新北师大版2016年山东省枣庄市滕州市中考数学二模试卷
山东省枣庄市2016届九年级中考仿真演练数学试题解析(解析版)

山东省枣庄市2016届九年级中考仿真演练数学试题一、选择题(共12小题,每小题3分,满分36分)1.-23的相反数是()A.-32B.23C.32D.-23【答案】B. 【解析】试题解析:-23的相反数是23.故选B.考点:相反数.2.下列计算中,正确的是()A.3a+2b=5ab B.a•a4=a4C.a6÷a2=a3D.(a3b)2=a6b2【答案】D.【解析】试题解析:A、3a与2b不是同类项不能合并,故本选项错误;B、应为a•a4=a1+4,故本选项错误;C、应为a6÷a2=a6-2=a4,故本选项错误;D、(a3b)2=a6b2,正确.故选D.考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.3.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=32°,那么∠2的度数是()A.32° B.58° C.68° D.60°【答案】B.【解析】试题解析:如图:根据题意可知,∠2=∠3,∵∠1+∠2=90°,∴∠2=90°-∠1=58°.故选B.考点:1.平行线的性质;2.余角和补角.4.据统计2016年1月至2016年6月,石榴园、台儿庄古城等景区共接待游客约518000人,这个数可用科学记数法表示为()A.0.518×104B.5.18×105C.51.8×104D.518×103【答案】B.【解析】试题解析:518000=5.18×105.故选B.考点:科学记数法—表示较大的数.5.如图,将等边△ABC 的边AC 逐渐变成以B 为圆心、BA 为半径的 AC ,长度不变,AB 、BC 的长度也不变,则∠ABC 的度数大小由60°变为( )A .(60π)° B.(90π)° C.(120π)° D.(180π)°【答案】D .【解析】试题解析:设∠ABC 的度数大小由60变为n ,则AC=180n AB π⨯,由AC=AB , 解得n=180π故选D .考点:1.弧长的计算;2.等边三角形的性质.6.下列调查工作需采用的普查方式的是( )A .环保部门对淮河某段水域的水污染情况的调查B .电视台对正在播出的某电视节目收视率的调查C .质检部门对各厂家生产的电池使用寿命的调查D .企业在给职工做工作服前进行的尺寸大小的调查【答案】D.【解析】试题解析:A 、环保部门对淮河某段水域的水污染情况的调查不必全面调查,大概知道水污染情况就可以了,适合抽样调查,故A 选项错误;B 、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查,故B 选项错误;C 、质检部门对各厂家生产的电池使用寿命的调查,如果普查,所有电池都报废,这样就失去了实际意义,故C 选项错误;D 、企业在给职工做工作服前进行的尺寸大小的调查是精确度要求高的调查,适于全面调查,故D 选项正确. 故选D .考点:全面调查与抽样调查.7.如图,∠1=50°,如果AB∥DE,那么∠D=()A.40° B.50° C.130° D.140°【答案】C.考点:平行线的性质.8.如图,市政府准备修建一座高AB=6m的过街天桥,已知天桥的坡面AC与地面BC的夹角∠ACB的正弦值为35,则坡面AC的长度为()m.A.10 B.8 C.6 D.【答案】A.【解析】试题解析:∵天桥的坡面AC与地面BC的夹角∠ACB的正弦值为35,∴sinC=35 ABAC=,则635 AC=,解得:AC=10,则坡面AC的长度为10m.故选A.考点:解直角三角形的应用-坡度坡角问题.9.如图,扇形OAB是圆锥的侧面展开图,若小正方形方格的边长为1cm,则这个圆锥的底面半径为()A.cm B cm C cm D.12cm【答案】C.【解析】试题解析:设圆锥的底面半径为r,则2π,所以cm.故选C.考点:1.弧长的计算;2.勾股定理.10.给出下列函数:①y=2x;②y=-2x+1;③y=2x(x>0);④y=x2(x<1),其中y随x的增大而减小的函数是()A.①②③④ B.②③④ C.②④ D.②③【答案】D.【解析】试题解析:①∵y=2x中k=2>0,∴y随x的增大而增大,故本小题错误;②∵y=-2x+1中k=-2<0,∴y随x的增大而减小,故本小题正确;③∵y=2x(x>0)中k=2>0,∴y随x的增大而减小,故本小题正确;④∵y=x2(x<1)中x<1,∴当0<x<1时,y随x的增大而增大,故本小题错误.故选D.考点:1.反比例函数的性质;2.一次函数的性质;3.正比例函数的性质.11.王英同学从A地沿北偏西60°方向走100m到B地,再从B地向正南方向走200m到C地,此时王英同学离A地()A.m B.100m C.150m D.m【答案】D.【解析】试题解析:AD=AB•sin60°=BD=AB•cos60°=50,∴CD=150.=.故选D.考点:解直角三角形的应用-方向角问题.12.甲、乙两名自行车运动员同时从A地出发到B地,在直线公路上进行骑自行车训练.如图,反映了甲、乙两名自行车运动员在公路上进行训练时的行驶路程S(千米)与行驶时间t(小时)之间的关系,下列四种说法:①甲的速度为40千米/小时;②乙的速度始终为50千米/小时;③行驶1小时时乙在甲前10千米;④3小时时甲追上乙.其中正确的个数有()A .1个B .2个C .3个D .4个【答案】C.【解析】试题解析:由图象可得:甲的速度为120÷3=40千米/小时,故①正确;乙的速度在0≤t≤1时,速度是50千米/小时,而在t >1时,速度为÷(3-1)=35千米/小时,故②错误;行驶1小时时,甲的距离为40千米,乙的距离为50千米,所以乙在甲前10千米,故③正确;3小时甲与乙相遇,即3小时时甲追上乙,故④正确;故选C .考点:一次函数的应用.二、填空题(共6小题,每小题3分,满分18分)13.分解因式:3ax 2-3ay 2= .【答案】3a (x+y )(x-y ).【解析】试题解析:3ax 2-3ay 2=3a (x 2-y 2)=3a (x+y )(x-y ).考点:提公因式法与公式法的综合运用.14.不等式组20301x x -⎩≥-⎧⎨<的解集是 . 【答案】12≤x<3. 【解析】试题解析:解不等式1,得x <3解不等式2,得x≥12∴原不等式组的解集是12≤x<3. 考点:解一元一次不等式组.15.若△ABC 的一边为4,另两边分别满足x 2-5x+6=0的两根,则△ABC 的周长为 .【答案】9.【解析】试题解析:设x 2-5x+6=0的两个根分别为x 1、x 2,则有x 1+x 2=551b a --=-=, △ABC 的周长为x 1+x 2+4=5+4=9.考点:根与系数的关系.16.用半径为6cm ,圆心角为120°的扇形围成一个圆锥,则圆锥的底面圆半径为 cm .【答案】2.【解析】试题解析:设圆锥的底面圆半径为r ,根据题意得2πr=1206180π⨯,解得r=2, 即圆锥的底面圆半径为2cm .考点:圆锥的计算.17.如图,矩形纸片ABCD ,AB=2,点E 在BC 上,且AE=EC ,若将纸片沿AE 折叠,点B 恰好落在AC 上,则AC 的长是 .【答案】4.【解析】试题解析:∵AE=EC ,∴∠EAC=∠ECA ,∵将纸片沿AE 折叠,点B 恰好落在AC 上,∴∠BAE=∠EAC ,∴∠BAE=∠EAC=∠ECA ,∵∠B+∠ECA+∠CAB=180°∴∠ECA=30°∵AB=2∴AC=2AB=4.考点:1.翻折变换(折叠问题);2.等腰三角形的性质.18.如图是二次函数y=ax 2+bx+c 图象的一部分,图象过点A (-3,0),对称轴为x=-1.给出四个结论:①b 2>4ac ;②2a+b=0;③a -b+c=0;④5a<b .其中正确结论是 .【答案】①④【解析】试题解析:①∵图象与x 轴有交点,对称轴为x=2b a -=-1,与y 轴的交点在y 轴的正半轴上, 又∵二次函数的图象是抛物线,∴与x 轴有两个交点,∴b 2-4ac >0,即b 2>4ac ,故①正确;②∵抛物线的开口向下,∴a<0,∵与y 轴的交点在y 轴的正半轴上,∴c>0,∵对称轴为x=2b a-=-1, ∴2a=b,∴2a+b=4a,a≠0,故②错误;③∵x=-1时y 有最大值,由图象可知y≠0,故③错误;④把x=1,x=-3代入解析式得a+b+c=0,9a-3b+c=0,两边相加整理得5a-b=-c <0,即5a <b ,故④正确.考点:二次函数图象与系数的关系.三、解答题(共7小题,满分66分)19.(1)先化简,再求值:22()b b a a b a b a b+÷+--.其中a=2016,(2)计算:11|2|()2cos 603---+︒.【答案】(1);(2).【解析】试题分析:(1)首先进行通分,进而化简,再将已知代入求出答案;(2)直接利用负整数指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简求出答案. 试题解析:(1)22()b b a a b a b a b +÷+-- =()()()()[]()()()()b a b b a b a b a b a b a b a b a b a-++-+⨯+-+- =2()()()()ab a b a b a b a b a+-⨯+- =2b把代入得:原式;(2)11|2|()2cos 603---+︒--1.考点:1.实数的运算;2.分式的化简求值;3.负整数指数幂;4.特殊角的三角函数值.20.如图,在Rt△ABC 中,∠ACB=90°,D 、E 分别为AB ,AC 边上的中点,连接DE ,将△ADE 绕点E 旋转180°得到△CFE,连接AF ,AC .(1)求证:四边形ADCF 是菱形;(2)若BC=8,AC=6,求四边形ABCF 的周长.【答案】(1)证明见解析;(2)28.考点:1.菱形的判定与性质;2.旋转的性质.21.初中生对待学习的态度一直是教育工作者关注的问题之一.为此某市教育局对该市部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了200 名学生;(2)将图①补充完整;(3)求出图②中C级所占的圆心角的度数;(4)根据抽样调查结果,请你估计该市近20000名初中生中大约有多少名学生学习态度达标?(达标包括A级和B级)【答案】(1)200;(2)补图见解析;(3)54°.(4) 17000名学生【解析】试题分析:(1)通过对比条形统计图和扇形统计图可知:学习态度层级为A级的有50人,占部分八年级学生的25%,即可求得总人数;(2)由(1)可知:C级人数为:200-120-50=30人,将图1补充完整即可;(3)各个扇形的圆心角的度数=360°×该部分占总体的百分比,所以可以先求出:360°×(1-25%-60%)=54°;(4)从扇形统计图可知,达标人数占得百分比为:25%+60%=85%,再估计该市近20000名初中生中达标的学习态度就很容易了.试题解析:(1)50÷25%=200(人);(2)C级人数:200-120-50=30(人).条形统计图如图所示:(3)C所占圆心角度数=360°×(1-25%-60%)=54°.(4)20000×(25%+60%)=17000(名).答:估计该市初中生中大约有17000名学生学习态度达标.考点:1.条形统计图;2.全面调查与抽样调查;3.用样本估计总体;4.扇形统计图.22.甲、乙两公司为“见义勇为基金会”各捐款60000元,已知乙公司比甲公司人均多捐40元,甲公司的人数比乙公司的人数多20%.请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.【答案】甲公司为300人,乙公司250人.【解析】试题分析:首先提出问题,例如,求甲、乙两公司的人数分别是多少?则本题的等量关系是:乙公司的人均捐款-甲公司的人均捐款=40,根据这个等量关系可得出方程求解.试题解析:问题:求甲、乙两公司的人数分别是多少?解:设乙公司人数为x,则甲公司的人数为(1+20%)x,根据题意得:600006000040(120%)x x-=+解得:x=250经检验x=250是原方程的根,故(1+20%)×250=300(人),答:甲公司为300人,乙公司250人.考点:分式方程的应用.23.如图,已知矩形OABC的两边OA、OC分别落在x轴、y轴的正半轴上,顶点B的坐标是(6,4),反比例函数y=kx(x>0)的图象经过矩形对角线的交点E,且与BC边交于点D.(1)①求反比例函数的解析式与点D的坐标;②直接写出△ODE的面积;(2)若P 是OA 上的动点,求使得“PD+PE 之和最小”时的直线PE 的解析式.【答案】(1) ①y=6x.D 的坐标是(1.5,4);②4.5;(2) 直线PE 的解析式是y=-4x+10. 【解析】 试题分析:(1)①连接OE ,则O 、E 、三点共线,则E 是OB 的中点,即可求得E 的坐标,利用待定系数法求得函数的解析式,进而求得D 的坐标;②根据S △ODE =S △OBC -S △OCD -S △BDE 即可求解;(2)作E 关于OA 轴的对称点E',则直线DE'就是所求的直线PE ,利用待定系数法即可求解.试题解析:(1)①连接OB ,则O 、E 、B 三点共线.∵B 的坐标是(6,4),E 是矩形对角线的交点,∴E 的坐标是(3,2),∴k=3×2=6,则函数的解析式是y=6x. 当y=4时,x=1.5,即D 的坐标是(1.5,4);②S △OBC =12BC•OC=12×6×4=12, S △OCD =12OC•CD=12×4×1.5=3, S △BDE =12×(6-1.5)×2=4.5, 则S △ODE =S △OBC -S △OCD -S △BDE =12-3-3-4.5=4.5;(2)作E 关于OA 轴的对称点E',则E'的坐标是(3,-2).连接E'D ,与x 轴交点是P ,此时PO+PE 最小.设y=mx+n ,把E'和D 的坐标代入得:321.54m n m n +=-⎧⎨+=⎩, 解得:410m n =-⎧⎨=⎩, 则直线PE 的解析式是y=-4x+10.考点:反比例函数综合题.24.已知,如图,直线MN 交⊙O 于A ,B 两点,AC 是直径,AD 平分∠CAM 交⊙O 于D ,过D 作DE⊥MN 于E .(1)求证:DE 是⊙O 的切线;(2)若DE=6cm ,AE=3cm ,求⊙O 的半径.【答案】(1)证明见解析;(2)7.5cm.【解析】试题分析:(1)连接OD ,根据平行线的判断方法与性质可得∠ODE=∠DEM=90°,且D 在⊙O 上,故DE 是⊙O 的切线.(2)由直角三角形的特殊性质,可得AD 的长,又有△ACD ∽△ADE .根据相似三角形的性质列出比例式,代入数据即可求得圆的半径.试题解析:(1)连接OD .∵OA=OD,∴∠OAD=∠ODA.∵∠OAD=∠DAE,∴∠ODA=∠DAE.∴DO∥MN.∵DE⊥MN,∴∠ODE=∠DEM=90°.即OD⊥DE.∵D在⊙O上,OD为⊙O的半径,∴DE是⊙O的切线.(2)∵∠AED=90°,DE=6,AE=3,∴AD===.连接CD.∵AC是⊙O的直径,∴∠ADC=∠AED=90°.∵∠CAD=∠DAE,∴△ACD∽△ADE.∴AD AC AE AD=.=则AC=15(cm).∴⊙O的半径是7.5cm.考点:1.切线的判定;2.平行线的判定与性质;3.圆周角定理;4.相似三角形的判定与性质.25.如图,在平面直角坐标系中,直角梯形OABC,BC∥OA,一边OA在x轴上,另一边OC在y轴上,且OA=AB=5cm,BC=2cm,以OC为直径作⊙P.(1)求⊙P的直径;(2)⊙P沿x轴向右滚动过程中,当⊙P与x轴相切于点A时,求⊙P被直线AB截得的线段AD长;(3)⊙P沿x轴向右滚动过程中,当⊙P与直线AB相切时,求圆心P移动的距离.【答案】(1) 4cm;(2) 165cm.(3) 1cm或6cm.【解析】试题分析:(1)作BD⊥OA于点D,由题意可得BD=OC,要求⊙P的直径,只要求出BD的长即可,根据题目中的数量关系,由勾股定理可以得到BD的长,本题得以解决;(2)根据题意,画出相应的图形,作AE⊥CP交CB的延长线于点E,根据直径所对的圆周角是直角和勾股定理可以得到AD的长,本题得以解决;(3)根据题意可知,分两种情况,分别画出相应的图形,然后根据题目中的数量关系和切线的性质,可以分别求得圆心P移动的距离,本题得以解决.试题解析:(1)如右图①,过B作BD⊥OA.由题意知:∠BCO=∠DOC=∠BDO=90°.∴四边形ODBC为矩形.∴OC=BD,OD=BC.∵BC=2,∴DA=OA-OD=5-2.在Rt△ABD中,根据勾股定理,得BD2=AB2-DA2,∴BD=4,∴CD=4,即⊙P的直径是4cm;(2)如右图②所示,当⊙P与x轴相切于A时,设⊙P与CB所在直线相切于E.易知P在EA上,且CE=AO=5∴BE=3连接ED,∵EA为直径,∴∠EDA=90°.设AD=x,则BD=5-x由勾股定理知32-(5-x)2=42-x2解得x=16 5∴AD=165cm.(3)如右图③所示,当⊙P与AB相切时,分两种情况.第一种情况:当⊙P滚动到P1时,设PP1=x,由题意易知:PP1=CE=OG=x,则BE=BC-CE=2-x,AG=AO-OG=5-x.∵⊙P1与AB、AO相切于点F、G,∴AF=AG=5-x.∵⊙P1与BC、AB相切于点E、F,∴BF=BE=2-x.∵AB=5,AF+BF=AB,∴5-x+2-x=5.解得,x=1,即PP1=1cm;第二种情况:当⊙P滚动到P2时,设PP2=x,易知:OJ=CH=PP2=x,则AJ=x-5,BH=x-2,∵⊙P2与AB、CH相切,∴BI=BH=x-2.同理,AI=AJ=x-5.∵AB=BI+AI,∴x-2+x-5=5.解得,x=6,即PP2=6cm;∴当⊙P与直线AB相切时,点P移动的距离为1cm或6cm.考点:圆的综合题.。
【中考真题】枣庄市2016年中考数学试题含答案资料

绝密☆启用前二○一六年枣庄市初中学业水平考试数 学 试 题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号. 考试结束,将试卷和答题卡一并交回.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分. 1.下列计算,正确的是A .2222a a a ⋅=B .224a a a += C .422)(a a =- D .1)1(22+=+a a2.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°36′,在 OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,反射光线DC 恰好与OB 平行,则∠DEB 的度数 是A .75°36′B .75°12′C .74°36′D .74°12′ 3.某中学篮球队关于这12名队员的年龄,下列说法错误的是A .众数是14 B.极差是3 C .中位数是14.5 D .平均数是14.8 4.如图,在△ABC 中,AB =AC ,∠A =30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于 A .15° B .17.5° C .20°D .22.5°5.已知关于x 的方程230x x a ++=有一个根为-2,则另一个根为第4题图第2题图A .5B .-1C .2D .-56.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆 放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是A.白B. 红C.黄D.黑 7.如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线 翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一 点,则线段BP 的长不可能是A .3B .4C .5.5D .108. 若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是9.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥ 于H ,则DH 等于 A .524B .512 C .5 D .4 10.已知点P (a +1,2a-+1)关于原点的对称点在第四象限,则a 的取值范围在数 轴上表示正确的是第7题图第9题图CHB ACD C DCB AOO O Oxyxyx yyx11. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为 A .2π B .π C.π3 D.2π312.已知二次函数c bx ax y ++=2(0≠a )的图象如图所示, 给出以下四个结论:①0=abc ;②0>++c b a ;③b a >; ④042<-b ac .其中,正确的结论有A.1个B.2个C.3个D.4个第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13.122--= .14. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据: AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米 (结果精确到0.1=1.41).15. 如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若第11题图(第10题图)第14题图第15题图AC =2,则tan D = .16. 如图,点 A 的坐标为(-4,0),直线y n =+与坐标轴交于点B ,C ,连结 AC ,如果∠ACD =90°,则n 的值为 .17. 如图,已知△ABC 中,∠C =90°,AC =BC 2△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B = . 18. 一列数1a ,2a ,3a ,… 满足条件:112a =,111n n a a -=-(n ≥2,且n 为整 数),则2016a = .三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证明过程或演算步骤. 19.(本题满分8分)先化简,再求值:2221()211a a a a a a+÷--+-,其中a 是方程2230x x +-=的解.20. (本题满分8分)n P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么n P 与n 的关系式是:第16题图B 第17题图2(1)()24n n n P n an b -=⋅-+ (其中,a ,b 是常数,n ≥4) ⑴通过画图,可得四边形时,4P = (填数字);五边形时,5P = (填数字).⑵请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值. 21.(本题满分8分)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表:⑴请根据题中已有的信息补全频数分布表:① ,② ,③ ; ⑵如果家庭月均用水量“大于或等于5t 且小于8t”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?⑶记月均用水量在23x ≤<范围内的两户为1a 、2a ,在78x ≤<范围内3户为1b 、2b 、3b ,从这5户家庭中任意抽取2户,试完成下表,并求出抽取的2户家庭来自不同范围的概率.22.(本题满分8分)如图,在矩形OABC中,OA=3,OC=2,F是AB上的一个动点(F不与A,B重合),过点F的反比例函数kyx的图象与BC边交于点E.⑴当F为AB的中点时,求该函数的解析式;⑵当k为何值时,△EF A的面积最大,最大面积是多少?23.(本题满分8分)如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接P A,PB,AB,已知∠PBA=∠C.⑴求证:PB是⊙O的切线;⑵连接OP,若OP∥BC,且OP=8,⊙O的半径为BC的长.第22题图第23题图24.(本题满分10分)如图,把△EFP 放置在菱形ABCD 中,使得顶点E ,F ,P 分别在线段AB ,AD ,AC 上,已知EP =FP =6,EF=,∠BAD =60°,且AB>.⑴求∠EPF 的大小; ⑵若AP =8,求AE +AF 的值;⑶若△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动,请直接写出AP 长的最大值和最小值.25. (本题满分10分)如图,已知抛物线y =ax 2+bx +c (a ≠0)的对称轴为直线x =-1,且经过A (1,0),C (0,3)两点,与x 轴的另一个交点为B .⑴若直线y =mx +n 经过B ,C 两点,求直线BC 和抛物线的解析式; ⑵在抛物线的对称轴x =-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;第24题图第24题备用图⑶设点P 为抛物线的对称轴x =-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.绝密☆启用前二○一六年枣庄市初中学业水平考试数学参考答案及评分意见评卷说明:1.选择题和填空题中的每小题,只有满分和零分两个评分档,不给中间分. 2.解答题每小题的解答中所对应的分数,是指考生正确解答到该步所应得的累计分数.本答案中每小题只给出一种解法,考生的其他解法,请参照评分意见进行评分. 3.如果考生在解答的中间过程出现计算..错误,但并没有改变试题的实质和难度,其后续部分酌情给分,但最多不超过正确解答分数的一半,若出现较严重的逻辑错误,后续部分不给分.一、选择题:(本大题共12小题,每小题3分,共36分)二、填空题:(本大题共6小题,每小题4分,共24分)13.122 14.2.9 15. 16.3- 171 18.-1三、解答题:(本大题共7小题,共60分) 19.(本题满分8分) 解:原式=2(1)2(1)(1)(1)a a a a a a a +--÷--……………………………………………………2分=2(1)(1)(1)1a a a a a a +-⋅-+=21a a -…………………………………………………………………………4分 由2230x x +-=,得 11x =,232x =- ………………………………………6分又10a -≠ ∴32a =-.∴原式=23()9231012-=---. ………………………………………………………………8分 20.(本题满分8分) 解:⑴由画图,可得当4n =时,41P =;当5n =时,55P =. ………………………………………4分⑵将上述数值代入公式,得4(41)(164)1245(51)(255)524a b a b ⨯-⎧⋅-+=⎪⎪⎨⨯-⎪⋅-+=⎪⎩①② ………………………………………………6分 解之,得5,6.a b =⎧⎨=⎩………………………………………………………………………8分 21.(本题满分8分) 解:⑴①15②6③12% ………………………………………………………3分⑵中等用水量家庭大约有450×(20%+12%+6%)=171(户) ……………………5分⑶表格(略),抽取的2户家庭来自不同范围的概率P=123205=. …………………………………………………………………8分22.(本题满分8分)解:⑴在矩形OABC 中,OA =3,OC =2,∴B (3,2),∵F 为AB 的中点,∴F (3,1). …………2分∵点F 在反比例函数ky x=的图象上, ∴k =3.∴该函数的解析式为3y x=. ………4分⑵由题意,知E ,F 两点坐标分别为E (2k ,2),F (3,3k),∴221111(3)223212213(3)124EFA k k S AF BE k k k ∆=⋅=⨯-=-+=--+…………………………6分所以当k =3时,S 有最大值,S 最大值=34. ……………………………………8分23.(本题满分8分)⑴证明:如图所示,连接OB.第22题图∵AC 是⊙O 的直径,∴∠ABC =90°,∠C +∠BAC =90°. ……………1分 ∵OA =OB ,∴∠BAC =∠OBA . ………………………2分 ∵∠PBA =∠C ,∴∠PBA +∠OBA =90°,即PB ⊥OB .∴PB 是⊙O 的切线. ……………………………4分 ⑵解:⊙O的半径为OB=AC=∵OP ∥BC ,∴∠BOP =∠OBC =∠C . 又∵∠ABC =∠PBO =90°,∴△ABC ∽△PBO ,…………………………………………………………………………6分 ∴BC AC OB OP ==∴BC =2.……………………………………………………………………………………8分24.(本题满分10分)解:(1)如图,过点P 作PG ⊥EF 于G .∵PE =PF =6,EF =63∴FG =EG= ∠FPG =∠EPG =12EPF ∠. 在Rt △FPG 中,sin ∠FPG=FG PF ==. ∴∠FPG =60°, ∴∠EPF =2∠FPG =120°. ……………………………………………………3分(2)作PM ⊥AB 于M ,PN ⊥AD 于N .∵AC 为菱形ABCD 的对角线,第24题图∴∠DAC =∠BAC ,AM =AN ,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF∴NF =ME . ………………………………………………………………………………5分又AP =10,1302PAM DAB ∠=∠=︒, ∴AM = AN =AP cos30°=10=∴A E+AF =(A M+ME)+(A N-NF )=A M +AN=………………………………7分(3) 如图,当△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动时,点P 在1P ,2P 之间运动,易知123PO PO ==,9AO =, ∴AP 的最大值为12,AP 的最小值为6.……………………………………10分25.(本题满分10分)解:(1)依题意,得1,20,3.ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解之,得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩∴抛物线解析式为322+--=x x y . …………………………………………2分∵对称轴为x =-1,且抛物线经过A (1,0),∴B (-3,0). 把B (-3,0)、C (0,3)分别直线y =mx +n ,得30,3.m n n -+=⎧⎨=⎩ 解之,得1,3.m n =⎧⎨=⎩ ∴直线BC 的解析式为3+=x y . …………3分(2)∵MA =MB ,∴MA +MC =MB +MC.第24题备用图∴使MA +MC 最小的点M 应为直线BC 与对称轴x = -1的交点.设直线BC 与对称轴x =-1的交点为M ,把x =-1 代入直线3+=x y ,得y =2. ∴M (-1,2)………………………………………………………………………6分 (3)设P (-1,t ),结合B (-3,0),C (0, 3),得BC 2=18,PB 2=(-1+3)2+t 2=4+t 2,PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即 18+4+t 2=t 2-6t +10. 解之,得t =-2. ② 若C 为直角顶点,则BC 2+PC 2=PB 2,即 18+t 2-6t +10=4+t 2.解之,得t =4. ③ 若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t 2+t 2-6t +10=18.解之,得t 1=2173+,t 2=2173-. 综上所述,满足条件的点P 共有四个,分别为 1P (-1,-2), 2P (-1,4), 3P (-1,2173+) ,4P (-1,2173-).…10分。
2016年山东省枣庄市中考数学试卷-答案

山东省枣庄市2016年初中毕业学业水平考试数学答案解析第Ⅰ卷 一、选择题1.【答案】C【解析】解:A.224a a a =,故此选项错误;B.2222a a a +=,故此选项错误;C.()224a a -=,故此选项正确;D.()22121a a a +=++,故此选项错误;故选:C 。
【提示】根据同底数幂相乘判断A ,根据合并同类项法则判断B ,根据积的乘方与幂的乘方判断C ,根据完全平方公式判断D 。
【考点】幂的乘方与积的乘方,合并同类项,同底数幂的乘法,完全平方公式。
2.【答案】B【解析】过点D 作DF AO ⊥交OB 于点F 。
∵入射角等于反射角,∴13∠=∠,∵CD OB ∥,∴12∠=∠(两直线平行,内错角相等);∴23∠=∠(等量代换);在Rt DOF △中,90ODF ∠=︒,3736AOB ∠=︒', 29037365224∴∠=︒︒'=︒'-∴在DEF △中,180227512DEB ∠=︒∠=︒'-故选B 。
【提示】过点D 作DF AO ⊥交OB 于点F 。
根据题意知,DF 是CDE ∠的角平分线,故13∠=∠;然后又由两直线CD OB ∥推知内错角12∠=∠;最后由三角形的内角和定理求得DEB ∠的度数。
【考点】平行线的性质,度分秒的换算。
3.【答案】D【解析】解:由图表可得:14岁的有5人,故众数是14,故选项A 正确,不合题意;极差是163=13-,故选项B 正确,不合题意;中位数是:14.5,故选项C 正确,不合题意;平均数是:()131451541621214.58+⨯+⨯+⨯÷≈,故选项D 错误,符合题意。
故选:D 。
【提示】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案。
【考点】极差,加权平均数,中位数,众数。
4.【答案】A【解析】∵∠ABC 的平分线与∠ACE 的平分线交于点D ,12∴∠=∠,34∠=∠ACE A ABC ∠=∠+∠,1234A ∠+∠=∠+∠+∠,2123A ∴∠=∠+∠,13D ∠=∠+∠,130152D A ∴∠=∠=⨯︒=︒。
山东省2016年中考第二次模拟考试数学试题

B .A .C.D .2016年九年级第二次模拟考试数学试题本试题分选择题,36分;非选择题,84分;全卷满分120分,考试时间为120分钟.考试结束后,将本试卷和答题卡一并收回. 注意事项:1.答卷前,考生务必用0.5毫米黑色签字笔将自己的县(市、区)、学校、姓名、准考证号填写在答题卡和试卷规定的位置上.2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤.第Ⅰ卷(选择题 共36分) 一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分. 1、-2016的绝对值是( )A .2016B .12016C .-2016D .-120162、下列各图是选自历届世博会会徽中的图案,其中是中心对称图形的是( )3、我市通过扩消费、促投资、稳外需的协同发力,激发了区域发展活力,实现了经济平稳较快发展.2015年全市生产总值(GDP )达5613亿元.该数据用科学记数法表示为( )A .5.613×1011元B .5.613×1012元C .56.13×1010元 D. 0.5613×1012元4、如图所示,AB ∥CD ,AD 与BC 相交于点E ,EF 是∠BED 的平分线,若∠1=30°,∠2=40°,则∠BEF=( )A .70°B .40°C .35°D .30°5、如图是由5个底面直径与高度相等的大小相同的圆柱搭成的几何体,其左视图是( )A .B .C .D .剪6、若关于x 的方程230x x a ++=有一个根为1,则另一个根为( ).A .-4B .2C .4D .-37、如图,已知△OAB 是正三角形,OC ⊥OB ,OC=OB ,将△OAB 绕点O 按逆时针方向旋转,使得OA 与OC 重合,得到△OCD , 则旋转的角度是( )A .150°B .120°C .90°D .60° 8、如图,下面是按照一定规律画出的“数形图”,经观察可以发现:图A 2比图A 1多出2个“树枝”, 图A 3比图A 2多出4个“树枝”, 图A 4比图A 3多出8个“树枝”,……,照此规律,图A 6比图A 2多出“树枝”( )个A.28B.56C.60D. 1249、 如图,如果从半径为9cm 的圆形纸片剪去13圆周的 一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠), 那么这个圆锥的高为( ) A .6cmB..8cm D.10、二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( ).11、如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE . 将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF . 下列结论:①△ABG ≌△AFG;②BG =GC ;③AG ∥CF ;④S △FGC =3. 其中正确结论的个数是( ) A .1B .2C .3D .412、在正方形ABCD 中,AB =3cm ,动点M 自A 点出发沿AB 方向以每秒1cm 的速度运动,同时动点N 自A 点出发沿折线AD —DC —CB 以每秒3cm 的速度运动,到达B 点时运动同时停止,设△AMN 的面积为y(cm 2),运动时间为x (秒),则下列图象中能大致反映x x x x xy 与x 之间的函数关系的是( )非选择题 (共84分)二、填空题:本大题共5小题,每小题填对得4分,共20分,只要求填写最后结果。
山东省枣庄市2016年中考数学真题试题(含解析)

绝密☆启用前山东省枣庄市2016年中考数学真题试题注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷为选择题,36分;第Ⅱ卷为非选择题,84分;全卷共6页,满分120分.考试时间为120分钟.2.答卷时,考生务必将第Ⅰ卷和第Ⅱ卷的答案填涂或书写在答题卡指定位置上,并在本页上方空白处写上姓名和准考证号. 考试结束,将试卷和答题卡一并交回.第Ⅰ卷 (选择题 共36分)一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的, 请把正确的选项选出.每小题选对得3分,选错、不选或选出的答案超过一 个均计零分. 1.下列计算,正确的是A .2222a a a ⋅=B .224a a a +=C .422)(a a =- D .1)122+=+a a ( 【答案】C.考点:同底数幂的计算;合并同类项;完全平方公式.2.如图,∠AOB 的一边OA 为平面镜,∠AOB =37°36′,在OB 上有一点E ,从E 点射出一束光线经OA 上一点D 反射,反射光线DC 恰好与OB 平行,则∠DEB 的度数是 A .75°36′ B .75°12′ C .74°36′ D .74°12′【答案】B.第2题图【解析】试题分析:由平行线的性质可得∠AOB=∠ADC=37°36′,根据光的反射定律可得∠ADC=∠ODE=37°36′,再由三角形外角的性质可得∠DEB=∠AOB+∠ODE=37°36′+37°36′=75°12′,故答案选B. 考点:平行线的性质;三角形外角的性质. 3.某中学篮球队12名队员的年龄如下表:关于这12 A .众数是14 B.极差是3C .中位数是14.5D .平均数是14.8【答案】D.考点:众数;中位数;极差;平均数.4.如图,在△ABC 中,AB = AC ,∠A = 30°,E 为BC 延长线上一点,∠ABC 与∠ACE 的平分线相交于点D ,则∠D 等于 A .15° B .17.5°C .20°D .22.5°【答案】A. 【解析】试题分析:在△ABC 中,AB=AC ,∠A=30°,根据等腰三角形的性质可得∠ABC=∠B第4题图ACB=75°,所以∠ACE=180°-∠ACB=180°-75°=105°,根据角平分线的性质可得∠DBC=37.5°,∠ACD=52.5°,即可得∠BCD=127.5°,根据三角形的内角和定理可得∠D=180°-∠DBC-∠BCD=180°-37.5°-127.5°=15°,故答案选A. 考点:等腰三角形的性质;三角形的内角和定理.5.已知关于的方程230x x a ++=有一个根为-2,则另一个根为 A .5 B .-1 C .2 D .-5 【答案】B. 【解析】试题分析:设方程的里一个根为b ,根据一元二次方程根与系数的关系可得-2+b=-3,解得b=-1,故答案选B.考点:一元二次方程根与系数的关系.6.有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同.现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面涂的颜色是A.白B. 红C.黄D.黑 【答案】C.考点:几何体的侧面展开图.7.如图,△ABC 的面积为6,AC =3,现将△ABC 沿AB 所在直线翻折,使点C 落在直线AD 上的C ′处,P 为直线AD 上的一点,则线段BP 的长不可能是A .3B .4C .5.5D .10第7题图【答案】A. 【解析】试题分析:由题意可知,△ABC ′是由△ABC 翻折得到的,所以△ABC ′的面积也为6,当BC ′⊥AD 时,BP 最短,因AC=AC ′=3,△ABC ′的面积为6,可求得BP=4,即BP 最短为4,所以线段BP 的长不可能是3,故答案选A. 考点:点到直线的距离.8. 若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数y kx b =+的图象可能是【答案】B.考点:根的判别式;一次函数的性质.9.如图,四边形ABCD 是菱形,8=AC ,6=DB ,AB DH ⊥于H ,则DH 等于 A .524B .512 C .5 D .4【答案】A. 【解析】试题分析:如图,四边形ABCD 是菱形,8=AC ,6=DB ,根据菱形的性质可得OA=4,V VVD C BA第9题图COB=3,由勾股定理可得AB=5,再由DH AB BD AC S ⋅=⋅=21菱形即可求得DH=524,故答案选A.考点:菱形的性质. 10.已知点P (a +1,2a-+1)关于原点的对称点在第四象限,则a 的取值范围在数轴上表示正确的是【答案】C.考点:点的坐标;不等式组的解集.11. 如图,AB 是⊙O 的直径,弦CD ⊥AB ,∠CDB =30°,CD =32,则阴影部分的面积为A .2πB .Π C.π3D.2π3【答案】D.B ACD 第11题图【解析】试题分析:已知,AB 是⊙O 的直径,弦CD ⊥AB ,根据圆的对称性可得阴影部分的面积等于扇形AOB 的面积,由垂径定理可得CE=3,由圆周角定理可得∠COB=60°,在Rt △COE 中,求得OC=2,所以323602602ππ=⨯⨯==BOCS S 扇形阴影,故答案选D.考点:垂径定理;圆周角定理;扇形面积公式.12.已知二次函数c bx ax y ++=2(0≠a )的图象如图所示,给出以下四个结论:①0=abc ;②0>++c b a ;③b a >;④042<-b ac .其中,正确的结论有A.1个B.2个C.3个D.4个【答案】C.考点:抛物线的图象与系数的关系.第Ⅱ卷 (非选择题 共84分)二、填空题:本大题共6小题,满分24分.只填写最后结果,每小题填对得4分. 13.122--= .(第10题图)【答案】25. 【解析】试题分析:原式=3-21+2-2=25. 考点:实数的运算.14. 如图是矗立在高速公路边水平地面上的交通警示牌,经测量得到如下数据:AM =4米,AB =8米,∠MAD =45°,∠MBC =30°,则警示牌的高CD 为 米(结果精确到0.1=1.41).【答案】2.9.考点:解直角三角形.15. 如图,在半径为3的⊙O 中,直径AB 与弦CD 相交于点E ,连接AC ,BD ,若AC =2,则tan D = .【答案】22. 【解析】试题分析:如图,连接BC ,根据直径所对的圆周角为直角可得△ACB 为直角三角形,在直角三角形△ACB 中,AC=2,AB=6,由勾股定理可得BC=42,由圆周角定理可得∠第14题图第15题图A=∠D,所以tan D =tan A =22224==AC BC.考点:圆周角定理;勾股定理;锐角三角函数. 16. 如图,点 A 的坐标为(-4,0),直线y n =+与坐标轴交于点B ,C ,连结AC ,如果∠ACD =90°,则n 的值为 .【答案】334-. 考点:一次函数的性质.17. 如图,已知△ABC 中,∠C =90°,AC =BCABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B = .第16题图B 第17题图【答案】13-.13)13()22()262(22222''-=-=+-=+=BP P C BC.考点:旋转的性质;勾股定理.18. 一列数1a ,2a ,3a ,… 满足条件:112a =,111n n a a -=-(n ≥2,且n 为整数),则2016a = . 【答案】-1. 【解析】试题分析:根据题意可知,112a =,221112=-=a ,1-2113=-=a ,211-114=-=)(a ,.......,由此可得这组数据3个一循环,2016÷3=672,所以2016a 是第672个循环中的第3个数,即2016a =-1. 考点:规律探究题.三、解答题:本大题共7小题,满分60分.解答时,要写出必要的文字说明、证 明过程或演算步骤.19.(本题满分8分)先化简,再求值:2221()211a a a a a a +÷--+-,其中a 是方程2230x x +-=的解. 【答案】原式=21a a -, 由2230x x +-=,得 11x =,232x =- 又10a -≠ ∴32a =-.原式=23()9231012-=---.考点:分式的化简求值;一元二次方程的解法. 20. (本题满分8分)n P 表示n 边形的对角线的交点个数(指落在其内部的交点),如果这些交点都不重合,那么n P 与n 的关系式是:2(1)()24n n n P n an b -=⋅-+ (其中,a ,b 是常数,n ≥4) ⑴通过画图,可得四边形时,4P = (填数字);五边形时,5P = (填数字). ⑵请根据四边形和五边形对角线交点的个数,结合关系式,求a ,b 的值. 【答案】(1)41P =,55P =;(2)5,6.a b =⎧⎨=⎩【解析】试题分析:(1)根据题意画出图形即可得41P =,55P =;(2)把n=4,n=5分别代入公式,可得以a 、b 为未知数的二元一次方程组,解方程组即可得a 、b 的值. 试题解析:⑴由画图,可得当4n =时,41P =;当5n =时,55P =.考点:数形结合思想;二元一次方程组的解法. 21.(本题满分8分)小军同学在学校组织的社会实践活动中,负责了解他所居住的小区450户居民的生活用水情况,他从中随机调查了50户居民的月均用水量(单位:t ),并绘制了样本的频数分布表:12⑴请根据题中已有的信息补全频数分布表:① ,② ,③ ;⑵如果家庭月均用水量“大于或等于5t 且小于8t ”为中等用水量家庭,请你通过样本估计总体中的中等用水量家庭大约有多少户?⑶记月均用水量在23x ≤<范围内的两户为1a 、2a ,在78x ≤<范围内3户为1b 、2b 、3b ,从这5户家庭中任意抽取2户,试完成下表,并求出抽取的2户家庭自不同范围的概率.【答案】⑴①15,②6,③12%;(2)171;(3)表格见解析,5. ⑵中等用水量家庭大约有450×(20%+12%+6%)=171(户) ⑶表格(略),a a bb抽取的2户家庭自不同范围的概率P=205=. 考点:22.(本题满分8分)如图,在矩形OABC 中,OA =3,OC =2,F 是AB 上的一个动点(F 不与A ,B 重合),过点F 的反比例函数ky x=的图象与BC 边交于点E . ⑴当F 为AB 的中点时,求该函数的解析式;⑵当为何值时,△EFA 的面积最大,最大面积是多少?【答案】(1)3y x =;(2)当=3时,S 有最大值,S 最大值=34. ∴=3.∴该函数的解析式为3y x=. ⑵由题意,知E ,F 两点坐标分别为E (2k ,2),F (3,3k ),∴221111(3)223212213(3)124EFA k k S AF BE k k k ∆=⋅=⨯-=-+=--+所以当=3时,S 有最大值,S 最大值=34.考点:反比例函数的性质;二次函数的应用. 23.(本题满分8分)如图,AC 是⊙O 的直径,BC 是⊙O 的弦,点P 是⊙O 外一点,连接PA ,PB ,AB ,已知∠PBA =∠C .⑴求证:PB 是⊙O 的切线;⑵连接OP ,若OP ∥BC ,且OP =8,⊙O的半径为BC 的长.【答案】(1)详见解析;(2)2.第23题图∴PB是⊙O的切线.∴BC=2.考点:切线的判定;相似三角形的判定及性质.24.(本题满分10分)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=,∠BAD=60°,且AB>⑴求∠EPF 的大小;⑵若AP =8,求AE +AF 的值;⑶若△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动,请直接写出AP 长的最大值和最小值.【答案】(1)120°;(2)(3)AP 的最大值为12,AP 的最小值为6. 【解析】试题分析:(1)如图,过点P 作PG ⊥EF 于G ,已知PE=PF=6,EF=角形的性质可得FG=EG=FPG=∠EPG=12EPF ∠.在Rt △FPG 中,由sin ∠FPG=FG PF ==可求得∠FPG=60°,所以∠EPF=2∠FPG=120°.(2)作PM ⊥AB 于M ,PN ⊥AD 于N ,根据菱形的性质可得∠DAC=∠BAC ,AM=AN ,PM=PN ,再利用HL 证明Rt △PME ≌Rt △PNF ,即可得NF=ME.又因AP=10,1302PAM DAB ∠=∠=︒,所以AM= AN =APcos30°=10=所以AE +AF=(AM +ME )+(AN -NF)=AM +AN=(3)如图,当△EFP 的三个顶点E ,F ,P 分别在线段AB ,AD ,AC 上运动时,点P 在1P ,2P 之间运动,易知123PO P O ==,9AO =,所以AP 的最大值为12,AP 的最小值为6.试题解析:(1)如图,过点P 作PG ⊥EF 于G.第24题备用图第24题图∵AC为菱形ABCD的对角线,∴∠DAC=∠BAC,AM=AN,PM=PN.在Rt△PME和Rt△PNF 中,PM=PN,PE=PF,∴Rt△PME≌Rt△PNF∴NF=ME.又AP=10,1302PAM DAB∠=∠=︒,∴AM= AN =APcos30°=10⨯=∴AE+AF=(AM+ME)+(AN-NF)=AM+AN=考点:四边形综合题. 25. (本题满分10分)如图,已知抛物线y =a 2+b +c (a ≠0)的对称轴为直线=-1,且经过A (1,0),C (0,3)两点,与轴的另一个交点为B .⑴若直线y =m +n 经过B ,C 两点,求直线BC 和抛物线的解析式;⑵在抛物线的对称轴=-1上找一点M ,使点M 到点A 的距离与到点C 的距离之和最小,求点M 的坐标;⑶设点P 为抛物线的对称轴=-1上的一个动点,求使△BPC 为直角三角形的点P 的坐标.【答案】(1)322+--=x x y ,3+=x y ;(2)M (-1,2);(3)满足条件的点P 共有四个,分别为1P (-1,-2), 2P (-1,4), 3P (-1,2173+) ,4P (-1,2173-). 【解析】试题分析:(1)已知抛物线y =a 2+b +c 的对称轴为直线=-1,且经过A (1,0),C (0,3)两点,可得方程组,解方程组可求得a 、b 、c的值,即可得抛物线的解析式;根据抛第25题图物线的对称性和点A 的坐标(1,0)可求得B 点的坐标(-3,0),用待定系数法可求得直线BC 的解析式;(2)使MA+MC 最小的点M 应为直线BC 与对称轴=-1的交点,把=-1代入直线BC 的解析式求得y 的值,即可得点M 的坐标;(3)分①B 为直角顶点,②C 为直角顶点,③P 为直角顶点三种情况分别求点P 的坐标.试题解析:(1)依题意,得1,20,3.ba abc c ⎧-=-⎪⎪++=⎨⎪=⎪⎩解之,得1,2,3.a b c =-⎧⎪=-⎨⎪=⎩∴抛物线解析式为322+--=x x y .∵对称轴为=-1,且抛物线经过A (1,0), ∴B (-3,0).把B (-3,0)、C (0,3)分别直线y =m +n ,得PC 2=(-1)2+(t -3)2=t 2-6t +10.①若B 为直角顶点,则BC 2+PB 2=PC 2,即18+4+t 2=t 2-6t +10. 解之,得t =-2.②若C 为直角顶点,则BC 2+PC 2=PB 2,即 18+t 2-6t +10=4+t 2.解之,得t =4. ③若P 为直角顶点,则PB 2+PC 2=BC 2,即4+t2+t2-6t+10=18.解之,得t1=2173+,t2=2173-.考点:二次函数综合题.。
2016年山东省枣庄市中考数学试卷

2016年山东省枣庄市中考数学试卷一、选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。
1.(3分)下列计算,正确的是()A.a2•a2=2a2B.a2+a2=a4 C.(﹣a2)2=a4D.(a+1)2=a2+12.(3分)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A.75°36′B.75°12′C.74°36′D.74°12′3.(3分)某中学篮球队12名队员的年龄如表:关于这12名队员年龄的年龄,下列说法错误的是()A.众数是14 B.极差是3 C.中位数是14.5 D.平均数是14.84.(3分)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC 与∠ACE的平分线相交于点D,则∠D的度数为()A.15°B.17.5°C.20°D.22.5°5.(3分)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()6.(3分)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A.白B.红C.黄D.黑7.(3分)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A.3 B.4 C.5.5 D.108.(3分)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B. C.D.9.(3分)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()10.(3分)已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A.B. C.D.11.(3分)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2,则阴影部分的面积为()A.2πB.πC.D.12.(3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。
山东省枣庄市中考数学二模试卷

山东省枣庄市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)(2016·河池) 下列各数中,比﹣1小的数是()A . ﹣2B . 0C . 1D . 22. (2分)如图,把一个长方形纸片沿EF折叠后,点D、C分别落在D ′、C ′ 的位置,若∠EFB=65° ,则∠AED′等于()A . 50°B . 55°C . 60°D . 65°3. (2分)(2018·江都模拟) 如图所示的几何体的俯视图是()A .B .C .D .4. (2分)(2011·绵阳) 抛掷一个质地均匀且六个面上依次刻有1﹣6的点数的正方体型骰子,如图.观察向上的一面的点数,下列情况属必然事件的是()A . 出现的点数是7B . 出现的点数不会是0C . 出现的点数是2D . 出现的点数为奇数5. (2分) (2017八上·孝南期末) 下列运算正确的是()A . (a﹣1)2=a2﹣1B . (2a)2=2a2C . a2•a3=a6D . a•a2=a36. (2分)如图,在△ABC中,AB=AC,将△ABC绕B点逆时针方向旋转60°,得到△A′BC′,若A′C′⊥AB,则∠ABC′度数为()A . 15°B . 20°C . 25°D . 30°7. (2分)某居民区的月底统计用电情况如下,其中3户用电45度,5户用电50度,6户用电42度,则平均用电()度.A . 41B . 42C . 45.5D . 468. (2分)不等式﹣3x+6>0的正整数解有()A . 1个B . 2个C . 3个D . 4个9. (2分)已知a-b=3,b+c=-5,则代数式ac-bc+a2-ab的值为()A . 一15B . 一2C . 一6D . 610. (2分)(2017·陕西模拟) 如图,已知A,B,C,D是⊙O上的点,AB⊥CD,OA=2,CD=2 ,则∠D等于()A . 20°B . 25°C . 30°D . 35°11. (2分)(2017·萍乡模拟) 如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A .B .C .D .12. (2分)(2017·薛城模拟) 如图,正比例函数y1=k1x的图象与反比例函数y2= 的图象相交于A,B 两点,其中点A的横坐标为2,当y1>y2时,x的取值范围是()A . x<﹣2或x>2B . x<﹣2或0<x<2C . ﹣2<x<0或0<x<2D . ﹣2<x<0或x>2二、填空题 (共5题;共5分)13. (1分) (2017八下·海宁开学考) 函数y= 中自变量x的取值范围是________.14. (1分)对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界值1.若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,则b的取值范围是________.15. (1分)从甲、乙、丙、丁4名三好学生中随机抽取2名学生担任升旗手,则抽取的2名学生是甲和乙的概率为________.16. (1分)(2017·黄州模拟) 若一个圆锥的底面积是侧面积的,则该圆锥侧面展开图的圆心角度数是________度.17. (1分) (2017八上·孝南期末) 已知∠MON=45°,其内部有一点P关于OM的对称点是A,关于ON的对称点是B,且OP=2cm,则S△AOB=________.三、解答题 (共8题;共98分)18. (5分)计算:① +② ÷(a﹣b)2③(﹣)÷ .19. (15分)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解:如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究:①小红猜想:对角线互相平分的“等邻边四边形”是菱形,她的猜想正确吗?请说明理由.②如图2,小红画了一个Rt△ABC,其中∠ABC=90°,AB=2,BC=1,并将Rt△ABC沿∠ABC的平分线BB′方向平移得到△A′B′C′,连结AA′,BC′,小红要使平移后的四边形ABC′A′是“等邻边四边形”,应平移多少距离(即线段BB′的长)?(3)拓展应用:如图3,“等邻边四边形”ABCD中,AB=AD,∠BAD+∠BCD=90°,AC,BD为对角线,AC=AB,试探究BC,CD,BD的数量关系.20. (13分)(2017·三亚模拟) 二孩政策的落实引起了全社会的关注,某校学生数学兴趣小组为了了解本校同学对父母生育二孩的态度,在学校抽取了部分同学对父母生育二孩所持的态度进行了问卷调查,调查分别为非常赞同、赞同、无所谓、不赞同等四种态度,现将调查统计结果制成了如图两幅统计图,请结合两幅统计图,回答下列问题:(1)在这次问卷调查中一共抽取了________名学生,a=________%;(2)请补全条形统计图;(3)持“不赞同”态度的学生人数的百分比所占扇形的圆心角为________度;(4)若该校有3000名学生,请你估计该校学生对父母生育二孩持“赞同”和“非常赞同”两种态度的人数之和.21. (10分)(2018·潮南模拟) 随着“一带一路”的进一步推进,我国瓷器(“china”)更为“一带一路”沿线人民所推崇,一外国商户看准这一商机,向我国一瓷器经销商咨询工艺品茶具,得到如下信息:①每个茶壶的批发价比茶杯多110元;②一套茶具包括一个茶壶与四个茶杯;③600元批发茶壶的数量与160元批发茶杯的数量相同.根据以上信息:(1)求茶壶与茶杯的批发价;(2)若该商户购进茶杯的数量是茶壶数量的5倍还多20个,并且总数不超过200个,该商户打算将一半的茶具按每套500元成套销售,其余按每个茶壶270元,每个茶杯70元零售,请帮助他设计一种获取利润最大的方案,并求出最大利润.22. (10分)(2019·广州模拟) 如图,一般捕鱼船在A处发出求救信号,位于A处正西方向的B处有一艘救援艇决定前去数援,但两船之间有大片暗礁,无法直线到达.救援艇决定马上调整方向,先向北偏东方以每小时30海里的速度航行,同时捕鱼船向正北低速航行.30分钟后,捕鱼船到达距离A处海里的D处,此时救援艇在C处测得D处在南偏东的方向上.(1)求C、D两点的距离;(2)捕鱼船继续低速向北航行,救援艇决定再次调整航向,沿CE方向前去救援,并且捕鱼船和救援艇同达时到E处,若两船航速不变,求的正弦值.参考数据:,,23. (15分)(2017·柘城模拟) 已知,直线l1:y=﹣x+n过点A(﹣1,3),双曲线C:y= (x>0),过点B(1,2),动直线l2:y=kx﹣2k+2(常数k<0)恒过定点F.(1)求直线l1,双曲线C的解析式,定点F的坐标;(2)在双曲线C上取一点P(x,y),过P作x轴的平行线交直线l1于M,连接PF.求证:PF=PM.(3)若动直线l2与双曲线C交于P1,P2两点,连接OF交直线l1于点E,连接P1E,P2E,求证:EF平分∠P1EP2.24. (15分) (2016九上·姜堰期末) 如图,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆运动(含P、Q两点),(1)当线段AB所在的直线与圆O相切时,求弧AQ的长(图1);(2)若∠AOB=120°,求AB的长(图2);(3)如果线段AB与圆O有两个公共点A、M,当AO⊥PM于点N时,求tan∠MPQ的值(图3).25. (15分)(2017·许昌模拟) 如图,以x=1为对称轴的抛物线y=ax2+bx+c的图象与x轴交于点A,点B (﹣1,0),与y轴交于点C(0,4),作直线AC.(1)求抛物线解析式;(2)点P在抛物线的对称轴上,且到直线AC和x轴的距离相等,设点P的纵坐标为m,求m的值;(3)点M在y轴上且位于点C上方,点N在直线AC上,点Q为第一象限内抛物线上一点,若以点C、M、N、Q为顶点的四边形是菱形,请直接写出点Q的坐标.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共5题;共5分)13-1、14-1、15-1、16-1、17-1、三、解答题 (共8题;共98分)18-1、19-1、19-3、20-1、20-2、20-3、20-4、21-1、21-2、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、25-3、。
2016年山东省枣庄市中考数学试卷【答案加解析】

2016年山东省枣庄市中考数学试卷一.选择题:本大题共12小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个均计零分。
1.(2016•枣庄)下列计算,正确的是()A. a2•a2=2a2B. a2+a2=a4C. (﹣a2)2=a4D. (a+1)2=a2+1【答案】C【考点】同底数幂的乘法,幂的乘方与积的乘方,完全平方公式【解析】【解答】解:A、a2•a2=a4,故此选项错误;B、a2+a2=2a2,故此选项错误;C、(﹣a2)2=a4,故此选项正确;D、(a+1)2=a2+2a+1,故此选项错误;故选:C.【分析】根据同底数幂相乘判断A,根据合并同类项法则判断B,根据积的乘方与幂的乘方判断C,根据完全平方公式判断D.本题主要考查了幂的运算、合并同类项法则及完全平方公式,熟练掌握其法则是解题的关键.2.(2016•枣庄)如图,∠AOB的一边OA为平面镜,∠AOB=37°36′,在OB上有一点E,从E点射出一束光线经OA上一点D反射,反射光线DC恰好与OB平行,则∠DEB的度数是()A. 75°36′B. 75°12′C. 74°36′D. 74°12′【答案】B【考点】度分秒的换算,平行线的性质【解析】【解答】解:过点D作DF⊥AO交OB于点F,∵入射角等于反射角,∴∠1=∠3,∵CD∥OB,∴∠1=∠2(两直线平行,内错角相等);∴∠2=∠3(等量代换);在Rt△DOF中,∠ODF=90°,∠AOB=37°36′,∴∠2=90°﹣37°36′=52°24′;∴在△DEF中,∠DEB=180°﹣2∠2=75°12′.故选B.【分析】过点D作DF⊥AO交OB于点F.根据题意知,DF是∠CDE的角平分线,故∠1=∠3;然后又由两直线CD∥OB推知内错角∠1=∠2;最后由三角形的内角和定理求得∠DEB的度数.本题主要考查了平行线的性质.解答本题的关键是根据题意找到法线,然后由法线的性质来解答问题.3.(2016•枣庄)某中学篮球队12名队员的年龄如表:年龄(岁) 13 14 15 16人数 1 5 4 2关于这12名队员年龄的年龄,下列说法错误的是()A. 众数是14B. 极差是3C. 中位数是14.5D. 平均数是14.8【答案】D【考点】加权平均数,极差【解析】【解答】解:由图表可得:14岁的有5人,故众数是14,故选项A正确,不合题意;极差是:16﹣13=3,故选项B正确,不合题意;中位数是:14.5,故选项C正确,不合题意;平均数是:(13+14×5+15×4+16×2)÷12≈14.5,故选项D错误,符合题意.故选:D.【分析】分别利用极差以及中位数和众数以及平均数的求法分别分析得出答案.此题主要考查了极差以及中位数和众数以及平均数的求法,正确把握相关定义是解题关键.4.(2016•枣庄)如图,在△ABC中,AB=AC,∠A=30°,E为BC延长线上一点,∠ABC与∠ACE的平分线相交于点D,则∠D的度数为()A. 15°B. 17.5°C. 20°D. 22.5°【答案】A【考点】等腰三角形的性质【解析】【解答】解:∵∠ABC的平分线与∠ACE的平分线交于点D,∴∠1=∠2,∠3=∠4,∵∠ACE=∠A+∠ABC,即∠1+∠2=∠3+∠4+∠A,∴2∠1=2∠3+∠A,∵∠1=∠3+∠D,∴∠D= ∠A= ×30°=15°.故选A.【分析】先根据角平分线的定义得到∠1=∠2,∠3=∠4,再根据三角形外角性质得∠1+∠2=∠3+∠4+∠A,∠1=∠3+∠D,则2∠1=2∠3+∠A,利用等式的性质得到∠D= ∠A,然后把∠A的度数代入计算即可.本题考查了三角形内角和定理,关键是根据三角形内角和是180°和三角形外角性质进行分析.5.(2016•枣庄)已知关于x的方程x2+3x+a=0有一个根为﹣2,则另一个根为()A. 5B. ﹣1C. 2D. ﹣5【答案】B【考点】根与系数的关系【解析】【解答】解:∵关于x的方程x2+3x+a=0有一个根为﹣2,设另一个根为m,∴﹣2+m= ,解得,m=﹣1,故选B.【分析】根据关于x的方程x2+3x+a=0有一个根为﹣2,可以设出另一个根,然后根据根与系数的关系可以求得另一个根的值,本题得以解决.本题考查根与系数的关系,解题的关键是明确两根之和等于一次项系数与二次项系数比值的相反数.6.(2016•枣庄)有3块积木,每一块的各面都涂上不同的颜色,3块的涂法完全相同,现把它们摆放成不同的位置(如图),请你根据图形判断涂成绿色一面的对面的颜色是()A. 白B. 红C. 黄D. 黑【答案】C【考点】认识立体图形【解析】【解答】解:∵涂有绿色一面的邻边是白,黑,红,蓝,∴涂成绿色一面的对面的颜色是黄色,故选C.【分析】根据图形可得涂有绿色一面的邻边是白,黑,红,蓝,即可得到结论.本题考查了正方体相对两个面上的文字问题,此类问题可以制作一个正方体,根据题意在各个面上标上图案,再确定对面上的图案,可以培养动手操作能力和空间想象能力.7.(2016•枣庄)如图,△ABC的面积为6,AC=3,现将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,P为直线AD上的一点,则线段BP的长不可能是()A. 3B. 4C. 5.5D. 10【答案】A【考点】翻折变换(折叠问题)【解析】【解答】解:如图:过B作BN⊥AC于N,BM⊥AD于M,∵将△ABC沿AB所在直线翻折,使点C落在直线AD上的C′处,∴∠C′AB=∠CAB,∴BN=BM,∵△ABC的面积等于6,边AC=3,∴×AC×BN=6,∴BN=4,∴BM=4,即点B到AD的最短距离是4,∴BP的长不小于4,即只有选项A的3不正确,故选A.【分析】过B作BN⊥AC于N,BM⊥AD于M,根据折叠得出∠C′AB=∠CAB,根据角平分线性质得出BN=BM,根据三角形的面积求出BN,即可得出点B到AD的最短距离是4,得出选项即可.本题考查了折叠的性质,三角形的面积,角平分线性质的应用,解此题的关键是求出B到AD的最短距离,注意:角平分线上的点到角的两边的距离相等.8.(2016•枣庄)若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A. B. C. D.【答案】B【考点】根的判别式,一次函数的图象【解析】【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k>0,b=0,即kb=0,故D不正确;故选:B.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.(2016•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A. B. C. 5 D. 4【答案】A【考点】菱形的性质【解析】【解答】解:∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB= =5,∵S菱形ABCD= ,∴,∴DH= ,故选A.【分析】根据菱形性质求出AO=4,OB=3,∠AOB=90°,根据勾股定理求出AB,再根据菱形的面积公式求出即可.本题考查了勾股定理和菱形的性质的应用,能根据菱形的性质得出S菱形ABCD=是解此题的关键.10.(2016•枣庄)已知点P(a+1,﹣+1)关于原点的对称点在第四象限,则a的取值范围在数轴上表示正确的是()A. B.C. D.【答案】C【考点】在数轴上表示不等式的解集,关于原点对称的点的坐标【解析】【解答】解:∵点P(a+1,﹣+1)关于原点的对称点坐标为:(﹣a﹣1,﹣1),该点在第四象限,∴,解得:a<﹣1,则a的取值范围在数轴上表示为:.故选:C.【分析】根据关于原点对称点的性质得出对应点坐标,再利用第四象限点的坐标性质得出答案.此题主要考查了关于原点对称点的性质以及不等式组的解法,正确得出关于a的不等式组是解题关键.11.(2016•枣庄)如图,AB是⊙O的直径,弦CD⊥AB,∠CDB=30°,CD=2 ,则阴影部分的面积为()A. 2πB. πC.D.【答案】D【考点】扇形面积的计算【解析】【解答】解:∵∠CDB=30°,∴∠COB=60°,又∵弦CD⊥AB,CD=2 ,∴OC= ,∴S阴影=S扇形COB=,故选D.【分析】要求阴影部分的面积,由图可知,阴影部分的面积等于扇形COB的面积,根据已知条件可以得到扇形COB的面积,本题得以解决.本题考查扇形面积的计算,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.12.(2016•枣庄)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,给出以下四个结论:①abc=0,②a+b+c>0,③a>b,④4ac﹣b2<0;其中正确的结论有()A. 1个B. 2个C. 3个D. 4个【答案】C【考点】二次函数图象与系数的关系【解析】【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0∴①正确;∵x=1时,y<0,∴a+b+c<0,∴②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣,b<0,∴b=3a,又∵a<0,b<0,∴a>b,∴③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,∴④正确;综上,可得正确结论有3个:①③④.故选:C.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣,可得﹣,b<0,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二.填空题:本大题共6小题,满分24分,只填写最后结果,每小题填对得4分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年山东省枣庄市滕州市中考数学二模试卷一、选择题(共12小题,每小题3分,满分36分)1.(3分)下列运算正确的是()A.=﹣3 B.a2•a4=a6 C.(2a2)3=2a6D.(a+2)2=a2+42.(3分)福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元3.(3分)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(3分)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 5.(3分)下列命题正确的是()A.矩形的对角线互相垂直B.两边和一角对应相等的两个三角形全等C.分式方程+1=可化为一元一次方程x﹣2+(2x﹣1)=﹣1.5D.多项式t2﹣16+3t因式分解为(t+4)(t﹣4)+3t6.(3分)如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤27.(3分)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD 于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.48.(3分)有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?()A.B.C.D.9.(3分)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x 轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2 D.410.(3分)如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C 作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°11.(3分)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣212.(3分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论;①2a+b >0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0;⑥若(x1,y1)、(x2,y2)在函数图象上,当x1<x2<1时,y1<y2,其中正确的个数是()A.2 B.3 C.4 D.5二、填空题(本大题共有6小题,每小题4分,共24分)13.(4分)若a、b、c为三角形的三边,且a、b满足+(b﹣2)2=0,则第三边c的取值范围是.14.(4分)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=°.15.(4分)如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=4,DB=3,BC=9,则DE的长为.16.(4分)如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC 边相切于点E,则⊙O的半径为.17.(4分)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是.18.(4分)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)正方形的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…,则顶点A2016的坐标为.三、解答题(本大题共有7小题,共60分)19.(7分)先化简,再求值:(1﹣)÷﹣,其中x满足x2﹣x﹣1=0.20.(8分)小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少?21.(8分)某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?22.(8分)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE ⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.23.(8分)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A (1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.24.(10分)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.(1)求证:AD是⊙O的切线;(2)若sin∠ABM=,AM=6,求⊙O的半径.25.(11分)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM 是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.2016年山东省枣庄市滕州市中考数学二模试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.(3分)(2015•昆明)下列运算正确的是()A.=﹣3 B.a2•a4=a6 C.(2a2)3=2a6D.(a+2)2=a2+4【分析】根据同底数幂的乘法的性质,积的乘方的性质,二次根式的性质,完全平分公式,对各选项分析判断后利用排除法求解.【解答】解:A、=3,故错误:B、正确;C、(2a2)3=8a6,故正确;D、(a+2)2=a2+4a+4,故错误;故选:B.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.2.(3分)(2015•绵阳)福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A.0.242×1010美元B.0.242×1011美元C.2.42×1010美元D.2.42×1011美元【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:将242亿用科学记数法表示为:2.42×1010.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2015•义乌市)有6个相同的立方体搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】根据主视图是从正面看得到的图形,可得答案.【解答】解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形.故选:C.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.(3分)(2015•金华)以下四种沿AB折叠的方法中,不一定能判定纸带两条边线a,b互相平行的是()A.如图1,展开后测得∠1=∠2B.如图2,展开后测得∠1=∠2且∠3=∠4C.如图3,测得∠1=∠2D.如图4,展开后再沿CD折叠,两条折痕的交点为O,测得OA=OB,OC=OD 【分析】根据平行线的判定定理,进行分析,即可解答.【解答】解:A、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a∥b(内错角相等,两直线平行),故正确;C、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D、在△AOC和△BOD中,,∴△AOC≌△BOD,∴∠CAO=∠DBO,∴a∥b(内错角相等,两直线平行),故正确.故选:C.【点评】本题考查了平行线的判定,解决本题的关键是熟记平行线的判定定理.5.(3分)(2015•达州)下列命题正确的是()A.矩形的对角线互相垂直B.两边和一角对应相等的两个三角形全等C.分式方程+1=可化为一元一次方程x﹣2+(2x﹣1)=﹣1.5D.多项式t2﹣16+3t因式分解为(t+4)(t﹣4)+3t【分析】根据矩形的性质,全等三角形的判定,分式方程的解法以及因式分解对各选项分析判断即可得解.【解答】解:A、矩形的对角线互相垂直是假命题,故本选项错误;B、两边和一角对应相等的两个三角形全等是假命题,故本选项错误;C、分式方程+1=两边都乘以(2x﹣1),可化为一元一次力程x﹣2+(2x ﹣1)=﹣1.5是真命题,故本选项正确;D、多项式t2﹣16+3t因式分解为(t+4)(t﹣4)+3t错误,故本选项错误.故选C.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.(3分)(2015•丽水)如图,数轴上所表示关于x的不等式组的解集是()A.x≥2 B.x>2 C.x>﹣1 D.﹣1<x≤2【分析】根据在数轴上表示不等式组解集的方法进行解答即可.【解答】解:由数轴可得:关于x的不等式组的解集是:x≥2.故选:A.【点评】本题考查了在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.7.(3分)(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于()A.10 B.7 C.5 D.4【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F,∵BE平分∠ABC,ED⊥AB,EF⊥BC,∴EF=DE=2,=BC•EF=×5×2=5,∴S△BCE故选C.【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.8.(3分)(2014•台湾)有一箱子装有3张分别标示4、5、6的号码牌,已知小武以每次取一张且取后不放回的方式,先后取出2张牌,组成一个二位数,取出第1张牌的号码为十位数,第2张牌的号码为个位数,若先后取出2张牌组成二位数的每一种结果发生的机会都相同,则组成的二位数为6的倍数的机率为何?()A.B.C.D.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果以及组成的二位数为6的倍数的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵每次取一张且取后不放回共有6种可能情况,其中组成的二位数为6的倍数只有54,∴组成的二位数为6的倍数的机率为.故选:A.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.9.(3分)(2015•重庆)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴平行,A,B两点的纵坐标分别为3,1.反比例函数y=的图象经过A,B两点,则菱形ABCD的面积为()A.2 B.4 C.2 D.4【分析】过点A作x轴的垂线,与CB的延长线交于点E,根据A,B两点的纵坐标分别为3,1,可得出横坐标,即可求得AE,BE,再根据勾股定理得出AB,根据菱形的面积公式:底乘高即可得出答案.【解答】解:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数y=的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=2,S菱形ABCD=底×高=2×2=4,故选D.【点评】本题考查了菱形的性质以及反比例函数图象上点的坐标特征,熟记菱形的面积公式是解题的关键.10.(3分)(2012•山西)如图,AB是⊙O的直径,C、D是⊙O上一点,∠CDB=20°,过点C作⊙O的切线交AB的延长线于点E,则∠E等于()A.40°B.50°C.60°D.70°【分析】连接OC,由CE为圆O的切线,根据切线的性质得到OC垂直于CE,即三角形OCE为直角三角形,再由同弧所对的圆心角等于所对圆周角的2倍,由圆周角∠CDB的度数,求出圆心角∠COB的度数,在直角三角形OCE中,利用直角三角形的两锐角互余,即可求出∠E的度数.【解答】解:连接OC,如图所示:∵圆心角∠BOC与圆周角∠CDB都对,∴∠BOC=2∠CDB,又∠CDB=20°,∴∠BOC=40°,又∵CE为圆O的切线,∴OC⊥CE,即∠OCE=90°,则∠E=90°﹣40°=50°.故选B【点评】此题考查了切线的性质,圆周角定理,以及直角三角形的性质,遇到直线与圆相切,连接圆心与切点,利用切线的性质得垂直,根据直角三角形的性质来解决问题.熟练掌握性质及定理是解本题的关键.11.(3分)(2015•丽水)在平面直角坐标系中,过点(﹣2,3)的直线l经过一、二、三象限,若点(0,a),(﹣1,b),(c,﹣1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<﹣2【分析】设一次函数的解析式为y=kx+b(k≠0),根据直线l过点(﹣2,3).点(0,a),(﹣1,b),(c,﹣1)得出斜率k的表达式,再根据经过一、二、三象限判断出k的符号,由此即可得出结论.【解答】解:设一次函数的解析式为y=kx+t(k≠0),∵直线l过点(﹣2,3).点(0,a),(﹣1,b),(c,﹣1),∴斜率k===,即k==b﹣3=,∵直线l经过一、二、三象限,∴k>0,∴a>3,b>3,c<﹣2.故选D.【点评】本题考查的是一次函数图象上点的坐标特点,即一次函数图象上各点的坐标一定适合此函数的解析式.12.(3分)(2016•滕州市二模)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论;①2a+b>0;②abc<0;③b2﹣4ac>0;④a+b+c<0;⑤4a﹣2b+c<0;⑥若(x1,y1)、(x2,y2)在函数图象上,当x1<x2<1时,y1<y2,其中正确的个数是()A.2 B.3 C.4 D.5【分析】由二次函数的开口方向,对称轴x>1,以及二次函数与y的交点在x 轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:①∵二次函数的开口向下,∴a<0,对称轴在1的右边,∴﹣>1,∴2a+b>0,故①正确;②观察图象,抛物线与y轴的交点在x轴下方,∴c<0,又∵对称轴为x=﹣在x轴的正半轴上,故x=﹣>0,∵a<0,∴b>0.∴abc>0,故②错误.③∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故③正确.④观察图象,当x=1时,函数值y=a+b+c>0,故④错误;⑤观察图象,当x=﹣2时,函数值y=4a﹣2b+c<0,故⑤正确.⑥若(x1,y1)、(x2,y2)在函数图象上,当x1<x2<1时,y1<y2,故⑥正确.故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题(本大题共有6小题,每小题4分,共24分)13.(4分)(2015•巴中)若a、b、c为三角形的三边,且a、b满足+(b ﹣2)2=0,则第三边c的取值范围是1<c<5.【分析】根据非负数的性质列式求出a、b,再根据三角形的任意两边之和大于第三边,两边只差小于第三边求解即可.【解答】解:由题意得,a2﹣9=0,b﹣2=0,解得a=3,b=2,∵3﹣2=1,3+2=5,∴1<c<5.故答案为:1<c<5.【点评】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0;三角形的三边关系.14.(4分)(2015•乐山)如图,在等腰三角形ABC中,AB=AC,DE垂直平分AB,已知∠ADE=40°,则∠DBC=15°.【分析】根据线段垂直平分线求出AD=BD,推出∠A=∠ABD=50°,根据三角形内角和定理和等腰三角形性质求出∠ABC,即可得出答案.【解答】解:∵DE垂直平分AB,∴AD=BD,∠AED=90°,∴∠A=∠ABD,∵∠ADE=40°,∴∠A=90°﹣40°=50°,∴∠ABD=∠A=50°,∵AB=AC,∴∠ABC=∠C=(180°﹣∠A)=65°,∴∠DBC=∠ABC﹣∠ABD=65°﹣50°=15°,故答案为:15.【点评】本题考查了等腰三角形的性质,线段垂直平分线性质,三角形内角和定理的应用,能正确运用定理求出各个角的度数是解此题的关键,难度适中.15.(4分)(2016•滕州市二模)如图,在△ABC中,DE∥BC,分别交AB,AC于点D,E.若AD=4,DB=3,BC=9,则DE的长为.【分析】求出AB,根据平行线得出△ADE∽△ABC,根据相似得出比例式,代入求出即可.【解答】解:∵AD=4,DB=3,∴AB=AD+DB=7,∵DE∥BC,∴△ADE∽△ABC,∴=,即=,则DE=.故答案为:.【点评】本题考查了相似三角形的性质和判定,关键是求出相似后得出比例式,题目比较典型,难度适中.16.(4分)(2015•宁波)如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E,则⊙O的半径为 6.25.【分析】首先连接OE,并反向延长交AD于点F,连接OA,由在矩形ABCD中,过A,D两点的⊙O与BC边相切于点E,易得四边形CDFE是矩形,由垂径定理可求得AF的长,然后设⊙O的半径为x,则OE=EF﹣OE=8﹣x,利用勾股定理即可得:(8﹣x)2+36=x2,继而求得答案.【解答】解:连接OE,并反向延长交AD于点F,连接OA,∵BC是切线,∴OE⊥BC,∴∠OEC=90°,∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDFE是矩形,∴EF=CD=AB=8,OF⊥AD,∴AF=AD=×12=6,设⊙O的半径为x,则OF=EF﹣OE=8﹣x,在Rt△OAF中,OF2+AF2=OA2,则(8﹣x)2+36=x2,解得:x=6.25,∴⊙O的半径为:6.25.故答案为:6.25.【点评】此题考查了切线的性质、垂径定理、矩形的性质以及勾股定理.注意准确作出辅助线是解此题的关键.17.(4分)(2015•义乌市)在平面直角坐标系的第一象限内,边长为1的正方形ABCD的边均平行于坐标轴,A点的坐标为(a,a).如图,若曲线与此正方形的边有交点,则a的取值范围是≤a.【分析】根据题意得出C点的坐标(a﹣1,a﹣1),然后分别把A、C的坐标代入求得a的值,即可求得a的取值范围.【解答】解:∵A点的坐标为(a,a).根据题意C(a﹣1,a﹣1),当C在曲线时,则a﹣1=,解得a=+1,当A在曲线时,则a=,解得a=,∴a的取值范围是≤a.故答案为≤a.【点评】本题考查了反比例函数图象上点的坐标特征,点的坐标适合解析式是解题的关键.18.(4分)(2016•聊城模拟)如图,正方形A1A2A3A4,A5A6A7A8,A9A10A11A12,…,(每个正方形从第三象限的顶点开始,按顺时针方向顺序,依次记为A1,A2,A3,A4;A5,A6,A7,A8;A9,A10,A11,A12;…)正方形的中心均在坐标原点O,各边均与x轴或y轴平行,若它们的边长依次是2,4,6,…,则顶点A2016的坐标为(504,﹣504).【分析】首先判断A2016在第四象限,再探究规律后,利用规律解决问题.【解答】解:经过观察可知A2016在第四象限,∵2016÷4=504,∴A2016是第504个正方形的顶点,第一个正方形A4(1,﹣1),第二个正方形A8(2,﹣2),第三个正方形A12(3,﹣3),…∴第504个正方形顶点A2016(504,﹣504).故答案为(504,﹣504).【点评】本题考查规律型:点的坐标,解题的关键是学会探究规律、发现规律、利用规律解决问题,属于中考常考题型.三、解答题(本大题共有7小题,共60分)19.(7分)(2014•泰州)先化简,再求值:(1﹣)÷﹣,其中x 满足x2﹣x﹣1=0.【分析】原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值.【解答】解:原式=•﹣=•﹣=x﹣=,∵x2﹣x﹣1=0,∴x2=x+1,则原式=1.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.20.(8分)(2016•滕州市二模)小敏将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°,感觉最舒适(如图1),侧面示意图为图2.使用时为了散热,她在底板下垫入散热架ACO′后,电脑转到AO′B′位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O′C⊥OA于点C,O′C=12cm.(1)求∠CAO′的度数;(2)显示屏的顶部B′比原来升高了多少?【分析】(1)通过解直角三角形即可得到结果;(2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得BD的长,由C、O′、B′三点共线可得结果,计算O′B′+O′C﹣BD即可求解.【解答】解:(1)∵O′C⊥OA于C,OA=OB=24cm,∴sin∠CAO′=,∴∠CAO′=30°.(2)过点B作BD⊥AO交AO的延长线于D.∵sin∠BOD=,∴BD=OB•sin∠BOD,∵∠AOB=120°,∴∠BOD=60°,∴BD=OB•sin∠BOD=24×.∵O′C⊥OA,∠CAO′=30°,∴∠AO′C=60°.∵∠AO′B′=120°,∴∠AO′B′+∠AO′C=180°.∴O′B′+O′C﹣BD=24+12﹣=36﹣.∴显示屏的顶部B′比原来升高了(36﹣)cm.【点评】本题考查了解直角三角形的应用,旋转的性质,正确的画出图形是解题的关键.21.(8分)(2015•衢州)某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?【分析】(1)根据已知条件列式计算即可,如图2所示,先计算出其它类的频数,再画条形统计图即可;(2)根据已知条件列式计算即可;(3)根据已知条件列式计算即可.【解答】解;(1)8÷20%=40(本),其它类;40×15%=6(本),补全条形统计图,如图2所示:(2)文学类书籍的扇形圆心角度数为:360×=126°;(3)普类书籍有:×1200=360(本).【点评】本题考查的是条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)(2015•金华)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E.(1)求证:DE=AB.(2)以D为圆心,DE为半径作圆弧交AD于点G.若BF=FC=1,试求的长.【分析】(1)由矩形的性质得出∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,得出∠EAD=∠AFB,由AAS证明△ADE≌△FAB,得出对应边相等即可;(2)连接DF,先证明△DCF≌△ABF,得出DF=AF,再证明△ADF是等边三角形,得出∠DAE=60°,∠ADE=30°,由AE=BF=1,根据三角函数得出DE,由弧长公式即可求出的长.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=90°,AB=BC=AD=DC,AD∥BC,∴∠EAD=∠AFB,∵DE⊥AF,∴∠AED=90°,在△ADE和△FAB中,,∴△ADE≌△FAB(AAS),∴DE=AB;(2)解:连接DF,如图所示:在△DCF和△ABF中,,∴△DCF≌△ABF(SAS),∴DF=AF,∵AF=AD,∴DF=AF=AD,∴△ADF是等边三角形,∴∠DAE=60°,∵DE⊥AF,∴∠AED=90°,∴∠ADE=30°,∵△ADE≌△FAB,∴AE=BF=1,∴DE=AE=,∴的长==.【点评】本题考查了矩形的性质、全等三角形的判定与性质、等边三角形的判定与性质、三角函数以及弧长公式;熟练掌握矩形的性质,并能进行推理论证与计算是解决问题的关键.23.(8分)(2015•舟山)如图,直线y=2x与反比例函数y=(k≠0,x>0)的图象交于点A(1,a),B是反比例函数图象上一点,直线OB与x轴的夹角为α,tanα=.(1)求k的值.(2)求点B的坐标.(3)设点P(m,0),使△PAB的面积为2,求m的值.【分析】(1)把点A(1,a)代入y=2x,求出a=2,再把A(1,2)代入y=,即可求出k的值;(2)过B作BC⊥x轴于点C.在Rt△BOC中,由t anα=,可设B(2h,h).将B(2h,h)代入y=,求出h的值,即可得到点B的坐标;(3)由A(1,2),B(2,1),利用待定系数法求出直线AB的解析式为y=﹣x+3,那么直线AB与x轴交点D的坐标为(3,0).根据△PAB的面积为2列出方程|3﹣m|×(2﹣1)=2,解方程即可求出m的值.【解答】解:(1)把点A(1,a)代入y=2x,得a=2,则A(1,2).把A(1,2)代入y=,得k=1×2=2;(2)过B作BC⊥x轴于点C.∵在Rt△BOC中,tanα=,∴可设B(2h,h).∵B(2h,h)在反比例函数y=的图象上,∴2h2=2,解得h=±1,∵h>0,∴h=1,∴B(2,1);(3)∵A(1,2),B(2,1),∴直线AB的解析式为y=﹣x+3,设直线AB与x轴交于点D,则D(3,0).=S△PAD﹣S△PBD=2,点P(m,0),∵S△PAB∴|3﹣m|×(2﹣1)=2,解得m1=﹣1,m2=7.【点评】本题考查了反比例函数与一次函数的交点问题,一次函数、反比例函数图象上点的坐标特征,利用待定系数法求反比例函数与一次函数的解析式,正切函数的定义,三角形的面积,难度适中,利用数形结合是解题的关键.24.(10分)(2015•西宁)如图,已知BC为⊙O的直径,BA平分∠FBC交⊙O于点A,D是射线BF上的一点,且满足=,过点O作OM⊥AC于点E,交⊙O于点M,连接BM,AM.(1)求证:AD是⊙O的切线;(2)若sin∠ABM=,AM=6,求⊙O的半径.【分析】(1)要证AD是⊙O的切线,连接OA,只证∠DAO=90°即可.(2)连接CM,根据垂径定理求得=,进而求得∠ABM=∠CBM,AM=CM=6,从而得出sin∠CBM=,在RT△BMC中,利用正弦函数即可求得直径AB,进而求得半径.【解答】(1)证明:连接OA;∵BA平分∠CBF,∴∠ABD=∠CBA,∵,∴△ADB∽△CBA,∴∠ADB=∠CAB,又∵BC为⊙O的直径,∴∠CAB=90°,∠ADB=90°,又∵点A在圆O上,∴OA=OB,∠OAB=∠OBA=∠DBA,∴FB∥OA,∴∠ADB+∠OAD=180°,∠OAD=90°,∴OA⊥DA,∵OA为半径,∴DA为⊙O的切线.(2)解:连接CM,∵OM⊥AC于点E,OM是半径,∴=,∴∠ABM=∠CBM,AM=CM=6,∴sin∠ABM=sin∠CBM=,∵BC为⊙O的直径,∴∠BMC=90°,在RT△BMC中,sin∠CBM=,∴=,∴BC=10,∴⊙O的半径为5.【点评】本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了三角函数的知识.25.(11分)(2013•攀枝花)如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P为第三象限内抛物线上的一点,设△PAC的面积为S,求S的最大值并求出此时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M,使得△ADM 是直角三角形?若存在,请直接写出点M的坐标;若不存在,请说明理由.【分析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)过点P作x轴的垂线,交AC于点N,先运用待定系数法求出直线AC的解析式,设P点坐标为(x,x2+2x﹣3),根据AC的解析式表示出点N的坐标,再=S△PAN+S△PCN就可以表示出△PAC的面积,运用顶点式就可以求出结论;根据S△PAC(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.【解答】解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=﹣3,解得a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;(2)过点P作x轴的垂线,交AC于点N.设直线AC的解析式为y=kx+m,由题意,得,解得,∴直线AC的解析式为:y=﹣x﹣3.设P点坐标为(x,x2+2x﹣3),则点N的坐标为(x,﹣x﹣3),∴PN=PE﹣NE=﹣(x2+2x﹣3)+(﹣x﹣3)=﹣x2﹣3x.=S△PAN+S△PCN,∵S△PAC∴S=PN•OA=×3(﹣x2﹣3x)=﹣(x+)2+,∴当x=﹣时,S有最大值,此时点P的坐标为(﹣,﹣);(3)在y轴上是存在点M,能够使得△ADM是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,∴顶点D的坐标为(﹣1,﹣4),∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图3①,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=,所以点M的坐标为(0,);②当D为直角顶点时,如图3②,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=﹣,所以点M的坐标为(0,﹣);③当M为直角顶点时,如图3③,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3,所以点M的坐标为(0,﹣1)或(0,﹣3);综上可知,在y轴上存在点M,能够使得△ADM是直角三角形,此时点M的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).【点评】本题考查的是二次函数综合题,涉及到用待定系数法求一次函数、二次函数的解析式,三角形的面积,二次函数的顶点式的运用,勾股定理等知识,难度适中.运用数形结合、分类讨论及方程思想是解题的关键.参与本试卷答题和审题的老师有:sdwdmahongye;gbl210;2300680618;星期八;sd2011;守拙;zcx;bjy;sks;HLing;sjzx;zjx111;nhx600;弯弯的小河;zhjh;王学峰;家有儿女;HJJ(排名不分先后)菁优网2017年3月2日。