学生的数学考试成绩的全体是总体;(2)每个考生是个体;(3)300名考生是总体的一个样本;(4)300名考生的数学考试成绩是总体的一个样本;(5)样本容量是300名考生.其中不正确的有()A.4个B.3个C.2个D.1个14.(4分)如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD 相交于点Q,已知AD=4,BC=9,以下结论:①⊙O的半径为;②∠AOD=∠BCP;③PB=;④tan∠CEP=.其中正确结论有()A.1个B.2个C.3个D.4个三、解答题(9个小题,共70分)15.(6分)解不等式组,并把它的解集在数轴上表示出来.16.(7分)如图,在▱ABCD中,=,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2FC,∠F=38°,求∠B的度数.17.(7分)为了尽快实施“精准扶贫”,某县扶贫工作队为某村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.18.(7分)某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B 在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)19.(7分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.20.(8分)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)21.(8分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且2DE =AC,连接AE交OD于点F,连接CE、OE.(1)求证:OE=AB;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.22.(8分)如图,点A 是直线AM 与⊙O 的交点,点B 在⊙O 上,BD ⊥AM ,垂足为D ,BD 与⊙O 交于点C ,OC 平分∠AOB ,∠B =60°.(1)求证:AM 是⊙O 的切线;(2)若⊙O 的半径为4,求图中阴影部分的面积(结果保留π和根号).23.(12分)如图,直线y =﹣x +与x 轴、y 轴分别交于B 、C 两点,点A 在x 轴上,∠ACB =90°,抛物线y =ax 2+bx +(a ≠0)经过A ,B 两点. (1)求A 、B 两点的坐标;(2)求抛物线的解析式;(3)在直线BC 上方的抛物线上,是否存在点M ,过点M 作MH ⊥BC 交BC 于点H ,作MD ∥y 轴交BC 于点D ,使得S △MHD :S △BCA =1:12,若存在,求出点M 的坐标和△DMH 的周长;若不存在,请说明理由.2019年云南省昆明市中考数学模拟试卷(二)参考答案与试题解析一、填空题(每小题3分,共6个题,共18分)1.(3分)若|a|=3,|b|=5,且a、b异号,则a•b=﹣15.【分析】根据绝对值的性质可知;a=±3,b=±5,由a、b异号确定出a、b的取值情况,然后可求得a•b的值.【解答】解:∵|a|=3,|b|=5,∴a=±3,b=±5.∵a、b异号,∴a=3,b=﹣5或a=﹣3,b=5.∴ab=﹣15.故答案为:﹣15.【点评】本题主要考查的是绝对值、有理数的乘法,根据题意确定出a、b的取值情况是解题的关键.2.(3分)据统计,2017年国庆节期间,云南省共接待游客约2015万人.将2015万人用科学记数法表示为 2.015×107人.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将2015万人用科学记数法表示为2.015×107人.故答案为:2.015×107.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)分解因式mn2﹣8mn+16m=m(n﹣4)2.【分析】先提取公因式m,再对余下的多项式利用完全平方公式继续分解.【解答】解:mn2﹣8mn+16m=m(n2﹣8n+16)=m(n﹣4)2.故答案为:m (n ﹣4)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.4.(3分)如图所示,在▱ABCD 中,点E 在边DC 上,DE :EC =7:2,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为 49:81 .【分析】先证DE :DC =7:9,由平行四边形的性质得到DE 与AB 平行且相等,得到DE :AB =7:9,证得△DEF 与△BAF 相似,求得△DEF 的面积与△BAF 的面积之比为49:81.【解答】解:∵=,∴=, ∵四边形ABCD 是平行四边形,∴DC ∥AB ,DC =AB ,∴∠FDE =∠FBA ,∠FED =∠FAB ,=,∴△DFE ∽△BFA ,∴=()2=, 故答案为:49:81.μ【点评】本题考查了平行四边形的性质,相似三角形的判定,相似三角形的性质等,解题关键是能够熟练运用相似三角形的面积之比等于相似比的平方这一性质.5.(3分)云南某蔬菜养殖基地准备搭建横截面为半圆形的全封闭塑料薄膜蔬菜大棚.如果不考虑塑料薄膜埋在土里的部分,那么搭建十个这样的蔬菜大棚需用塑料薄膜的面积是 64πm 2 .【分析】由图可知,需要的塑料膜的面积应该是以大棚长为长,以半圆形截面的弧长为宽的矩形的面积,半圆形截面弧长为:2π,进而得出塑料膜的面积.【解答】解:塑料膜的面积=2π×32=64π(平方米).故答案为:64πm2.【点评】此题主要考查了圆柱的有关计算,本题中半圆形截面的弧长就是塑料薄膜的一边,弄清了这点,计算薄膜的面积就容易多了.6.(3分)观察下列图形规律:当n=5时,图形“●”的个数和“△”的个数相等.【分析】首先根据n=1、2、3、4时,“●”的个数分别是3、6、9、12,判断出第n 个图形中“●”的个数是3n;然后根据n=1、2、3、4,“△”的个数分别是1、3、6、10,判断出第n个“△”的个数是;最后根据图形“●”的个数和“△”的个数相等,求出n的值是多少即可.【解答】解:∵n=1时,“●”的个数是3=3×1;n=2时,“●”的个数是6=3×2;n=3时,“●”的个数是9=3×3;n=4时,“●”的个数是12=3×4;∴第n个图形中“●”的个数是3n;又∵n=1时,“△”的个数是1=;n=2时,“△”的个数是3=;n=3时,“△”的个数是6=;n=4时,“△”的个数是10=;∴第n个“△”的个数是;由3n=,可得n2﹣5n=0,解得n=5或n=0(舍去),∴当n=5时,图形“●”的个数和“△”的个数相等.故答案为:5.【点评】此题主要考查了规律型:图形的变化类问题,要熟练掌握,解答此类问题的关键是:首先应找出图形哪些部分发生了变化,是按照什么规律变化的,通过分析找到各部分的变化规律后直接利用规律求解.探寻规律要认真观察、仔细思考,善用联想来解决这类问题.二、选择题(每小题4分,共8个小题,共32分)7.(4分)在平面直角坐标系中,点P(﹣,6)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】先化简﹣=2,再根据各象限内点的横纵坐标符号特点即可得出答案.【解答】解:∵﹣=2>0,∴点P(﹣,6)在第一象限,故选:A.【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).8.(4分)8个完全相同的小正方体组成的几何体如图所示,则该几何体的俯视图是()A.B.C.D.【分析】找到从上面看所得图形即可.【解答】解:该组合体的俯视图为故选:A.【点评】此题主要考查了简单几何体的三视图,关键是掌握三视图所看的位置.9.(4分)下列运算正确的是()A.3﹣1÷3=1B.(﹣a3)2=a6C.=a D.|3﹣π|=3﹣π【分析】直接利用积的乘方运算法则、二次根式的性质、绝对值的性质分别计算得出答案.【解答】解:A、3﹣1÷3=,故此选项错误;B、(﹣a3)2=a6,故此选项正确;C、=|a|,故此选项错误;D、|3﹣π|=π﹣3,故此选项错误.故选:B.【点评】此题主要考查了积的乘方运算、二次根式的性质、绝对值的性质,正确掌握相关运算法则是解题关键.10.(4分)若一个正多边形的每个内角度数是方程﹣2x+140=﹣130的解,则这个正多边形的边数是()A.9B.8C.7D.6【分析】解一元一次方程可知一个内角为135°,再利用多边形的内角和公式就可求解.【解答】解:解方程﹣2x+140=130得x=135°,设这个正多边形的边数为n,根据题意可得:(n﹣2)•180=135n,解得:n=8.故选:B.【点评】本题考查了多边形的内角和和正多边形的性质.11.(4分)如图,等腰直角三角形ABC位于第一象限,AB=AC=2,直角顶点A在正比例函数y=x的图象上,其中A点的横坐标为1,且两条直角边AB、AC分别平行于x轴、y轴,若函数y=的图象与△ABC有交点,则k的取值范围是()A.1<k<2B.1≤k≤3C.1≤k≤4D.1≤k<4【分析】设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,则A(1,1),而AB=AC=2,则B(3,1),C(1,3),△ABC为等腰直角三角形,E为BC的中点,由中点坐标公式求E点坐标,当双曲线与△ABC有唯一交点时,这个交点分别为A、E,由此可求k的取值范围.【解答】解:如图,设直线y=x与BC交于E点,分别过A、E两点作x轴的垂线,垂足为D、F,EF交AB于M,∵A点的横坐标为1,A点在直线y=x上,∴A(1,1),又∵AB=AC=2,AB∥x轴,AC∥y轴,∴B(3,1),C(1,3),且△ABC为等腰直角三角形,BC的中点的坐标为(,),即为(2,2),∵点(2,2)满足直线y=x,∴点(2,2)即为E点坐标,E点坐标为(2,2),∴k=OD×AD=1,或k=OF×EF=4,当双曲线与△ABC有交点时,1≤k≤4.故选:C.【点评】本题考查了反比例函数的综合运用.注意直线,三角形的特殊性,根据双曲线上点的坐标特点求解.12.(4分)△ABC在如图所示的平面直角坐标系中,将△ABC向右平移3个单位长度后得△A1B1C1,再将△A1B1C1绕点O旋转180°后得到△A2B2C2.则下列说法正确的是()A.A1的坐标为(3,1)B.=3C.B2C=2D.∠AC2O=45°【分析】根据题意,画出图形,对选项进行一一分析,排除错误答案.【解答】解:如图,A、A1的坐标为(1,3),故错误B、S=3×2=6,故错误;四边形ABB1A1C、B2C==,故错误;D、变化后,C2的坐标为(﹣2,﹣2),而A(﹣2,3),由图可知,∠AC2O=45°,故正确.故选:D.【点评】本题考查平移、旋转的性质.(1)平移的基本性质是:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行(或在同一条直线上)且相等,对应线段平行(或在同一条直线上)且相等,对应角相等.(2)旋转的性质是:旋转变化前后,对应线段、对应角分别相等,图形的大小、形状都不改变,两组对应点连线的垂直平分线的交点是旋转中心.13.(4分)为了解昆明市某区12000名学生参加的数学考试的成绩情况,从中抽取了300名考生的成绩进行统计,在这个问题中,下列说法:(1)这12000名学生的数学考试成绩的全体是总体;(2)每个考生是个体;(3)300名考生是总体的一个样本;(4)300名考生的数学考试成绩是总体的一个样本;(5)样本容量是300名考生.其中不正确的有()A.4个B.3个C.2个D.1个【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:(1)这12000名学生的数学考试成绩的全体是总体,正确;(2)每个考生的数学成绩是个体,此结论错误;(3)300名考生的数学考试成绩是总体的一个样本,此结论错误;(4)300名考生的数学考试成绩是总体的一个样本,此结论正确;(5)样本容量是300,此结论错误.故选:B.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.14.(4分)如图所示,AB是⊙O的直径,AM、BN是⊙O的两条切线,D、C分别在AM、BN上,DC切⊙O于点E,连接OD、OC、BE、AE,BE与OC相交于点P,AE与OD 相交于点Q,已知AD=4,BC=9,以下结论:①⊙O的半径为;②∠AOD=∠BCP;③PB=;④tan∠CEP=.其中正确结论有()A.1个B.2个C.3个D.4个【分析】作DK⊥BC于K,连接OE,在Rt△CDK中,利用勾股定理求得DK=12,由此判断①;可以证明AQ=QE,AO=OB,由此得出结论判断②;根据PB=计算即可判断③;根据tan∠CEP=tan∠CBP=计算即可判断④.【解答】解:作DK⊥BC于K,连接OE.∵AD、BC是切线,∴∠DAB=∠ABK=∠DKB=90°,∴四边形ABKD是矩形,∴DK=AB,AD=BK=4,∵CD是切线,∴DA=DE,CE=CB=9,在Rt△DKC中,∵DC=DE+CE=13,CK=BC﹣BK=5,∴DK==12,∴AB=DK=12,∴⊙O半径为6.故①错误;∵DA=DE,OA=OE,∴OD垂直平分AE,同理OC垂直平分BE,∴AQ=QE,∵AO=OB,∴OD∥BE,故②正确;在Rt△OBC中,PB===,故③正确;∵CE=CB,∴∠CEB=∠CBE,∴tan∠CEP=tan∠CBP===,故④错误,∴②③正确,故选:B.【点评】本题考查切线的性质、圆周角定理、切线长定理、勾股定理、三角形中位线性质、直角三角形斜边上的高的求法等知识,解题的关键是添加辅助线构造直角三角形解决问题,熟练掌握切线长定理,属于中考常考题型.三、解答题(9个小题,共70分)15.(6分)解不等式组,并把它的解集在数轴上表示出来.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式5x+1>3(x﹣1),得:x>﹣2,解不等式x﹣1≤7﹣x,得:x≤4,则不等式组的解集为﹣2<x≤4,将解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.16.(7分)如图,在▱ABCD中,=,连接AE并延长交BC的延长线于点F.(1)求证:△ADE≌△FCE;(2)若AB=2FC,∠F=38°,求∠B的度数.【分析】(1)利用平行四边形的性质得出AD∥BC,AD=BC,证出∠D=∠ECF,由ASA即可证出△ADE≌△FCE;(2)证出AB=FB,由等腰三角形的性质和三角形内角和定理即可得出答案.【解答】(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠ECF,∵=,∴DE=CE,又∠AED=∠FEC,∴△ADE≌△FCE(ASA);(2)解:由(1)中结论可得AD=FC,∵AD=BC,AB=2FC,∴AB=FB,∴∠BAF=∠F=38°,∴∠B=180°﹣2×38°=104°.【点评】此题主要考查了平行四边形的性质,全等三角形的判定与性质,等腰三角形的性质、三角形内角和定理;熟练掌握平行四边形的性质,证明三角形全等是解决问题的关键.17.(7分)为了尽快实施“精准扶贫”,某县扶贫工作队为某村购买了一批苹果树苗和梨树苗,已知一棵苹果树苗比一棵梨树苗贵2元,购买苹果树苗的费用和购买梨树苗的费用分别是3500元和2500元.(1)若两种树苗购买的棵数一样多,求梨树苗的单价;(2)若两种树苗共购买1100棵,且购买两种树苗的总费用不超过6000元,根据(1)中两种树苗的单价,求梨树苗至少购买多少棵.【分析】(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,根据两种树苗购买的棵树一样多列出方程求出其解即可;(2)设购买梨树苗种树苗a棵,苹果树苗则购买(1100﹣a)棵,根据购买两种树苗的总费用不超过6000元建立不等式求出其解即可.【解答】解:(1)设梨树苗的单价为x元,则苹果树苗的单价为(x+2)元,依题意得=,解得x=5.经检验x=5是原分式方程的解,且符合题意.答:梨树苗的单价是5元.(2)设购买梨树苗a棵,苹果树苗则购买(1100﹣a)棵,依题意得(5+2)(1100﹣a)+5a≤6 000,解得a≥850.答:梨树苗至少购买850棵.【点评】本题考查了列分式方程解实际问题的运用,一元一次不等式解实际问题的运用,解答时由方程求出两种树苗的单价是关键.18.(7分)某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的北岸边点A处,测得河的南岸边点B在其南偏东45°方向,然后向北走20米到达C点,测得点B 在点C的南偏东33°方向,求出这段河的宽度(结果精确到1米,参考数据sin33°≈0.54,cos33°≈0.84,tan33°≈0.65,≈1.41)【分析】记河南岸为BE,延长CA交BE于点D,则CD⊥BE,设AD=x米,则BD=x 米,CD=(20+x)米,在Rt△CDB中利用三角函数即可列方程求解.【解答】解:如图,记河南岸为BE,延长CA交BE于点D,则CD⊥BE.由题意知,∠DAB=45°,∠DCB=33°,设AD=x米,则BD=x米,CD=(20+x)米,在Rt△CDB中,=tan∠DCB,∴≈0.65,解得x≈37.答:这段河的宽约为37米.【点评】本题考查了解直角三角形的应用,正确作出辅助线构造直角三角形是关键.19.(7分)为了传承优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》,《三字经》,《弟子规》(分别用字母A,B,C依次表示这三个诵读材料),将A,B,C这三个字母分别写在3张完全相同的不透明卡片的正面上,把这3张卡片背面朝上洗匀后放在桌面上.小明和小亮参加诵读比赛,比赛时小明先从中随机抽取一张卡片,记录下卡片上的内容,放回后洗匀,再由小亮从中随机抽取一张卡片,选手按各自抽取的卡片上的内容进行诵读比赛.(1)小明诵读《论语》的概率是;(2)请用列表法或画树状图(树形图)法求小明和小亮诵读两个不同材料的概率.【分析】(1)利用概率公式直接计算即可;(2)列举出所有情况,看小明和小亮诵读两个不同材料的情况数占总情况数的多少即可.【解答】解:(1)∵诵读材料有《论语》,《三字经》,《弟子规》三种,∴小明诵读《论语》的概率=,故答案为:;(2)列表得:由表格可知,共有9种等可能性结果,其中小明和小亮诵读两个不同材料结果有6种.所以小明和小亮诵读两个不同材料的概率=.【点评】本题考查了用列表法或画树形图发球随机事件的概率,用到的知识点为:概率=所求情况数与总情况数之比;得到所求的情况数是解决本题的易错点.20.(8分)如图1,A,B,C是三个垃圾存放点,点B,C分别位于点A的正北和正东方向,AC=100米.四人分别测得∠C的度数如下表:他们又调查了各点的垃圾量,并绘制了下列尚不完整的统计图2,图3:(1)求表中∠C度数的平均数:(2)求A处的垃圾量,并将图2补充完整;(3)用(1)中的作为∠C的度数,要将A处的垃圾沿道路AB都运到B处,已知运送1千克垃圾每米的费用为0.005元,求运垃圾所需的费用.(注:sin37°=0.6,cos37°=0.8,tan37°=0.75)【分析】(1)利用平均数求法进而得出答案;(2)利用扇形统计图以及条形统计图可得出C处垃圾量以及所占百分比,进而求出垃圾总量,进而得出A处垃圾量;(3)利用锐角三角函数得出AB的长,进而得出运垃圾所需的费用.【解答】解:(1)==37(度);(2)∵C处垃圾存放量为:320kg,在扇形统计图中所占比例为:50%,∴垃圾总量为:320÷50%=640(千克),∴A处垃圾存放量为:(1﹣50%﹣37.5%)×640=80(kg),占12.5%.补全条形图如下:(3)∵AC=100米,∠C=37°,∴tan37°=,∴AB=AC tan37°=100×0.75=75(米),∵运送1千克垃圾每米的费用为0.005元,∴运垃圾所需的费用为:75×80×0.005=30(元),答:运垃圾所需的费用为30元.【点评】此题主要考查了平均数求法以及锐角三角三角函数关系以及条形统计图与扇形统计图的综合应用,利用扇形统计图与条形统计图获取正确信息是解题关键.21.(8分)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DE∥AC且2DE =AC,连接AE交OD于点F,连接CE、OE.(1)求证:OE=AB;(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.【分析】(1)想办法证明AB=AD,OE=AD即可解决问题.(2)证明四边形OCED是矩形,利用勾股定理即可解决问题.【解答】(1)证明:连接EC.∵四边形ABCD是菱形,∴OA=OC=AC,AD=AB,∵DE∥AC且2DE=AC,∴DE=OA=OC,∴四边形OADE、四边形OCED都是平行四边形,∴OE=AD,∴OE=AB.(2)∵AC⊥BD,∴四边形OCED是矩形,∴∠OCE=90°,∵在菱形ABCD中,∠ABC=60°,∴△ABC为等边三角形,∴AC=AB=2,AO=AC=1,∴在矩形OCED中,CE=OD==.∴在Rt△ACE中,AE==.【点评】本题考查菱形的性质,平行四边形的判定和性质,矩形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.22.(8分)如图,点A是直线AM与⊙O的交点,点B在⊙O上,BD⊥AM,垂足为D,BD与⊙O交于点C,OC平分∠AOB,∠B=60°.(1)求证:AM是⊙O的切线;(2)若⊙O的半径为4,求图中阴影部分的面积(结果保留π和根号).【分析】(1)根据题意,可得△BOC的等边三角形,进而可得∠BCO=∠BOC,根据角平分线的性质,可证得BD∥OA,根据∠BDM=90°,进而得到∠OAM=90°,即可得证;(2)连接AC,利用△AOC是等边三角形,求得∠OAC=60°,可得∠CAD=30°,在直角三角形中,求出CD、AD的长,则S阴影=S梯形OADC﹣S扇形OAC即可得解.【解答】(1)证明:∵∠B=60°,OB=OC,∴△BOC是等边三角形,∴∠1=∠2=60°,∵OC平分∠AOB,∴∠1=∠3,∴∠2=∠3,∴OA∥BD,∵∠BDM=90°,∴∠OAM=90°,又OA为⊙O的半径,∴AM是⊙O的切线(2)解:连接AC,∵∠3=60°,OA=OC,∴△AOC是等边三角形,∴∠OAC=60°,∴∠CAD=30°,∵OC=AC=4,∴CD=2,∴AD =2,∴S 阴影=S 梯形OADC ﹣S 扇形OAC =×(4+2)×2﹣=6﹣π.【点评】本题主要考查切线的性质与判定、扇形的面积等,在求阴影部分面积的题目时,可用整体减去部分的方法计算.23.(12分)如图,直线y =﹣x +与x 轴、y 轴分别交于B 、C 两点,点A 在x 轴上,∠ACB =90°,抛物线y =ax 2+bx +(a ≠0)经过A ,B 两点. (1)求A 、B 两点的坐标;(2)求抛物线的解析式;(3)在直线BC 上方的抛物线上,是否存在点M ,过点M 作MH ⊥BC 交BC 于点H ,作MD ∥y 轴交BC 于点D ,使得S △MHD :S △BCA =1:12,若存在,求出点M 的坐标和△DMH 的周长;若不存在,请说明理由.【分析】(1)分别令y =0,x =0,可求出直线y =﹣x +与x 轴、y 轴的交点B ,C ,再通过三角形相似可求出AO 的长度,可写出点A 的坐标;(2)分别将A ,B 坐标代入抛物线y =ax 2+bx +即可求出抛物线解析式;(3)先证△MHD 与△BCA 相似,因为其面积比为1:12,所以相似比为1:2,由AB 的长可求出其对应边MD 的长,进一步求出△DMH 的周长.【解答】解:(1)∵直线y =﹣x +与x 轴、y 轴分别交于B 、C 两点,∴B (3,0),C (0,),∴OB =3,OC =,∴tan ∠BCO ==,∴∠BCO =60°,∵∠ACB =90°,∴∠ACO =30°,∴tan 30°==,即=, 解得,AO =1,∴A (﹣1,0);(2)∵抛物线y =ax 2+bx +经过A ,B 两点,∴解得,∴抛物线的解析式为y =﹣x 2+x +;(3)存在.理由如下:∵MD ∥y 轴,MH ⊥BC , ∴∠MDH =∠BCO =∠OAC =60°,则∠DMH =30°,又∠OBC =90°﹣60°=30°,∴△DMH ∽△ABC ,又S △MHD :S △BCA =1:12,∴MD :AB =1:2,∴MD =,可设M ,则D,∴MD =﹣t 2+ t +﹣=﹣t 2+t =,∴t 2﹣3t +2=0,t 1=1,t 2=2,∴M或M (2,),∴△DMH 的周长=DM +DH +MH =DM +DM +DM =DM =1+.【点评】本题考查了待定系数法求解析式,三角形的相似的判定与性质,解题关键是熟练运用三角形的面积比等于相似比的平方.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

云南省昆明市2019年四校联考中考数学二模试卷
一.填空题(每题3分,满分18分)
1.已知函数y=
,则自变量x的取值范围是_____.
x-
2
2.(2015秋•临清市期末)现今世界上较先进的计算机显卡每秒可绘制出27 000 000个三角形,且显示逼真,用科学记数法表示这种显卡每秒绘制出三角形个.
a,则a2
﹣3=_____.
4.抛掷一枚质地均匀的骰子1次,朝上一面的点数不小于3的概率是_____.
5.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.
6.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.
二.选择题(满分32分,每小题4分)
7.若a>0,b<0,那么a﹣b的值()
A. 大于零
B. 小于零
C. 等于零
D. 不能确定
8.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()
A. B.
C. D. 9.下列运算正确的是()A. 3x2+4x2=7x4 B. (﹣x)﹣9÷(﹣x)﹣3=x﹣6C. x2﹣x2=1 D. ﹣x(x2﹣x+1)=﹣x3﹣x2﹣x 10.为弘扬传统文化,某校初二年级举办传统文化进校园朗诵大赛,小明同学根据比赛中九位评委所给的某位参赛选手的分数,制作了一个表格,如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的
是()
A. 中位数
B. 众数
C. 平均数
D. 方差
11.某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为()
A2% B. 4.4% C. 20% D. 44%
12.关于x方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()
A. m≤6
B. m<6
C. m≤6且m≠2
D. m<6且m≠2
13.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确
的结论有()个.
A. 1个
B. 2个
C. 3个
D. 4个
14.如图,将△ABC 绕点C 旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB 扫过的图形面积为( )
A. 32π
B. 83π
C. 6π
D. 以上答案都不对
三.解答题
15.(1)计算:20(1)22cos30--++ (2)解不等式组:212(1)3x x x -≥⎧⎨-<+⎩
16.先化简,再求值:265(2)22
x x x x -÷----,其中x =﹣1. 17.如图,在▱ABCD 中,E 是对角线BD 上的一点,过点C 作CF ∥DB ,且CF =DE ,连接AE ,BF ,EF .
(1)求证:△ADE ≌△BCF ;
(2)若∠ABE +∠BFC =180°,则四边形ABFE 是什么特殊四边形?说明理由.
18.某区为了解全区2800名九年级学生英语口语考试成绩情况,从中随机抽取了部分学生的成绩(满分24分,得分均为整数),制成下表:
(1)填空:
①本次抽样调查共抽取了名学生;
②学生成绩的中位数落在分数段;
③若用扇形统计图表示统计结果,则分数段为x≤16的人数所对应扇形的圆心角为°;
(2)如果将21分以上(含21分)定为优秀,请估计该区九年级考生成绩为优秀的人数.
19.某工厂准备购买A、B两种零件,已知A种零件的单价比B种零件的单价多30元,而用900元购买A 种零件的数量和用600元购买B种零件的数量相等.
(1)求A、B两种零件的单价;
(2)根据需要,工厂准备购买A、B两种零件共200件,工厂购买两种零件的总费用不超过14700元,求工厂最多购买A种零件多少件?
20.(10分)如图,一次函数y kx b
=+与反比例函数
m
y
x
=的图象交于A(1,4),B(4,n)两点.
(1)求反比例函数的解析式;
(2)求一次函数的解析式;
(3)点P是x轴上的一动点,试确定点P并求出它的坐标,使PA+PB最小.21.已知抛物线y=ax2+bx+3与x轴交于点A(﹣1,0),B(3,0).
(1)求抛物线的解析式;
(2)过点D(0,7
4
)作x轴的平行线交抛物线于E,F两点,求EF的长;
(3)当y≤7
4
时,直接写出x的取值范围是.
22.如图以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点D恰好为BC的中点,过点D作⊙O的切
线交AC边于点F.
(1)求证:DF⊥AC;
(2)若∠ABC=30°,求tan∠BCO的值.
23.(1)如图①,矩形ABCD中,对角线AC与BD相交于点O,过点O作直线EF⊥BD,交AD于点E,交BC于点F,连接BE、DF,且BE平分∠ABD.
①求证:四边形BFDE是菱形;
②直接写出∠EBF的度数;
(2)把(1)中菱形BFDE进行分离研究,如图②,点G、I分别在BF、BE边上,且BG=BI,连接GD,H为GD的中点,连接FH并延长,交ED于点J,连接IJ、IH、IF、IG.试探究线段IH与FH之间满足的关系,并说明理由;
(3)把(1)中矩形ABCD进行特殊化探究,如图③,当矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE、EF、DF,使△DEF是等腰直角三角形,DF交AC于点G.请直接写出线段AG、GE、EC三者之间满足的数量关系.。

相关文档
最新文档