【河北省石家庄二中】2017年高考模拟数学试卷(理科)

合集下载

河北省石家庄市2017届高三毕业班第二次模拟考试数学(理)试题扫描版含答案

河北省石家庄市2017届高三毕业班第二次模拟考试数学(理)试题扫描版含答案

2016-2017 学年度石家庄市第二次模 考数学理科答案一、1-5DDACA 6-10 DADBA 11-12AB二、填空13.54014 .22x 2 y 2 1315.52016.5三、解答17. 解: (1)当n1,a 1 2a 2na n ( n 1)2n 1 2 ①a 1 2a 2 (n-1)a n 1 (n 2)2n2②⋯⋯⋯⋯⋯⋯⋯⋯ 2 分① -②得na n (n 1)2 n 1 (n 2)2 n n 2 n所以a n2n ,⋯⋯⋯⋯⋯⋯⋯⋯3 分当n1, a 12 ,所以a n2n , nN * ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(2) 因 a n2n ,b n111 1 1⋯⋯⋯⋯⋯⋯⋯⋯ 6 分log 2 a n log 2 a n 2n( n2)( n n ) .2 2所以T1 1 11 1 11 1 111 1 1 1 1 .n2 3 2 2 42 3 52 n 1 n 12 n n 2⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分1 1 11 1 1 ⋯⋯⋯⋯⋯⋯⋯ 10 分2 2 n n 231 11 3 42 n 1 n 24所以,随意 n N *, T n3.⋯⋯⋯⋯⋯⋯⋯ 12 分418. (1) 明 : 取AD中点M,接EM,AF=EF=DE=2,AD=4,可知EM= 1AD,∴ AE⊥2,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分DE又 AE⊥EC,DE EC E ∴AE⊥平面CDE,∴AE⊥CD,又 CD⊥ AD,AD AE A,∴ CD⊥平面 ADEF,CD平面 ABCD,∴平面 ABCD⊥平面 ADEF;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分( 2)如,作EO⊥ AD, EO⊥平面 ABCD,故以 O原点,分以OA, DC , OE的方向 x 、 y 、 z 的正方向成立空平面直角坐系,依意可得E(0,0,3) , A(3,0,0) ,C (1,4,0) , F (2,0,3),所以EA(3,0,3), AC( 4,4,0),CF(3, 4,3) ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分n( x, y, z)平面 EAC的法向量,n EA03z0不如 x=1,即 3xn AC04x4y0可得 n(1,1,3),⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分所以cos CF , n CF n25140 =35 ,| CF | | n |287035⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 分直与平面所成角的正弦35⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分CF EAC35419. 解:( 1)四天均不降雨的概率P1381 ,56253216,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯四天中恰有一天降雨的概率P 21 32 2 分C 4 55625所以四天中起码有两天降雨的概率P 1 P 1 P 2181 216 328 625625⋯⋯⋯4分1 2 34 5625( 2)由 意可知 x3 ,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分5y50+85+115+140+160 =110 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分55(x i x)( y iy ) 275 ,bi 1= =27.58 分510 ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯( x i x)2i 1a= y bx =27.5所以, y 对于 x 的回 方程 :? 27.5x 27.5 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10 分y将降雨量 x 6代入回 方程得: y27.5 627.5192.5193 .?所以 当降雨量6 毫米 需要准 的快餐份数 193份. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 12 分20. (Ⅰ)方法一: M (x , y ),由 意可知, A (1-r , 0),因 弦 AM 的中点恰巧落在 y 上,所以 x=r-1>0, 即 r=x+1, ⋯⋯⋯⋯⋯⋯ 2 分所以 ( x1)2 y 2 ( x 1)2 ,化 可得 y2=4x (x>0)所以,点 M 的 迹 E 的方程 : y 2=4x ( x>0)⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分方法二:M ( x , y ),由 意可知,A ( 1-r , 0), AM 的中点,x>0 ,因 C (1, 0),,.⋯⋯⋯⋯⋯⋯⋯⋯⋯2 分在⊙ C 中,因 CD ⊥ DM ,所以,,所以.所以, y 2=4x ( x>0)所以,点 M 的 迹 E 的方程 : y 2=4x ( x>0)⋯⋯⋯⋯⋯⋯⋯⋯⋯4 分(Ⅱ)直 MN的方程x my 1 ,M ( x1, y1),N (x2, y2),直BN的方程y k (x y22)y24x my1y24my40 ,可得 y1y24m, y1 y2 4 ,⋯⋯⋯⋯⋯⋯⋯ 6 分y24x由( 1)可知,r1x1,点 A(x1 ,0) ,所以直AM的方程y 2 x y 1 ,y12y k( x y22)y2ky2 4 y 4 y2 ky222 40 ,0 ,可得 k,y24x y2直 BN的方程y2x y2,⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分y22y 2 x y1 ,y12立y12可得 x B44my12m,2 x y2,1, y By 2 y1 2 y1 y22所以点 B( -1 , 2m)⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分|BC| 44m2,d| 2 2m2 |4m2 4 =2m2 1 ,m21e B 与直MN相切⋯⋯⋯⋯⋯⋯⋯⋯⋯12分21. 【解】( 1)f ()e xa .x若 a ≤ 0 , f( x)0 ,函数 f (x) 是增函数,与矛盾.所以 a0 ,令 f ()x 0,x ln a . .................................................................................2分当 x ln a , f(x)0 , f (x) 是减函数; x ln a , f ( x)0 , f (x) 是增函数;于是当 x ln a , f (x) 获得极小.因 函数 f (x) e x ax a (a R ) 的 象与 x 交于两点 A(x 1 ,0), B( x 2 ,0) ( x 1< x 2) ,所以 f (ln a)a(2ln a) 0 ,即a e 2 . (4)分此 ,存在 1ln a , f (1)e 0 ;(或 找f (0))存在 3ln aln a , f (3ln a)332,a 3a ln a a a 3aa 0又由 f ( x) 在 (,ln a) 及 (ln a ,) 上的 性及曲 在R 上不 断,可知 ae 2 所求取 范. .......................................................................... (5)分(2)因e x 1ax 1a 0 ,x 2x 1. (7)分ex2两式相减得 aeeax 2 a 0 ,x 2 x 1x 2 x 1x 1 x 2x 1 x 2x xx 1x 2e2s( s 0) , fe2e 2 e 1ss,22x 2x 12 s (ee )2s⋯⋯⋯⋯⋯⋯⋯ 9 分g ( ) 2 (e s e s ) ,g (s)2 (ese s) 0 ,所以 g( s) 是 减函数,s sx 1 x 2x 1 x 2有 g( s)g(0)0 ,而e20 ,所以 f0 .22 s又 f ( x) e xa 是 增函数,且x 1 x 2 2 x 1 x 2 ,2 3所以f '(2x13 x2 )0 。

河北省石家庄二中2017届高三下学期第三次模拟考试理科

河北省石家庄二中2017届高三下学期第三次模拟考试理科

可能用到的相对原子质量: H-1 Li-7 C-12 N-14 O-16 Fe-56 Co-59 Cu-64第 I卷(选择题,共126分)一、选择题:本大题共13小题,每小题6分,在毎小题给出的四个选项中,只有一项是符合题目要求的。

1. 化学与社会、生活密切相关,对下列现象成事实的解释正确的是A. AB. BC. CD. D【答案】B【解析】A、小苏打是碳酸氢钠,A错误;B、明矾在水中电离出铝离子水解生成的氢氧化铝胶体有吸附性,可用于净水,B正确;C、二氧化硅不导电,能传递光信号,用于制造光导纤维,C错误;D、SO2具有还原性,可使溴水褪色,D错误,答案选B。

2. 下列说法正确的是A. 按系统命名法,化合物的名称为2, 4-二乙基-丙基辛烷B. 若两种二肽互为同分异构体,则二者的水解产物一定不相同C. 分子式为C5H5O2Cl并能与饱和NaHCO3溶液反应产生气体的有机物有(不含立休结构)有12种D. 某有机物的结构简式是,该有机物能够发生加成反应、取代反应、缩聚反应和消去反应【答案】C【解析】A. 按系统命名法,化合物的名称为3-甲基-5,7-二乙基葵烷,A 错误;B. 两种二肽互为同分异构,水解产物可能是相同的氨基酸,如:一分子甘氨酸和一分子丙氨酸形成的二肽中有两种构成方式,但二肽水解时的产物相同,B错误;C. 分子式为C5H5O2Cl并能与饱和NaHCO3溶液反应产生气体,说明含有羧基,因此相当于是丁炔或1,3-丁二烯分子中的2个氢原子被氯原子和羧基取代,根据定一移一可知共计(不含立休结构)有12种,C正确;D. 与羟基相连的碳原子的邻位碳原子上没有氢原子,该有机物不能发生消去反应,D错误,答案选C。

3. 利用图3所示装置进行下列实验,能得出相应实验结论的是A. AB. BC. CD. D【答案】B【解析】A.向NaBr溶液中加入氯水,置换出溴,但挥发出的溴中可能含有氯气,氯气也能氧化碘化钾,不能说明氧化性Br2>I2,A错误;B.浓硫酸使蔗糖炭化,同时浓硫酸还具有强氧化性,还有SO2生成,SO2使溴水褪色,结论正确,B正确;C.挥发出的溴也能与硝酸银溶液反应产生淡黄色沉淀,不能说明发生了取代反应,C错误;D.硝酸具有强氧化性,和亚硫酸钠反应得不到SO2,D错误,答案选B。

河北省石家庄市2017届高中毕业班第二次模拟考试(理数)

河北省石家庄市2017届高中毕业班第二次模拟考试(理数)

河北省石家庄市2017届高中毕业班第二次模拟考试数学(理科)本试卷共23小题, 满分150分。

考试用时120分钟。

注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上,写在本试卷上无效. 4.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.函数y =ln(1)y x =-的定义域分别为M 、N ,则MN =( )A .(1,2]B .[1,2]C .(,1][2,)-∞+∞D .(,1)[2,)-∞+∞2.若2iz i=+,则复数z 对应的点在( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知向量)1,(),,1(m b m a ==,则“1m =”是“b a //”成立的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4.现有3道理科题和2道文科题共5道题,若不放回地一次抽取2道题,则在第1次抽到理科题的条件下,第2次抽到理科题的概率为( ) A .310B .25C .12D .355.已知角α(0360α︒≤<︒)终边上一点的坐标为(sin 235,cos 235)︒︒,则α=( ) A .215︒ B .225︒C .235︒D .245︒6.已知ln ()xf x x=,其中e 为自然对数的底数,则( ) A .(2)()(3)f f e f >> B .(3)()(2)f f e f >> C .()(2)(3)f e f f >>D .()(3)(2)f e f f >>7.如图是计算11113531++++…的值的程序框图,则图中①②处 应填写的语句分别是( )A .2n n =+,16?i >B .2n n =+,16?i ≥C .1n n =+,16i >?D .1n n =+,16?i ≥ 8.某几何体的三视图如图所示,则其体积为( )A .34π B .24π+C .12π+D .324π+9.实数x ,y 满足1|1|12x y x +≤≤-+时,目标函数z x my =+的最大值等于5,则实数m 的值为( )A .2B .3C .4D .510.如图是一个底面半径为1的圆柱被平面截开所得的几何体,截面与底面所成的角为45︒,过圆柱的轴的平面截该几何体所得 的四边形''ABB A 为矩形,若沿'AA 将其侧面剪开,其侧面展 开图形状大致为( )11.如图,两个椭圆的方程分别为22221(0)x y a b a b+=>>和22221()()x y ma mb +=(0a b >>,1m >),从大椭圆两个顶点分别向小椭圆引切线AC 、BD ,若AC 、BD 的斜率之积恒为6251-,则椭圆的离心率为( )A .35B .34C .45D 12.若函数32()233f x x ax bx b =+-+在(0,1)上存在极小值点,则实数b 的取值范围是( ) A .(1,0]-B .(1,)-+∞C .[0,)+∞D .(1,)+∞第Ⅱ卷(非选择题 共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若1(3)nx x-的展开式中二项式系数和为64,则展开式的常数项为 .(用数字作答)14.已知函数()sin()f x x ωϕ=+(0ω>,0ϕπ<<)的图象如图所示,则(0)f 的值为 .15.双曲线22221x y a b-=(0a >,0b >)上一点(3,4)M -关于一条渐进线的对称点恰为右焦点2F ,则该双曲线的标准方程为 .16.在希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用三角形的三条边长求三角形面积,若三角形的三边长为a ,b ,c ,其面积S =,这里1()2p a b c =++.已知在ABC ∆中,6BC =,2AB AC =,其面积取最大值时sin A = .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知数列{}n a 满足1122(1)22n n a a na n ++++=-+…,*n N ∈.(Ⅰ)求数列{}n a 的通项公式; (Ⅱ)若2211l o g l o gn n n b a a +=⋅,12n n T b b b =+++…,求证:对任意的*n N ∈,34n T <. 18.(本小题满分12分)在如图所示的多面体ABCDEF 中,ABCD 为直角 梯形,//AB CD ,90DAB ∠=︒,四边形ADEF 为 等腰梯形,//EF AD ,已知AE EC ⊥, 2AB AF EF ===,4AD CD ==.(Ⅰ)求证:平面ABCD ⊥平面ADEF ;(Ⅱ)求直线CF 与平面EAC 所成角的正弦值. 19.(本小题满分12分)天气预报是气象专家根据预测的气象资料和专家们的实际经验,经过分析推断得到的,在现实的生产生活中有着重要的意义.某快餐企业的营销部门经过对数据分析发现,企业经营情况与降雨天数和降雨量的大小有关.(Ⅰ)天气预报说,在今后的四天中,每一天降雨的概率均为40%,求四天中至少有两天降雨的概率;(Ⅱ)经过数据分析,一天内降雨量的大小x (单位:毫米)与其出售的快餐份数y 成线性相关关系,该营销部门统计了降雨量与出售的快餐份数的数据如下:试建立y 时需要准备的快餐份数.(结果四舍五入保留整数)附注:回归方程y bx a =+中斜率和截距的最小二乘估计公式分别为:121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-20.(本小题满分12分)已知圆C :222(1)x y r -+=(1r >),设A 为圆C 与x 轴负半轴的交点,过点A 作圆C 的弦AM ,并使弦AM 的中点恰好落在y 轴上.(Ⅰ)求点M 的轨迹E 的方程;(Ⅱ)延长MC 交曲线E 于点N ,曲线E 在点N 处的切线与直线AM 交于点B ,试判断以点B 为圆心,线段BC 长为半径的圆与直线MN 的位置关系,并证明你的结论. 21.(本小题满分12分) 设函数()x f x e ax a =-+,其中e 为自然对数的底数,其图象与x 轴交于A 1(,0)x ,2(,0)B x 两点,且12x x <.(Ⅰ)求实数a 的取值范围; (Ⅱ)证明:122'()03x x f +<('()f x 为函数()f x 的导函数). 请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为cos a ρθ=(0a >),Q 为l 上一点,以OQ 为边作等边三角形OPQ ,且O 、P 、Q 三点按逆时针方向排列.(Ⅰ)当点Q 在l 上运动时,求点P 运动轨迹的直角坐标方程; (Ⅱ)若曲线C :222x y a +=,经过伸缩变换'2'x xy y =⎧⎨=⎩得到曲线'C ,试判断点P 的轨迹与曲线'C 是否有交点,如果有,请求出交点的直角坐标,没有则说明理由.23.(本小题满分10分)选修4-5:不等式选讲 已知函数()2|1||1|f x x x =+--.(Ⅰ)求函数()f x 的图象与直线1y =围成的封闭图形的面积m ;(Ⅱ)在(Ⅰ)的条件下,若正数a 、b 满足2a b abm +=,求2a b +的最小值.数学(理科)参考答案一、选择题1-5DDACA 6-10 DADBA 11-12AB二、填空题13. 540- 14 . 2215.221520x y -= 16. 35三、解答题17.解:(1)当1n >时,1121212(1)222-1)(2)22n n nn a a na n a a n a n +-+++=-++++=-+①(②……………………2分①-②得1(1)2(2)22n n n n na n n n +=---=⋅所以2nn a =,……………………3分当1n =时,12a =,所以2nn a =,*n N ∈ …………………………………………4分(2)因为2n n a =,22211111()log log (2)22n n n b a a n n n n +===-⋅++.……………………6分因此1111111111111112322423521122n T n n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+-++-+- ⎪ ⎪ ⎪ ⎪ ⎪-++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭. ………………………8分111112212n n ⎛⎫=+-- ⎪++⎝⎭…………………10分3111342124n n ⎛⎫=-+< ⎪++⎝⎭ 所以,对任意*n N ∈,34n T <.…………………12分18.(1)证明:取AD 中点M ,连接EM ,AF =EF =DE =2,AD =4,可知EM =12AD ,∴AE ⊥DE ,………………2分又AE ⊥EC ,DE EC E = ∴AE ⊥平面CDE , ∴AE ⊥CD, 又CD ⊥AD , AD AE A =,∴CD ⊥平面ADEF ,CD ⊂ 平面ABCD, ∴平面ABCD ⊥平面ADEF ;………………………………5分(2)如图,作EO ⊥AD ,则EO ⊥平面ABCD ,故以O 为原点,分别以,,OA DC OE 的方向为x 轴、y 轴、z 轴的正方向建立空间平面直角坐标系,依题意可得E ,(3,0,0)A ,(1,4,0)C -,F ,所以(3,0,EA = , (4,4,0)AC =-,(3,CF =-…………………………7分设(,,)n x y z = 为平面EAC 的法向量,则00n EA n AC ⎧=⎪⎨=⎪⎩即30440x x y ⎧=⎪⎨-+=⎪⎩ 不妨设x =1, 可得(1,1,3)n = ,…………………………9分所以cos ,70||||285CF n CF n CF n <>====3535, ………………………………11分 直线CF 与平面EAC 所成角的正弦值为3535………………………………12分19.解:(1)四天均不降雨的概率413815625P ⎛⎫== ⎪⎝⎭, 四天中恰有一天降雨的概率31243221655625P C ⎛⎫==⎪⎝⎭, ……………………………………2分所以四天中至少有两天降雨的概率128121632811625625625P P P =--=--=………4分 (2)由题意可知1234535x ++++==, …………………………………………5分50+85+115+140+160=1105y =………6分51521()()275==27.510()iii ii x x y y b x x ==--=-∑∑, (8)分==27.5a y bx -所以,y 关于x 的回归方程为:ˆ27.527.5y x =+. ………10分将降雨量6x =代入回归方程得: ˆ27.5627.5192.5y=⨯+=193≈. 所以预测当降雨量为6毫米时需要准备的快餐份数为193份. …………………………12分20.(Ⅰ)方法一:设M (x ,y ), 由题意可知,A (1-r ,0),因为弦AM 的中点恰好落在y 轴上,所以x=r-1>0,即r=x+1, ………………2分所以222(1)(1)x y x -+=+,化简可得y 2=4x (x>0)所以,点M 的轨迹E 的方程为:y 2=4x (x>0)………………………4分 方法二:设M (x ,y ),由题意可知,A (1-r ,0),AM 的中点,x>0,因为C (1,0),,.……2分在⊙C 中,因为CD⊥DM,所以,,所以.所以,y 2=4x (x>0)所以,点M 的轨迹E 的方程为:y 2=4x (x>0) (4)分(Ⅱ) 设直线MN 的方程为1x my =+,11(,)M x y ,22(,)N x y ,直线BN 的方程为222()4y y k x y =-+2214404x my y my y x=+⎧⇒--=⎨=⎩,可得12124,4y y m y y +==-,…………………6分 由(1)可知,11r x -=,则点A 1(,0)x -,所以直线AM 的方程为1122y y x y =+, 22222222()44044y y k x y ky y y ky y x ⎧=-+⎪⇒-+-=⎨⎪=⎩,0∆=,可得22k y =, 直线BN 的方程为2222y y x y =+,………………………8分 联立11222,22,2y y x y y y x y ⎧=+⎪⎪⎨⎪=+⎪⎩可得21111441,222B B y my x y m y y -=-===,所以点B (-1,2m )………………10分||BC =,2d ===122+m ,B ∴e 与直线MN 相切…………12分21.【解】(1)()e x f x a '=-.若0a ≤,则()0f x '>,则函数()f x 是单调增函数,这与题设矛盾.所以0a >,令()0f x '=,则ln x a =.................................................................................. 2分当ln x a <时,()0f x '<,()f x 是单调减函数;ln x a >时,()0f x '>,()f x 是单调增函数;于是当ln x a =时,()f x 取得极小值.因为函数()e ()x f x ax a a =-+∈R 的图象与x 轴交于两点1(0)A x ,,2(0)B x ,(x 1<x 2), 所以(l f aa a=-<,即2e a >................................................. 4分 此时,存在1ln (1)e 0a f <=>,;(或寻找f (0))存在33ln ln (3ln )3ln a a f a a a a a >=-+,3230a a a >-+>,又由()f x 在(ln )a -∞,及(ln )a +∞,上的单调性及曲线在R 上不间断,可知2e a >为所求取值范围. ................................................................................................ 5分(2)因为1212e 0e 0xx ax a ax a ⎧-+=⎪⎨-+=⎪⎩,,两式相减得2121e e x x a x x -=-. ......................7分记21(0)2x x s s -=>,则()121221212221e e e e 2(e e )22x x x x x x s s x x f s x x s ++-+-'⎡⎤=-=--⎣⎦-, …………………9分设()2(e e )s s g s s -=--,则()2(e e )0s s g s -'=-+<,所以()g s 是单调减函数, 则有()(0)0g s g <=,而122e02x x s+>,所以()1202x xf +'<. 又()e x f x a '=-是单调增函数,且3222121x x x x +>+, 所以0)32('21<+x x f 。

2020届河北省石家庄市二中2017级高三6月高考全仿真模拟考试数学(理)试卷及解析

2020届河北省石家庄市二中2017级高三6月高考全仿真模拟考试数学(理)试卷及解析

2020届河北省石家庄市二中2017级高三6月高考全仿真模拟考试数学(理)试卷★祝考试顺利★(解析版)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题(本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设集合(){}2|lg 34A x Z y x x =∈=-++,{}|24x B x =≥,则A B =( ) A. [)2,4B. {}2,4C. {}3D. {}2,3【答案】D【解析】 利用一元二次不等式的解法化简集合A ,再利用交集的定义与集合B 求交集.【详解】由2340x x -++>得2340x x --<,则14x -<<,又由x ∈Z 得0,1,2,3x =.所以{}0,1,2,3A =,而[)2,B =+∞.从而{}2,3A B ⋂=.故选:D .2.满足条件4z i z i +=+的复数z 对应点的轨迹是( )A. 直线B. 圆C. 椭圆D. 双曲线 【答案】A【解析】先令z a bi =+,代入化简可得250b +=,从而可得其轨迹方程【详解】解:设z a bi =+,则由4z i z i +=+得,(4)(1)a b i a b i ++=++,所以2222(4)(1)a b a b ++=++,化简得250b +=,52b =-, 所以复数z 在复平面内对应的点为5(,)2a -, 所以z 对应点的轨迹为直线52y =-, 故选:A3.已知()0,1x ∈,令log 5x a =,cos b x =,3x c =,那么a b c ,,之间的大小关系为( )A. a b c <<B. b a c <<C. b c a <<D. c a b <<【答案】A【解析】因为(0,1)x ∈,所以log 50x a =<, 因为y cosx =在0,2π⎡⎤⎢⎥⎣⎦单调递减,所以,cos cos1cos 02b π<<<,所以01b << 因为函数3x y =在(0,1)上单调递增,所以0333x <<,即13c <<,比较大小即可求解【详解】因为()0,1x ∈,所以0a <.因为12π>,所以01b <<, 因为()0,1x ∈,所以13c <<,所以a b c <<,故选:A.4.如图,点A 的坐标为()1,0,点C 的坐标为()2,4.函数()2f x x =,若在矩形ABCD 内随机取一点.则该点取自阴影部分的概率为( )。

【全国百强校word】河北省石家庄二中2017届高三下学期第三次模拟考试数学(理)试题(解析版)

【全国百强校word】河北省石家庄二中2017届高三下学期第三次模拟考试数学(理)试题(解析版)

河北省石家庄二中2017届高三下学期第三次模拟考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知全集,集合,则()A. B.C. D.【答案】B【解析】,选B.2. 若复数是虚数单位),则复数在复平面内对应的点位于()A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】B【解析】对应点为,在第二象限,选B.点睛:本题重点考查复数的基本运算和复数的概念,属于基本题.首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如.其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3. 某校为了解名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取名同学进行检査,将学生从进行编号,现已知知第组抽取的号码为,則第一组用简单随机抽样抽取的号码为()A. B. C. D.【答案】C【解析】试题分析:第一组用简单随机抽样抽取的号码为,选C.考点:系统抽样法4. 正项等比数列中,,则的前项和()A. B. C. D.【答案】B【解析】由题意得,选B.点睛:1.在解决等比数列的有关问题时,要注意挖掘隐含条件,利用性质,特别是性质“若m+n=p+q,则am ·an=a p·a q”,可以减少运算量,提高解题速度.2.等比数列的性质可以分为三类:一是通项公式的变形,二是等比中项的变形,三是前n项和公式的变形.根据题目条件,认真分析,发现具体的变化特征即可找出解决问题的突破口.5. 已知函数,若,则()A. B. C. D.【答案】A...【解析】当时,(舍);当时,,选A.6. 斐波那契数列是数学史上一个著名的数列,定义如下:,某同学设计了一个求解斐波那契数列前项和的程序框图,那么在判断框内应分别填入的语句是()A. B. C. D.【答案】B【解析】第一次循环:,应进行循环(此时为前3项和),所以去掉A,D;直至结束循环,即,选B.7. 函数的部分图象如图所示,其中两点之间的距离为,则的递增区间是()A. B.C. D.【答案】B【解析】由,得,,即,,又,,所以,,,故选B.8. 在—次实验中,同时抛掷枚均匀的硬币次,设枚硬币正好出现枚正面向上,枚反面向上的次数为,则的方差是()A. B. C. D.【答案】A【解析】抛掷枚均匀的硬币次,正好出现枚正面向上,枚反面向上的概率为 ,因为,所以的方差是,选A.9. 是展开式的常数项为()A. B. C. D.【答案】B【解析】展开式的常数项为,选B.点睛:求二项展开式有关问题的常见类型及解题策略(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.10. 已知某个几何体的三视图如图所示,根据图中标出的尺寸,可得这个几何体最长的棱长度为()A. B. C. D.【答案】D【解析】几何体为如图四面体ABCD,其中最长的棱长AC 为正方体对角线,选D.11. 已知双曲线的渐近线方程为 ,左右焦点分别为为双曲线 的一条渐近线上某一点,且 ,则双曲线的焦距为( )...A.B.C. D.【答案】B 【解析】由题意得,选B.12. 已知函数,则函数的零点个数是 个时,下列选项是 的取值范围的子集的是( )A. B.C.D.【答案】A 【解析】当时,,当 时, ,令 则,显然是一个零点,当与相切时,;直线过点时;直线与必有一个交点当时,的根有三个,而对应的解有1,3,3个,不满足,所以舍去B;当时,的根有两个,而对应的解有1,3个,满足条件;当时,的根有三个,而对应的解有1,2,3个,不满足,所以舍去D;当时,的根可能四个,而对应的解有1,0,3,2个,不满足,所以舍去C;综上选A.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13. __________.【答案】【解析】试题分析:,其中表示半径为的圆的面积的,,,因此原式等于,故填.考点:定积分的计算.14. 已知变量满足约束条件,则的最小值为__________.【答案】【解析】可行域为一个三角形ABC及其内部,其中,而表示可行域内点P 到定点距离的平方减去2,所以最小值为点睛:线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.15. 已知为所在平面上一点,且,则的最小值为__________.【答案】【解析】由题意得为重心,所以,即的最小值为16. 如图所示的“数阵”的特点是:毎行每列都成等差数列,则数字在图中出现的次数为 __________.【答案】【解析】共9个三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17. 如图,在中,角的对边分别为 , .(1)求角的大小;(2)若为外一点,,求四边形面积的最大值.【答案】(1)(2)【解析】试题分析:(1)先根据正弦定理将条件转化为角的关系再利用三角形内角关系、诱导公式及两角和正弦公式化简得即得,.(2),由余弦定理得,将数据代入可得,利用配角公式得,最后根据三角形有界性可得四边形的面积最大值。

【河北省石家庄二中】2017年高考模拟数学试卷(理科)-答案

【河北省石家庄二中】2017年高考模拟数学试卷(理科)-答案

河北省石家庄二中2017年高考模拟数学试卷(理科)答 案1~5.DBCBC 6~10.ABBAD 11~12.BC 13.240 1415.3,4⎛⎤-∞ ⎥⎝⎦16.217.解:(Ⅰ)当3n ≥时,可得()()1121,424202,4n n n n n n S S S S n n a a ---------=≥∈∴=Z .又因为12a =,代入表达式可得28a =,满足上式.所以数列{}n a 是首项为12a =,公比为4的等比数列,故:121242n n n a --=⨯=.(Ⅱ)证明:2log 21n n b a n ==-. ()21212n n n T n +-==2n ≥时,211111(1)1n T n n n n n=<=---. 111111*********-1ni KT n n n =⎛⎫⎛⎫⎛⎫≤+-+-++-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑K . 18.证明:(Ⅰ)因为,A B 是PQ 的三等分点, 所以PA AB BQ CA CB ====, 所以ABC △是等边三角形,又因为M 是AB 的中点,所以CM AB ⊥.因为,,DB AB DB BC AB BC B ⊥⊥=I 所以DB ⊥平面ABC ,又EA DB ∥, 所以EA ⊥平面ABC ,CM ⊂平面ABC ,所以CM EA ⊥.因为AM EA A =I ,所以CM ⊥平面EAM .因为EA ⊂平面EAM ,所以CM EM ⊥.解:(Ⅱ)以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴, 过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系M xyz -. 因为DB ⊥平面ABC ,所以DMB ∠为直线DM 与平面ABC 所成角. 由题意得tan 2BDDMB MB∠==,即2BD MB =, 从而BD AC =.不防设2AC =,又2AC AE +,则1CM AE ==. 故())()()0,1,0,,0,1,2,0,1,1B CD E -.于是)()()()1,0,0,0,2,,BC BD CE CD =-==-=u u u r u u u r u u u r u u u v1,1设平面BCD 与平面CDE 的法向量分别为()(),,,,,m x y z n a b c ==u r r,由3-020m BC x y m BD z ⎧==⎪⎨==⎪⎩u v u u u vg u v u u u v g ,令1x =,得()m =u v .由-020n CE b c n CD b c ⎧=+=⎪⎨=++=⎪⎩v u u u vgv u u u v g ,令1a =,得1,n ⎛= ⎝⎭v , 所以cos ,0m n <>=u v v所以二面角B CD E --的平面角大小为90︒.19.解:因为选修数学学科人数所占总人数频率为0.6,即1800.6600x+=,可得:180x =,又180********x y ++++=,所以60y =,则根据分层抽样法:抽取的10人中选修线性代数的人数为:180103600⨯=人;选修微积分的人数为:180103600⨯=人;选修大学物理的人数为:120102600⨯=人;选修商务英语的人数为:60101600⨯=人;选修文学写作的人数为:60101600⨯=人; (Ⅰ)现从10人中选3人共有310120C =种选法,且每种选法可能性都相同,令事件A :选中的3人至少两人选修线性代数,事件B :选中的3人有两人选修线性代数,事件C :选中的3人都选修线性代数,且,B C 为互斥事件,()()()P A P B P C =+=2133733310101160C C C C C ⨯+= (Ⅱ)记X 为3人中选修线性代数的代数,X 的可能取值为0,1,2,3,记Y 为3人中选修微积分的人数;Y的可能取值也为0,1,2,3,则随机变量||XY ξ=﹣的可能取值为0,1,2,3; ()()()00,01,1P P X Y P X Y ξ====+===1113334433101013C C C C C C +=; ()()()()()10,11,01,22,12P P X Y P X Y P X Y P X Y ξ====+==+==+===⨯121234333310109220C C C C C C +⨯=, ()()()20,22,02P P X Y P X Y ξ====+===⨯213431015C C C =,()()()33310130,33,0260C P P X Y P X Y C ξ====+===⨯=;所以ξ的分布列为:所以0123=32056010E ξ=⨯+⨯+⨯+⨯ 20.解:(Ⅰ)设椭圆的焦距为2c ,由题意可得:2b b =由题意的离心率3c e a ==解得:26a =,则2224c a b -==,故椭圆方程为:22162x y +=;(Ⅱ)①证明:由题意可知直线l 的斜率存在,设直线l 的方程:y kx m =+, 由点()3,M t 在直线上,则3t k m =+,联立直线与椭圆方程:22360y kx mx y =+⎧⎨+-=⎩,可得:()222136360k x kmx m +-++=,又直线与椭圆只有一个公共点,故0∆=,即2262m k =+;由韦达定理,可得P 点坐标223,1313km m k k ⎛⎫ ⎪++⎝⎭-, 由直线PQ 过椭圆右焦点为()2,0F ,则直线PQ 的斜率2326PQ PF mk k km k==---; 而直线OM 的斜率,则333OM t k m k +==: ()()22222331311••••33263333263OM PQk m m km m km m k k km k km k km m +++====------+-+.②由()1,FM t =u u u u v ,222326,1313km k mFP k k ⎛⎫---=⎪++⎝⎭u u u v ,则22326013mt km k FM FP k ---==+u u u u v u u u v g , 即FM PF ⊥, ∴三角形的面积1||||2PQM S PQ MF =△, MF =丨丨由直线FM 的斜率为t ,可得直线PQ 的方程:()()1122,2,,,,x ty P x y Q x y =-+ 与椭圆方程联立可得:222162x ty x y =-+⎧⎪⎨+=⎪⎩,整理得:()223420t y ty +-=-,则12243t y y t +=+,12223y y t =+﹣,则)2213t PQ t +=+丨丨,则PQM S =△令()23,0t mm +=>,则PQMS =△由函数的单调性可知:y =单调递增, 故PQM S =△,当0t =时,PQM △.∴PQM △. 21.解:(Ⅰ)由题意可得:()()121121f x ax f a x'=-'=-=-,,可得:1a =; 又()()()2216ln 31,,0x y f x xf x x x y x x-=+'=-+'=>所以,当x ⎛∈ ⎝⎭时,0y y '>,单调递增;当x ⎫∈+∞⎪⎪⎝⎭时,0,y y '<单调递减;故函数的单调增区间为⎛ ⎝⎭. (Ⅱ)()()()()22111ln 12x b x g x x x b x g x x-++=++'=-,,因为12,x x 是()g x 的两个极值点,故12,x x 是方程()2110x b x ++=-的两个根,由韦达定理可知:121211x x b x x +=+⎧⎨=⎩;12x x <Q ,可知101x <<,又11111x b e x e +=+≥+,令1t x x =+,可证()t x 在()0,1递减,由()11h x h e ⎛⎫≥ ⎪⎝⎭,从而可证110x e <≤.所以()()()()2211212121112211111lnln 0222x g x g x x x x x x x x x x e ⎛⎫-=--+<≤ ⎪⎝⎭=-+ 令()222111ln ,0,22h x x x x x e ⎛⎤=+∈ ⎥⎝⎦-,()()22310x h x x--'=≤,所以()h x 单调减, 故()22min11222eh x h e e⎛⎫==-- ⎪⎝⎭, 所以2212,22e k e ≤--即221222max e k e=--.22.解:(Ⅰ)1C 的普通方程为24y x =,2C 的普通方程为()2211x y +-=,2C 的极坐标方程为2sin ρθ=.(Ⅱ)由(Ⅰ)可得1C 的极坐标方程为2sin 4cos ρθθ=, 与直线θα=联立可得:24cos =sin αρα,即24cos =sin OP αα, 同理可得2|i |s n OQ α=.所以|||8tan |OP OQ α=g,在π4π,6α⎡∈⎤⎢⎥⎣⎦上单调递减, 所以||||OP OQ g的最大值是23.解:(Ⅰ)当3a =时,不等式()6f x ≤,即||2-336,x +≤故有3233x -≤-≤,求得03x ≤≤,即不等式()6f x ≤的解集为[]0,3.(Ⅱ)()()22-13f x g x a +≥,即222121||||3x a a x a +-≥--+恒成立,()||||||||2212211x a a x x a x a a a -++-≥---+=-+Q ,2121||3a a a ∴-+≥-①.当1a ≤时,①等价于21213a a a --+≥,解得1a ≤≤;当1a >时,①等价于21213a a a --+≥,即260a a --≤,解得13a <≤,所以a 的取值范围是⎡⎤⎣⎦河北省石家庄二中2017年高考模拟数学试卷(理科)解析1.【考点】交集及其运算.【分析】求出集合A,B,根据集合的交集定义进行计算.【解答】解:∵log2x>1=log22,∴x>2,∴B=(2,+∞),∵x2﹣4x+3<0,∴(x﹣3)(x﹣1)<0,解得1<x<3,∴A=(1,3),∴A∩B=(2,3),故选:D2.【考点】复数求模.【分析】利用复数的运算法则、共轭复数的定义、模的计算公式即可得出.【解答】解:∵复数z满足=i,∴z+i=﹣2﹣zi,化为:z===﹣+i.=﹣﹣i.则|+1|===.故选:B3.【考点】任意角的三角函数的定义.【分析】由题意,M的坐标为(2cos(π+θ),2sin(π+θ)),即可得出结论.【解答】解:由题意,M的坐标为(2cos(π+θ),2sin(π+θ)),即(﹣2cosθ,﹣2sinθ),故选C4.【考点】指数函数的单调性与特殊点.【分析】根据不等式的基本性质和指数函数和对数函数的性质即可判断.【解答】解:∵0<a<b<1,c>1,∴ac<bc,abc>bac,∴logab>logba,logac>logbc,故选:B5.【考点】程序框图.【分析】根据已知的程序框图可得,该程序的功能是利用循环结构计算并输出变量y的值,模拟程序的运行过程,可得答案.【解答】解:当输入的x为2017时,第1次执行循环体后,x=2015,输出y=3﹣2015+1;第2次执行循环体后,x=2013,输出y=3﹣2013+1;第3次执行循环体后,x=2011,输出y=3﹣2011+1;…第1007次执行循环体后,x=3,输出y=3﹣3+1;第1008次执行循环体后,x=1,输出y=3﹣1+1;第1009次执行循环体后,x=﹣1,输出y=31+1=4;第1010次执行循环体后,x=﹣3,输出y=33+1=28;此时不满足x≥﹣1,输出y=28,故选:C6.【考点】等比数列的前n项和.【分析】由于前两天大鼠打1+2尺,小鼠打1+尺,因此前两天两鼠共打3+1.5=4.5.第三天,大鼠打4尺,小鼠打尺,因此第三天相遇.设第三天,大鼠打y尺,小鼠打0.5﹣y尺,则=,解得y即可得出.【解答】解:由于前两天大鼠打1+2尺,小鼠打1+尺,因此前两天两鼠共打3+1.5=4.5.第三天,大鼠打4尺,小鼠打尺,因此第三天相遇.设第三天,大鼠打y尺,小鼠打0.5﹣y尺,则=,解得y=.相见时大鼠打了1+2+=3尺长的洞,小鼠打了1++=1尺长的洞,x=2+=2天,故选:A7.【考点】几何概型.【分析】本题利用几何概型求解即可.在a﹣o﹣b坐标系中,画出f(1)>0对应的区域,和a、b都是在区间[0,4]内表示的区域,计算它们的比值即得.【解答】解:f(1)=﹣1+a﹣b>0,即a﹣b>1,如图,A(1,0),B(4,0),C(4,3),S△ABC=,P==,故选:B8.【考点】函数y=Asin(ωx+φ)的图象变换.【分析】先求得m=sin(2•)=,故把函数y=sin2x图象上的点P(,),向右平移n个单位,可得Q (+n,),根据Q在函数y=cos(2x﹣)的图象上,求得n的最小值值,可得mn的最小值.【解答】解:函数y=sin2x图象上的某点P(,m)可以由函数y=cos(2x﹣)上的某点Q向左平移n(n>0)个单位长度得到,∴m=sin(2•)=.故把函数y=sin2x图象上的点P(,),向右平移n个单位,可得Q(+n,),根据Q在函数y=cos(2x﹣)的图象上,∴m=cos[2(+n)﹣]=cos(2n﹣)=,∴应有2n﹣=,∴n=,则mn的最小值为,故选:B9.【考点】由三视图求面积、体积.【分析】由三视图可知:该几何体为三棱锥P﹣ABC,其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.进而得出.【解答】解:由三视图可知:该几何体为三棱锥P﹣ABC,其中侧面PAB⊥底面ABC,在平面PAB内,过点P作PD⊥AB,垂足为D,连接CD,CD⊥AD.该几何体的表面积S=×2++=2+2+.故选:A10.【考点】进行简单的合情推理.【分析】依题记f(m1,m2)=f(m1,m2﹣1)+5×1=f(m1,1)+5×(m2﹣1)=f(m1﹣1,1)+4×1+5×(m2﹣1)=…=f(1,1)+4×(m1﹣1)+5×f(m1,1),将m1=60,m2=50,f(1,1)=2,代入得结论.【解答】解:依题记f(m1,m2)=f(m1,m2﹣1)+5×1=f(m1,1)+5×(m2﹣1)=f(m1﹣1,1)+4×1+5×(m2﹣1)=…=f(1,1)+4×(m1﹣1)+5×(m2﹣1),将m1=60,m2=50,f(1,1)=2,代入得483.故选D11.【考点】双曲线的简单性质.【分析】由A,B代入双曲线方程,作差整理可得k==,化简得a2=bc,即可求出双曲线的离心率.【解答】解:设A(x1,y1),B(x2,y2),M(b,yM),由A,B代入双曲线方程,作差整理可得k==,化简得a2=bc,即a4=(c2﹣a2)c2,有e4﹣e2﹣1=0,得e=.故选B12.【考点】根的存在性及根的个数判断.【分析】判断f(x)的单调性,求出极值,得出方程f(x)=t的解的情况,得出关于t的方程t2﹣(2m+1)t+m2+m=0的根的分布区间,利用二次函数的性质列不等式解出m的范围.【解答】解:f(x)=,∴f′(x)=.∴当0<x<1或x>e时,f′(x)>0,当1<x<e时,f′(x)<0,∴f(x)在(0,1)上单调递增,在(1,e)上单调递减,在(e,+∞)上单调递增,作出f(x)的大致函数图象如图所示:令f(x)=t,则当0<t<e时,方程f(x)=t有1解,当t=e时,方程f(x)=t有2解,当t>e时,方程f(x)=t有3解,∵关于x的方程f2(x)﹣(2m+1)f(x)+m2+m=0,恰好有4个不相等的实数根,∴关于t的方程t2﹣(2m+1)t+m2+m=0在(0,e)和(e,+∞)上各有一解,∴,解得e﹣1<m<e.故选C.13.【考点】二项式系数的性质.【分析】利用二项展开式的通项公式求出展开式的通项,令x的指数为4,求出r的值,将r的值代入通项求出展开式中含x4项的系数【解答】解:展开式的通项为Tr+1=C6r(﹣2)rx,令得18﹣r=4,解得r=4,∴展开式中含x4项的系数为(﹣2)4C64=240,故答案为:240.14.【考点】向量的模.【分析】求出+2,求出|+2|的解析式,根据三角函数的运算性质计算即可.【解答】解:=(cos5°,sin5°),=(cos65°,sin65°),则+2=(cos5°+2cos65°,sin5°+2sin65°),则|+2|===,故答案为:.15.【考点】利用导数研究函数的极值;分段函数的应用.【分析】由f'(x)=6x2﹣6,x>t,知x>t时,f(x)=2x3﹣6x一定存在单调递增区间,从而要使无论t取何值,函数f(x)在区间(﹣∞,+∞)总是不单调,必须有f(x)=(4a﹣3)x+2a﹣4不能为增函数,由此能求出a的取值范围.【解答】解:对于函数f(x)=2x3﹣6x,f'(x)=6x2﹣6,x>t当6x2﹣6>0时,即x>1或x<﹣1,此时f(x)=2x3﹣6x,为增函数当6x2﹣6<0时,﹣1<x<1,∵x>t,∴f(x)=2x3﹣6x一定存在单调递增区间要使无论t取何值,函数f(x)在区间(﹣∞,+∞)总是不单调∴f(x)=(4a﹣3)x+2a﹣4不能为增函数∴4a﹣3≤0,∴a≤.故a 的取值范围是(﹣∞,]. 故答案为:(﹣∞,].16.【考点】三角形中的几何计算.【分析】设∠DBM =θ,在△CDA 中,由正弦定理可得=,在△AMB 中,由正弦定理可得=,继而可得=,问题得以解决【解答】解:设∠DBM =θ,则∠ADC =2θ,∠DAC =﹣2θ,∠AMB =﹣2θ,在△CDA 中,由正弦定理可得=,在△AMB 中,由正弦定理可得=,∴===,从而MA =2, 故答案为:2.17.【考点】数列递推式;数列的求和.【分析】(I )利用数列递推关系、等比数列的通项公式即可得出. (II )利用“裂项求和”方法、数列的单调性即可得出.【解答】解:(Ⅰ)当3n ≥时,可得()()11214242024n n n n n n S S S S n n a a ---------=≥∈∴=Z ,.,又因为12a =,代入表达式可得28a =,满足上式.所以数列{}n a 是首项为12a =,公比为4的等比数列,故:121242n n n a --=⨯=.(Ⅱ)证明:2log 21n n b a n ==-. ()21212n n n T n +-==2n ≥时,211111(1)1n T n n n n n=<=-+-. 111111*********-1ni nT n n n =⎛⎫⎛⎫⎛⎫≤+-+-++-=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑K . 18.【考点】二面角的平面角及求法;直线与平面垂直的性质.【分析】(Ⅰ)推导出△ABC 是等边三角形,从而CM ⊥AB ,再由DB ⊥AB ,DB ⊥BC ,知DB ⊥平面ABC ,又EA ∥DB ,从而EA ⊥平面ABC ,进而CM ⊥EA .由此CM ⊥平面EAM .进而能证明CM ⊥EM .(Ⅱ)以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴,过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系M ﹣xyz .利用向量法能求出二面角B ﹣CD ﹣E 的平面角. 【解答】证明:(Ⅰ)因为A B ,是PQ 的三等分点, 所以PA AB BQ CA CB ====, 所以ABC △是等边三角形,又因为M 是AB 的中点,所以CM AB ⊥.因为DB AB DB BC AB BC B ⊥⊥=I ,, 所以DB ⊥,平面ABC ,又//EA DB , 所以EA ⊥平面ABC ,CM ⊂平面ABC ,所以CM EA ⊥.因为AM EA A =I ,所以CM ⊥平面EAM . 因为EA ⊂平面EAM ,所以CM EM ⊥.解:(Ⅱ)以点M 为坐标原点,MC 所在直线为x 轴,MB 所在直线为y 轴, 过M 且与直线BD 平行的直线为z 轴,建立空间直角坐标系M xyz -. 因为DB ⊥平面ABC ,所以DMB ∠为直线DM 与平面ABC 所成角. 由题意得tan 2BDDMB MB∠==,即2BD MB =, 从而BD AC =.不防设2AC =,又2AC AE +,则1CM AE ==. 故())()()0,1,00,1,20,1,1B CD E -,,,.于是)()()()100,0,2BC BD CE CD =-==-=u u u r u u u r u u u r u u u v,,,1,1,设平面BCD ,与平面CDE 的法向量分别为()(),,,m x y z n a b c ==u r r,,, 由3-020m BC x y m BD z ⎧==⎪⎨==⎪⎩u v u u u vg u v u u u v g ,令1x =,得()m =u v .由-020n CE b c n CD b c ⎧=+=⎪⎨=++=⎪⎩v u u u v g v u u u v g ,令1a =,得1,33n ⎛= ⎝⎭v , 所以cos 0m n <>=u v v,所以二面角B CD E --的平面角大小为90︒.19.【考点】离散型随机变量的期望与方差;离散型随机变量及其分布列.【分析】(Ⅰ)利用分层抽样求出各个选修人数,利用互斥事件的概率求解从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;(Ⅱ)从选出的10名学生中随机抽取3人,记ξ为选修线性代数人数与选择微积分人数差的绝对值.求出ξ的可能值,就是概率,即可得到随机变量ξ的分布列和数学期望. 【解答】解:因为选修数学学科人数所占总人数频率为0.6,即1800.6600x+=,可得:180x =,又180********x y ++++=,所以60y =,则根据分层抽样法:抽取的10人中选修线性代数的人数为:180103600⨯=人;选修微积分的人数为:180103600⨯=人;选修大学物理的人数为:120102600⨯=人;选修商务英语的人数为:60101600⨯=人;选修文学写作的人数为:60101600⨯=人;(Ⅰ)现从10人中选3人共有310120C =种选法,且每种选法可能性都相同,令事件A :选中的3人至少两人选修线性代数,事件B :选中的3人有两人选修线性代数,事件C :选中的3人都选修线性代数,且B C,为互斥事件,()()()P A P B P C =+=2133733310101160C C C C C ⨯+= (Ⅱ)记X 为3人中选修线性代数的代数,X 的可能取值为0,1,2,3,记Y 为3人中选修微积分的人数;Y的可能取值也为0,1,2,3,则随机变量||XY ξ=﹣的可能取值为0,1,2,3; ()()()00,01,1P P X Y P X Y ξ====+===1113334433101013C C C C C C +=;()()()()()10,1101,22,12P P X Y P X Y P X Y P X Y ξ====+==+==+===⨯,121234333310109220C C C C C C +⨯=, ()()()20,22,02P P X Y P X Y ξ====+===⨯213431015C C C =,()()()33310130,33,0260C P P X Y P X Y C ξ====+===⨯=;所以ξ的分布列为:所以0123320560E ξ=⨯+⨯+⨯+⨯ 20.【考点】直线与椭圆的位置关系;椭圆的标准方程. 【分析】(Ⅰ)由b =,椭圆的离心率公式,即可求得a 和c 的值,求得椭圆方程;(Ⅱ)①设直线方程,代入椭圆方程,由△=0,分别求得kOM ,kPQ ,即可求得kOM •为定值; ②设直线方程,代入椭圆方程,由韦达定理,弦长公式,求得S △PQM =•,根据函数的单调性即可求得△PQM 面积的最小值.【解答】解:(Ⅰ)设椭圆的焦距为2c ,由题意可得:2b b ==,由题意的离心率c e a ==解得:26a =,则2224c a b -==,故椭圆方程为:22162x y +=;(Ⅱ)①证明:由题意可知直线l 的斜率存在,设直线l 的方程:y kx m =+, 由点()3,M t 在直线上,则3t k m =+,联立直线与椭圆方程:22360y kx mx y =+⎧⎨+-=⎩,可得:()222136360k x kmx m +-++=,又直线与椭圆只有一个公共点,故0=△,即2262m k =+;由韦达定理,可得P 点坐标223,1313km m k k ⎛⎫ ⎪++⎝⎭-,由直线PQ 过椭圆右焦点为()20F ,,则直线PQ 的斜率2326PQ PF mk k km k ==---;而直线OM 的斜率,则333OM t k m k +==:()()22222331311••••33263333263OM PQk m m km m km m k k km k km k km m +++====------+-+.①由()1FM t =u u u u v ,,222326,1313km k mFP k k ⎛⎫---=⎪++⎝⎭u u u v ,则22326013mt km k FM FP k ---==+u u u u v u u u v g , 即FM PF ⊥, ∴三角形的面积1||||2PQM S PQ MF =△, MF =丨丨由直线FM 的斜率为t ,可得直线PQ 的方程:()()1122,,2x ty P x y Q x y =-+,,, 与椭圆方程联立可得:222162x ty x y =-+⎧⎪⎨+=⎪⎩,整理得:()223420t y ty +-=-,则12243t y y t +=+,12223y y t =+﹣ ,则)2213t PQ t +==+丨丨,则PQM S =△令()23,0t m m+=>,则PQMS =△, 由函数的单调性可知:y =单调递增,故PQMS =△,当0t =时,PQM △.∴PQM △. 21.【考点】利用导数研究函数的单调性;利用导数研究曲线上某点切线方程;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)求出函数的导数,解关于导函数的不等式,求出函数的递增区间即可; (Ⅱ)求出g (x )的导数,求出g (x1)﹣g (x2)的解析式,令h (x )=lnx2﹣x2+,x ∈(0,],根据函数的单调性求出k 的最大值即可. 【解答】解:(Ⅰ)由题意可得:()()121121f x ax f a x'=-'=-=-,,可得:1a =;又()()()2216ln 310x y f x xf x x x y x x-=+'=-+'=>,所以,,当x ⎛∈ ⎝⎭时,0y y '>,单调递增;当6x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,0y y '<,单调递减;故函数的单调增区间为⎛ ⎝⎭. (Ⅱ)()()()()22111ln 12x b x g x x x b x g x x-++=++'=-,,因为12x x ,是()g x 的两个极值点,故12x x ,是方程()2110x b x ++=-的两个根,由韦达定理可知:121211x x b x x +=+⎧⎨=⎩;12x x <Q ,可知101x <<,又11111x b e x e +=+≥+,令1t x x =+,可证()t x 在()0,1递减,由()11h x h e ⎛⎫≥ ⎪⎝⎭,从而可证110x e <≤. 所以()()()()22111ln 12x b x g x x x b x g x x-++=++-'=,令()222111ln 0,22h x x x x x e ⎛⎤=+∈ ⎥⎝-⎦,()()22310x h x x--'=≤,所以()h x 单调减, 故()22min11222eh x h e e⎛⎫==-- ⎪⎝⎭, 所以221222e k e ≤--,即221222max e k e=--.22.【考点】简单曲线的极坐标方程;参数方程化成普通方程.【分析】(Ⅰ)利用三种方程的转化方法,即可求曲线C1的普通方程和曲线C2的极坐标方程; (Ⅱ)由(Ⅰ)可得C1的极坐标方程为ρsin2θ=4cosθ,与直线θ=α联立可得:ρ=,即|OP |=,同理可得|OQ |=2sinα.求出|OP |•|OQ |=,在α∈[,]上单调递减,即可求|OP |•|OQ |的最大值.【解答】解:(Ⅰ)1C 的普通方程为24y x =,2C 的普通方程为()2211x y +-=,2C 的极坐标方程为2sin ρθ=.(Ⅱ)由(Ⅰ)可得1C 的极坐标方程为2sin 4cos ρθθ=,与直线θα=联立可得:24cos =sin αρα,即24cos =sin OP αα,同理可得2|i |s n OQ α=.所以|||8tan |OP OQ α•=,在π4π6α⎡∈⎤⎢⎥⎣⎦,上单调递减,所以||||OP OQ •的最大值是23.【考点】绝对值不等式的解法;函数恒成立问题.【分析】(Ⅰ)当a =3时,不等式即|2x ﹣3|+3≤6,可得﹣3≤2x ﹣3≤3,由此求得不等式的解集.(Ⅱ)由题意可得|2x ﹣a |+a +|2x ﹣1|≥2a2﹣13恒成立,利用绝对值三角不等式求得|2x ﹣a |+a +|2x ﹣1|的最小值为|1﹣a |+a ,可得|1﹣a |+a ≥2a2﹣13,分类讨论,去掉绝对值,求得a 的范围. 【解答】解:(Ⅰ)当3a =时,不等式()6f x ≤,即||2-336x +≤,故有3233x -≤-≤,求得03x ≤≤,即不等式()6f x ≤的解集为[]03,. (Ⅱ)()()22-13f x g x a +≥,即222121||||3x a a x a +-≥--+恒成立,()||||||||2212211x a a x x a x a a a -++-≥---+=-+Q2121||3a a a ∴-+≥-①.当1a ≤时,①等价于21213a a a --+≥,解得1a ≤≤;当1a >时,①等价于21213a a a --+≥,即260a a --≤,解得13a <≤,所以a 的取值范围是⎡⎤⎣⎦。

【河北省石家庄二中】2017学年高考模拟数学年试题(理科)

【河北省石家庄二中】2017学年高考模拟数学年试题(理科)

河北省石家庄市2017届高三一模考试理科数学试卷(B 卷)答 案一、选择题1~5.DDCDB 6~10.ADBDB 11~12.AB二、填空题13.0n ∃∈N ,0202n n ≥14.102415.1316.7a ->三、解答题17.解:(Ⅰ)∵sin sin sin C a b A B a c +=--,由正弦定理得c a b a b a c+=--, ∴()()()c a c a b a b -=+-, 即222a c b ac +-=,又∵2222cos a c b ac B +-=, ∴1cos 2B =, ∵(0,π)B ∈, ∴π3B =. (Ⅱ)在ABC △中由余弦定理知:222(2)22cos603c a a c +-︒=,∴2(2)932a c ac +-=, ∵222()2a c ac +≤, ∴223(2)9(2)4a c a c +-+≤,即2(2)36a c +≤,当且仅当2a c =,即32a =,3c =时取等号, 所以2a c +的最大值为6.18.(Ⅰ)证明:在ABD ∆中,sin sin AB AD ADB DBA=∠∠,由已知60DBA ∠=︒,AD =4BA =, 解得sin 1ADB ∠=,所以90ADB ∠=︒,即AD BD ⊥,可求得2BD =. 在SBD ∆中,∵SD =4BS =,2BD =,∴222DB SD BS +=,∴SD BD ⊥,∵BD ⊄平面SAD ,SD AD D =,∴BD ⊥平面SAD .(Ⅱ)过D 作直线l 垂直于AD ,以D 为坐标原点,以DA 为x 轴,以DB 为y 轴,以l 为z 轴,建立空间直角坐标系.∵由(Ⅰ)可知,平面SAD ⊥平面ABCD ,∴S 在平面ABCD 上的投影一定在AD 上,过S 作SE AD ⊥于E,则DE =3SE =,则(S ,易求A ,(0,2,0)B,(C -, 则(3,2,3)SB =-,(33,0,3)SA =-,(3)SC =--,设平面SBC 的法向量1(,,)n x y z=,230,230,y z y z +-=+-=⎪⎩解得1(0,3,2)n =--.同理可求得平面SAB的法向量2(1,n =,∴121253cos ||||137n n n n θ===-.19.解:(Ⅰ)X 的可能取值为:0,1,2,3,4.4641015(0)210C P X C ===,134641080(1)210C C P X C ===,224641090(2)210C C P X C ===,314641024(3)210C C P X C ===, 444101(4)210C P X C ===, X 的分布列为:158090241()01234 1.621021**********E X =⨯+⨯+⨯+⨯+⨯=. (Ⅱ)序号1a ,2a ,3a ,4a 的排列总数为4424A =种, 当0Y =时,11a =,22a =,33a =,44a =.当1234|1||2||3||4|2Y a a a a =-+-+-+-=时,1a ,2a ,3a ,4a 的取值为11a =,22a =,34a =,43a =;11a =,23a =,32a =,44a =;12a =,21a =,33a =,44a =. 故41(2)246P Y ==≤. 20.解:(Ⅰ)设(0,)M m ,(0,)N n ,∵MF NF ⊥,可得1mn =-, 11||||||22AMFN S AF MN MN ==, ∵222||||||2||||MN MF NF MF NF =+≥,当且仅当||||MF NF =时等号成立. ∴min ||2MN =, ∴min 1()||12MFN S MN ==, ∴四边形AMFN 的面积的最小值为1.(Ⅱ)∵(A ,(0,)M m ,∴直线AM的方程为y m =+,由22,22,y m x y ⎧=+⎪⎨⎪+=⎩得2222(1)2(1)0m x x m +++-=,由222(1)1E m xm -=+,得221)1E m x m-=+,① 同理可得D x ,∵1m n =-,∵221()11()1D m x m⎤-⎥⎣⎦=+=② 故由①②可知:E D x x =-,代入椭圆方程可得22E D y y =∵MF NF ⊥,故M ,N 分别在x 轴两侧,E D y y =-,∴E D E Dy yx x =,∴E ,O ,D 三点共线.21.解:(Ⅰ)函数()f x 的定义域为(,1)-∞, 由题意222'()2,111a x x a f x x x x x-+-=-=--<, 224(2)()48a a ∆=---=-.①若480a ∆=-≤,即12a ≥,则2220x x a -+-≤恒成立,则()f x 在(,1)-∞上为单调减函数; ②若480a ∆=->,即12a <,方程2220x x a -+-=的两根为1x =,2x ,当1(,)x x ∈-∞时,'()0f x <,所以函数()f x 单调递减,当11(,)2x x ∈时,'()0f x >,所以函数()f x 单调递增,不符合题意. 综上,若函数()f x 为定义域上的单调函数,则实数a 的取值范围为1(,)2+∞. (Ⅱ)因为函数()f x 有两个极值点,所以'()0f x =在1x <上有两个不等的实根, 即2220x x a -+-=在1x <有两个不等的实根1x ,2x , 于是102a <<,12121,,2x x a x x +=⎧⎪⎨=⎪⎩且满足11(0,)2x ∈,21(,1)2x ∈, 211111*********()1ln(1)(1)(1)2ln(1)(1)2ln(1)f x x a x x x x x x x x x x x x -+--++-===-++-, 同理可得22221()(1)2ln(1)f x x x x x =-++-. 122111222222221()()2ln(1)2ln(1)212(1)ln 2ln(1)f x f x x x x x x x x x x x x x x -=-+---=-+---, 令()212(1)ln 2ln(1)g x x x x x x =-+---,1(,1)2x ∈. []22'()2ln (1)1x g x x x x x =--++-,1(,1)2x ∈, ∵1(1)4x x -<,∴[]2ln (1)0x x -->, 又1(,1)2x ∈时,201x x x 2+->,∴'()0g x >,则()g x 在1(,1)2x ∈上单调递增, 所以1()()02g x g =>,即1221()()0f x f x x x ->,得证. 22.解:(Ⅰ)2214x y +=,2cos sin x y θθ=⎧⎨=⎩(θ为参数).(Ⅱ)设四边形ABCD 的周长为l ,设点(2cos ,sin )A q q ,8cos 4sin l θθ=+))θθθϕ=+=+,且cos ϕ=sin ϕ=, 所以,当π2π2k θϕ+=+(k ∈Z )时,l 取最大值, 此时π2π2k θϕ=+-,所以,2cos 2sin θϕ==,sin cos θϕ==此时,A ,1l 的普通方程为14y x =. 23.解:(Ⅰ)当2a -<时,函数34,,()|24|||4,2,34, 2.x a x a f x x x a x a a x x a x -+-⎧⎪=++-=----⎨⎪-+-⎩<≤≤> 可知,当2x =-时,()f x 的最小值为(2)21f a -=--=,解得3a =-. (Ⅱ)因为()|24||||(24)()||4|f x x x a x x a x a =++-+--=++≥, 当且仅当(24)()0x x a +-≤时,()|4|f x x a =++成立,所以,当2a -<时,x 的取值范围是{}|2x a x -≤≤;当2a =-时,x 的取值范围是{}2-;当2a ->时,x 的取值范围是{}|2x x a -≤≤.。

河北省石家庄市高三第二次模拟考试(数学理)(含答案)word版

河北省石家庄市高三第二次模拟考试(数学理)(含答案)word版

2017年石家庄市高中毕业班第二次模拟考试高三数学(理科)注意事项:1. 本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分,答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2. 回答第I 卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3. 回答第II 卷时,将答案写在答题卡上,写在本试卷上无效.4. 考试结束后,将本试卷和答题卡一并交回.第I 卷(选择题60分)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合M={5,6,7 },N={5,7,8 },则 A.B.C.D.2. 若F(5,0)是双曲线(m 是常数)的一个焦点,则m 的值为A. 3B. 5C. 7D. 93. 已知函数f(x),g(x)分别由右表给出,则,的值为A. 1B.2C. 3D. 4 4.的展开式中的常数项为A. -60B. -50C. 50D. 60 5. 的值为A. 1B.C.D.6. 已知向量a=(1,2),b=(2,3),则是向量与向量n=(3,-1)夹角为钝角的A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要的条件7. —个几何体的正视图与侧视图相同,均为右图所示,则其俯视图可能是8. 从某高中随机选取5名高三男生,其身高和体重的数据如下表所示:根据上表可得回归直线方程,据此模型预报身高为172 cm的高三男生的体重为A. 70.09B. 70.12C. 70.55D. 71.059. 程序框图如右图,若输出的s值为位,则n的值为A. 3B. 4C. 5D. 610. 已知a是实数,则函数_的图象不可能是11. 已知长方形ABCD,抛物线l以CD的中点E为顶点,经过A、B两点,记拋物线l与AB 边围成的封闭区域为M.若随机向该长方形内投入一粒豆子,落入区域M的概率为P.则下列结论正确的是A.不论边长AB,CD如何变化,P为定值;B.若-的值越大,P越大;C.当且仅当AB=CD时,P最大;D.当且仅当AB=CD时,P最小.12. 设不等式组表示的平面区域为D n a n表示区域D n中整点的个数(其中整点是指横、纵坐标都是整数的点),则=A. 1012B. 2012C. 3021D. 4001第II 卷(非选择题共90分)本卷包括必考题和选考题两部分,第13题〜第21题为必考题,每个试题考生都必须作答.第22题〜第24题为选考题,考生根据要求作答. 二、填空题:本大题共4小题,每小题5分,共20分. 13. 复数(i 为虚数单位)是纯虚数,则实数a 的值为_________.14. 在ΔABC 中,,,则 BC 的长度为________.15. 己知F 1F 2是椭圆(a>b>0)的两个焦点,若椭圆上存在一点P 使得,则椭圆的离心率e 的取值范围为________. 16. 在平行四边形ABCD 中有,类比这个性质,在平行六面体中ABCD-A 1B 1C 1D 1 中有=________三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)已知S n 是等比数列{a n }的前n 项和,S 4、S 10、S 7成等差数列.(I )求证而a 3,a 9,a 6成等差数列;(II)若a 1=1,求数列W {a 3n }的前n 项的积 .18. (本小题满分12分)我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准〜用水量不超过a 的部分按照平价收费,超过a 的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t ),制作了频率分布直方图,(I)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;(II)用样本估计总体,如果希望80%的居民每月的用水量不超出标准&则月均用水量的最低标准定为多少吨,并说明理由;(III)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(II)中最低标准的人数为x,求x的分布列和均值.19. (本小题满分12分)在三棱柱ABC-A1B1C1中,侧面ABB1A1为矩形,A B=1,,D为AA1中点,BD与AB1交于点0,C0丄侧面ABB1A1(I )证明:BC丄AB1;(II)若OC=OA,求二面角C1-BD-C的余弦值.20. (本小题满分12分)在平面直角坐标系中,已知直线l:y=-1,定点F(0,1),过平面内动点P作PQ丄l于Q点,且•(I )求动点P的轨迹E的方程;(II)过点P作圆的两条切线,分别交x轴于点B、C,当点P的纵坐标y0>4时,试用y0表示线段BC的长,并求ΔPBC面积的最小值.21. (本小题满分12分) 已知函数(A ,B R ,e 为自然对数的底数),.(I )当b=2时,若存在单调递增区间,求a 的取值范围;(II )当a>0 时,设的图象C 1与的图象C 2相交于两个不同的点P 、Q ,过线段PQ 的中点作x 轴的垂线交C 1于点,求证.请考生在第22〜24三题中任选一题做答,如果多做,则按所做的第一题记分. 22. (本小题满分10分)选修4-1几何证明选讲 已知四边形ACBE,AB 交CE 于D 点,,BE 2=DE-EC. (I )求证:;(I I )求证:A 、E 、B 、C 四点共圆.23. (本小题满分10分)选修4-4坐标系与参数方程在平面直角坐标系xOy 中,以O 为极点,X 轴的正半轴为极轴,取与直角坐标系相同的长度单位建立极坐标系.曲线C 1的参数方程为:(为参数);射线C 2的极坐标方程为:,且射线C 2与曲线C 1的交点的横坐标为(I )求曲线C 1的普通方程;(II )设A 、B 为曲线C 1与y 轴的两个交点,M 为曲线C 1上不同于A 、B 的任意一点,若直线AM 与MB 分别与x 轴交于P ,Q 两点,求证|OP|.|OQ|为定值.24. (本小题满分10分)选修4-5不等式选讲 设函数(I)画出函数的图象;(II )若不等式,恒成立,求实数a 的取值范围.2017年石家庄市高中毕业班第二次模拟考试高三数学(理科答案)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1-5 CDADB 6-10 ABBCB 11-12 AC二、填空题:本大题共4小题,每小题5分,共20分.13. 1 14. 1或2 15. 1,12⎡⎫⎪⎢⎣⎭16. 22214()AB AD AA ++.三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17. 解:(Ⅰ)当1q =时,10472S S S ≠+所以1q ≠ ………………………………………………..2分10472S S S =+由,得()()1074111211(1)111a q a q a q q q q---=+--- 104710,12a q q q q ≠≠∴=+ , ………………………….4分则8251112a q a q a q =+,9362a a a ∴=+,所以3,9,6a a a 成等差数列. ………………………6分(Ⅱ)依题意设数列{}3n a 的前n 项的积为n T ,n T =3333123n a a a a ⋅⋅3323131()()n q q q -=⋅⋅ =33231()()n q q q -⋅ 3123(1)()n q ++-= =(1)32()n n q -,…………………8分又由(Ⅰ)得10472q q q =+,63210q q ∴--=,解得3311(,2q q ==-舍).…………………10分 所以()1212n n n T -⎛⎫=-⎪⎝⎭. …………………………………………….12分18. 解: (Ⅰ)………………………………3分(Ⅱ)月均用水量的最低标准应定为2.5吨.样本中月均用水量不低于2.5吨的居民有20位,占样本总体的20%,由样本估计总体,要保证80%的居民每月的用水量不超出标准,月均用水量的最低标准应定为2.5吨.……………………………………………6分 (Ⅲ)依题意可知,居民月均用水量不超过(Ⅱ)中最低标准的概率是45,则4~(3,)5X B , 311(0)()5125P X === 1234112(1)()55125P X C ===2234148(2)()()55125P X C === 3464(3)()5125P X ===………………8分…………………………………………………………………………………………10分412()355E X =⨯=………………………………………………………………12分19. 解:(Ⅰ)因为11ABB A 是矩形,D 为1AA中点,1AB =,1AA ,2AD =, 所以在直角三角形1ABB 中,11tan 2AB AB B BB ∠==, 在直角三角形ABD中,1tan 2AD ABD AB ∠==,所以1AB B ∠=ABD ∠, 又1190BAB AB B ∠+∠= ,190BAB ABD ∠+∠= ,所以在直角三角形ABO 中,故90BOA ∠=,即1BD AB ⊥, …………………………………………………………………………3分 又因为11CO ABB A ⊥侧面,111AB ABB A ⊂侧面,所以1CO AB ⊥所以,1AB BCD ⊥面,BC BCD ⊂面, 故1BC AB ⊥…………………………5分 (Ⅱ) 解法一:如图,由(Ⅰ)可知,,,OA OB OC 两两垂直,分别以,,OA OB OC 为x 轴、y 轴、z 轴建立空间直角坐标系O xyz -. 在Rt ABD中,可求得OB =,OD =,OC OA ==在1Rt ABB中,可求得1OB = ,故0,6D ⎛⎫ ⎪ ⎪⎝⎭,0,3B ⎛⎫- ⎪ ⎪⎝⎭,0,0,3C ⎛ ⎝⎭,13B ⎛⎫- ⎪ ⎪⎝⎭所以0,2BD ⎛⎫= ⎪ ⎪⎝⎭,0,33BC ⎛= ⎝⎭,1,33BB ⎛⎫=- ⎪ ⎪⎝⎭可得,11333BC BC BB ⎛=+=- ⎝⎭ …………………………………8分 设平面1BDC 的法向量为(),,x y z =m ,则 10,0BD BC ⋅=⋅=m m ,即00x y z y ⎧=⎪⎪=,取1,0,2x y z ===, 则()1,0,2=m , …………………………………10分又BCD 面()1,0,0=n ,故cos ,==m n , 所以,二面角1C BD C --12分解法二:连接1CB 交1C B 于E ,连接OE , 因为11CO ABB A ⊥侧面,所以BD OC ⊥,又1BD AB ⊥,所以1BD COB ⊥面,故BD OE ⊥ 所以E O C ∠为二面角1C BD C --的平面角…………………………………8分BD =,1AB ,1112AD AO BB OB ==,1123OB AB ==,113OC OA AB ===, 在1Rt COB中,13B C ===,……………………10分 又EOC OCE ∠=∠1cos OC EOC CB ∠==, 故二面角1C BD C --的余弦值为…………………………12分 20.解:(Ⅰ)设(),P x y ,则(),1Q x -,∵QP QF FP FQ = ,∴()()()()0,1,2,1,2y x x y x +-=-- . …………………2分 即()()22121y x y +=--,即24x y =,所以动点P 的轨迹E 的方程24x y =. …………………………4分 (Ⅱ)解法一:设00(,),(,0),(,0)P x y B b C c ,不妨设b c >. 直线PB 的方程:00()y y x b x b=--,化简得 000()0y x x b y y b ---=. 又圆心(0,2)到PB 的距离为22= ,故222220000004[()]4()4()y x b x b x b y b y b +-=-+-+,易知04y >,上式化简得2000(4)440y b x b y -+-=, 同理有2000(4)440y c x c y -+-=. …………6分所以0044x b c y -+=-,0044y bc y -=-,…………………8分则2220002016(4)()(4)x y y b c y +--=-. 因00(,)P x y 是抛物线上的点,有2004x y =,则 2202016()(4)y b c y -=-,0044y b c y -=-. ………………10分 所以0000002116()2[(4)8]244PBC y S b c y y y y y ∆=-⋅=⋅=-++--832≥=.当20(4)16y -=时,上式取等号,此时008x y ==. 因此PBC S ∆的最小值为32. ……………………12分解法二:设),(00y x P , 则420x y =,PB 、PC 的斜率分别为1k 、2k ,则PB :2010()4x y k x x -=-,令0y =得20014B x x x k =-,同理得20024C x x x k =-; 所以||4|44|||||212120120220k k k k x k x k x x x BC C B -⋅=-=-=,……………6分下面求||2121k k k k -,由(0,2)到PB :2010()4x y k x x -=-的距离为22010|2|2x k x +-=, 因为04y >,所以2016x >,化简得2222220001010(4)(4)()024x x x k x k x -+⋅-+-=,同理得2222220002020(4)(4)()024x x x k x k x -+⋅-+-=…………………8分所以1k 、2k 是22222200000(4)(4)()024x x x k x k x -+⋅-+-=的两个根.所以2001220(4)2,4x x k k x -+=-222220000122200(1)()164,44x x x x k k x x --==--2122||4xk kx-==-,122121||116k kxk k-=-,22000122120411||||44411416B Cx x yk kx x yxk k y--=⋅=⋅=⋅=---,……………10分所以0000002116||2[(4)8]244PBCyS BC y y yy y∆=⋅=⋅=-++--832≥=.当2(4)16y-=时,上式取等号,此时008x y==.因此PBCS∆的最小值为32.……………………12分21.解:(Ⅰ)当2b=时,若2()()()2x xF x f x g x ae e x=-=+-,则2()221x xF x ae e'=+-,原命题等价于2()2210x xF x ae e'=+-…在R上有解.……………2分法一:当0a…时,显然成立;当0a<时,2211()2212()(1)22x x xF x ae e a ea a'=+-=+-+∴1(1)02a-+>,即12a-<<.综合所述12a>-.…………………5分法二:等价于2111()2x xae e>⋅-在R上有解,即∴12a>-.………………5分(Ⅱ)设1122(,),(,)P x y Q x y,不妨设12x x<,则212x xx+=,2222x xae be x+=,1121x xae be x+=,两式相减得:21212221()()x x x xa e eb e e x x-+-=-,……………7分整理得2121212121212 21()()()()2()x xx x x x x x x x x x x x a e e e e b e e a e e e b e e+ -=-++--+-…则21212122x x x x x x ae b e e+-+-…,于是 21212121212202()x x x x x x x x x x e ae be f x e e+++-'⋅+=-…,…………………9分 而212121212121221x x x x x x x x x x x x e e e e e +----⋅=⋅-- 令210t x x =->,则设22()ttG t e e t -=--,则22111()1210222t t G t e e -'=+->⋅=, ∴ ()y G t =在(0,)+∞上单调递增,则22()(0)0t t G t e e t G -=-->=,于是有22t t e et -->, 即21t t e te ->,且10t e ->, ∴ 211t t t e e <-, 即0()1f x '<.…………………12分请考生在第22~24三题中任选一题做答,如果多做,则按所做的第一题记分22.选修4-1几何证明选讲证明:(Ⅰ)依题意,DE BE BE EC=,11∠=∠ , 所以DEB BEC ∆∆ ,………………2分得34∠=∠,因为45∠=∠,所以35∠=∠,又26∠=∠,可得EBD ACD ∆∆ .……………………5分(Ⅱ)因为因为EBD ACD ∆∆ , 所以ED BD AD CD =,即ED AD BD CD=,又ADE CDB ∠=∠,ADE CDB ∆∆ , 所以48∠=∠,………………7分 因为0123180∠+∠+∠=,因为278∠=∠+∠,即274∠=∠+∠,由(Ⅰ)知35∠=∠, 所以01745180,∠+∠+∠+∠=即0180,ACB AEB ∠+∠=所以A 、E 、B 、C 四点共圆.………………10分23.选修4-4:坐标系与参数方程解:(Ⅰ)曲线1C 的普通方程为2221x y a+=, 射线2C 的直角坐标方程为(0)y x x =≥,…………………3分可知它们的交点为⎝⎭,代入曲线1C 的普通方程可求得22a =. 所以曲线1C 的普通方程为2212x y +=.………………5分 (Ⅱ) ||||OP OQ ⋅为定值.由(Ⅰ)可知曲线1C 为椭圆,不妨设A 为椭圆1C 的上顶点,设,sin )M ϕϕ,(,0)P P x ,(,0)Q Q x ,因为直线MA 与MB 分别与x 轴交于P 、Q 两点,所以AM AP K K =,BM BQ K K =,………………7分由斜率公式并计算得1sin P x ϕϕ=-,1sin Q x ϕϕ=+, 所以||||2P Q OP OQ x x ⋅=⋅=.可得||||OP OQ ⋅为定值.……………10分24.选修4-5:不等式选讲解: (Ⅰ)由于37,2,()35 2.x x f x x x +≥-⎧=⎨--<-⎩…………2分则函数的图象如图所示:(图略)……………5分(Ⅱ) 由函数()y f x =与函数y ax =的图象可知, 当且仅当132a -≤≤时,函数y ax =的图象与函数()y f x =图象没有交点,……………7分所以不等式()f x ax ≥恒成立, 则a 的取值范围为1,32⎡⎤-⎢⎥⎣⎦.…………………10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省石家庄二中2017年高考模拟数学试卷(理科)
一、选择题(每小题5分,共60分)
1.设集合}{
2
|430A x x x =-+<,}{2|log 1B x x =>则A B I =( )
A .()1,3-
B .()1,2-
C .()1,3
D .()2,3
2.若复数z 满足
3i
i 2i z z
+=--,则|1|z +=( )
A .
12
B .
2
C
D .1
3.已知点M 在角θ终边的延长线上,且||2OM =,则M 的坐标为( ) A .()2cos ,2sin θθ
B .()2cos ,2sin θθ-
C .()2cos ,2sin θθ--
D .()2cos ,2sin θθ-
4.若01,1a b c <<<>
,则( ) A .c c a b >
B .c c ab ba >
C .log log a b c c <
D .log log a b b a <
5.根据如图的程序框图,当输入x 为2017时,输出的y 为28,则判断框中的条件可以是( )
A .0?x ≥
B .1?x ≥
C .1?x ≥-
D .3?x ≥-
6.在《九章算术》中有一个古典名题“两鼠穿墙”问题:今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺.大鼠日自倍,小鼠日自半,问何日相逢?大意是有厚墙五尺,两只老鼠从墙的两边分别打洞穿墙.大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半,问几天后两鼠相遇?( ) A .2
2
17
B .32
17
C .52
17
D .2.25
7.已知函数2()f x x ax b =-+-,若,a b 都是从[0,4]上任取的一个数,则满足(1)0f >时的概率( ) A .
132
B .
932
C .
3132
D .
2332
8.函数sin2y x =图象上的某点π,12P m ⎛⎫ ⎪⎝⎭可以由函数πcos 24y x ⎛
⎫=- ⎪⎝
⎭上的某点Q 向左平移()0n n >个单位
长度得到,mn 则的最小值为( ) A .

24
B .
5π48
C .
π8
D .
π12
9.如图所示,网格纸上每个小格都是边长为1的正方形,粗线画出的是一个几何体的三视图,则该几何体的表面积为( )
A .2+
B .4+
C .4+
D .2
10.某计算器有两个数据输入口12,M M ,一个数据输出口,N 当12,M M 分别输入正整数1时,输出口N 输出2,当1M 输入正整数1m ,2M 输入正整数2m 时,N 的输出是n ;当1M 输入正整数12,m M 输入正整数21m +时,N 的输出是5n +;当1M 输入正整数121,m M +输入正整数2m 时,N 的输出是4n +.则当1M 输入60,2M 输入50时,N 的输出是( ) A .494
B .492
C .485
D .483
11.已知直线1l 与双曲线()22
22:10,0x y
C a b a b
-=>>交于,A B 两点,且AB 中点M 的横坐标为,b 过M 且与
直线1l 垂直的直线2l 过双曲线C 的右焦点,则双曲线的离心率为( )
A
B
C
D
12.已知()ln x f x x
=
,若关于x 的方程()()()22
210f x m f x m m +++=-,恰好有4个不相等的实数根,则实数m 的取值范围为( )
A .()1,22,e e ⎛⎫
⎪⎝⎭
U
B .11,e e ⎛⎫+ ⎪⎝⎭
C .()e 1,e -
D .1,e e ⎛⎫
⎪⎝⎭
二、填空题(每小题5分,共20分)
13.已知二项式6
3x
⎛ ⎝
展开式中,则4
x 项的系数为__________.
14.已知向量()cos5,sin 5a =︒︒r
,()cos65,sin 65b =︒︒r ,则2a b +v v =___________.
15.已知函数()()3
4324,26,a x a x t
f x x x x t
⎧-+-≤⎪=⎨
->⎪⎩,无论t 取何值,函数()f x 在区间(),∞+∞﹣上总是不单调,则a 的取值范围是___________.
16.已知ABC △中,角C 为直角,D
是BC 边上一点,
M

AD
上一点,且
|1,|,CD DBM DMB CAB =∠=∠=∠则||MA =____________.
三、解答题
17.已知数列{}n a 的前n 项和为n S ,且满足1=2a ,()-14202n n S S n n =-≥-∈Z ,. (Ⅰ)求数列{}n a 的通项公式;
(Ⅱ)令2log n n n b a T =,为{}n b 的前n 项和,求证11
2n
i K
T =<∑
. 18.已知PDQ △中,,A B 分别为边PQ 上的两个三等分点,BD 为底边PQ 上的高,AE DB ∥,如图1,将
PDQ △分别沿,AE DB 折起,使得,P Q 重合于点C AB .中点为M ,如图2.
(Ⅰ)求证:CM EM ⊥;
(Ⅱ)若直线DM 与平面ABC 所成角的正切值为2,求二面角B CD E --的大小.
19.某中学高二年级开设五门大学选修课程,其中属于数学学科的有两门,分别是线性代数和微积分,其余三门分别为大学物理、商务英语以及文学写作,年级要求每名学生只能选修其中一科,该校高二年级600名学生各科选课人数统计如下表:
其中选修数学学科的人数所占频率为0.6.为了了解学生成绩与选课情况之间的关系,用分层抽样的方法从这600名学生中抽取10人进行分析.
(Ⅰ)从选出的10名学生中随机抽取3人,求这3人中至少2人选修线性代数的概率;
(Ⅱ)从选出的10名学生中随机抽取3人,记ξ为选修线性代数人数与选择微积分人数差的绝对值.求随机变量ξ的分布列和数学期望.
20.已知椭圆()2222:10x y C a b a b
+=>>的离心率为,短轴长为右焦点为F .
(Ⅰ)求椭圆C 的标准方程;
(Ⅱ)若直线l 过点()3,M t 且与椭圆C 有且仅有一个公共点P ,过点P 作直线PF 交椭圆于另一个点Q . ①证明:当直线OM 与直线PQ 的斜率,OM PQ k k 均存在时,OM PQ k k 为定值; ②求PQM △面积的最小值.
21.已知函数()2
ln 1f x x ax x =-=在处的切线与直线10x y -+=垂直.
(Ⅰ)求函数()()y f x xf x =+'(()f x '为f x ()的导函数)的单调递增区间;
(Ⅱ)记函数()()()2312g x f x x b x =+-+设()1212,x x x x <是函数()g x 的两个极值点,若2+1
1,e b e ≥-且
()()12g x g x k -≥恒成立,求实数k 的最大值.
[选修4-4:坐标系与参数方程]
22.在平面直角坐标系xOy 中,曲线1C 和2C 的参数方程分别是2=44x t y t
⎧⎨=⎩(t 是参数)和=cos 1+sin x y ϕϕ⎧⎨=⎩(ϕ为参
数).以原点O 为极点,x 轴的正半轴为极轴建立坐标系. (Ⅰ)求曲线1C 的普通方程和曲线2C 的极坐标方程;
(Ⅱ)射线π4π,6OM θαα⎛⎫
⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭:与曲线1C 的交点为,,O P 与曲线2C 的交点为,,O Q 求•||||OP OQ 的最
大值.
[选修4-5:不等式选讲] 23.已知函数()2||f x x a a =-+.
(Ⅰ)当3a =时,求不等式()6f x ≤的解集;
(Ⅱ)设函数()2|1|g x x =-,当x R ∈时,()()2
213,f x g x a -+≥求a 的取值范围.。

相关文档
最新文档