2016年秋季学期新苏教版高中数学选修2-3 1.1 两个基本计数原理教案1
1.1两个基本原理(2)

二、两个原理的联系、区别:
分类计数原理 分步计数原理
联系 都是研究完成一件事的不同方法的种数的问题
完成一件事,共有n类 完成一件事,共分n个 区别1 办法,关键词“分类” 步骤,关键词“分步”
每类办法相互独立, 各步骤中的方法相互依 每类方法都能独立地 存,只有各个步骤都完 区别2 完成这件事情 成才算完成这件事
三、例题分析
1.有386,486,586型电脑各一台,A、B、C、D四 名操作人员的技术等次各不相同,A、B会操作三种 型号的电脑,C不能操作586,而D只会操作386,今 从这四名操_________种. 2.某市拟成立一个由6名大学生组成的社会调查小组, 并准备将这6个名额分配给本市的3所大学,要求每 所大学都有学生参加,则不同的名额分配方法共有 _______种
1.1 两个基本计数原理(2)
一、复习回顾两个基本计数原理
分类计数原理:完成一件事,有n类方式,在第1 类方式中有m1种不同的方法,在第2类方式中有 m2种不同的方法,……,在第n类方式中有mn种 不同的方法,那么完成这件事共有 N=m1+m2+…+mn种不同的方法。 分步计数原理:完成一件事,需要分成n个步骤, 做第1步有m1种不同的方法,做第2步有m2种不 同的方法,……,做第n有mn种不同的方法,那 么完成这件事共有N=m1×m2×…×mn种不同的 方法。
三、例题分析
3.现要排一份5天的值班表,每天有一个人值班,共 有5个人,每个人都可以值多天班或不值班,但相邻 两天不准由同一个人值班,问此值班表共有多少种 不同的排法? 4.乘积(a1+a2+a3)(b1+b2+b3+b4)(c1+c2+c3+c4+c5) 的展开式中,有___ 项。 5.1800的正约数个数为_______。 6.有四位老师在同一年级的4个班级中,各教一班的 数学,在数学考试时,要求每位老师均不在本班监 考,则安排监考的方法总数是________.
江苏省高二数学苏教版选修2-3教案: 1.1 两个基本计数原理1

复习:1.分类计数原理、分步计数原理概念
2.分类计数原理、分步计数原理的不同点
例题讲解:
例1.一蚂蚁沿着长方体的棱,从的一个顶点爬到相对的另一个顶点的最近路线共有多少条?
解:从总体上看,如,蚂蚁从顶点A爬到顶点C1有三类方法,从局部上看每类又需两步完成,所以,
课外作业:第10页习题1. 1 6 , 7 , 8
教学反思:要深入弄清所要解的问题的情景,切实把握住各因素之间的相互关系,不可分析不透就用 或 乱套一气.具体地说:首先要弄清有无“顺序”的要求,如果有“顺序”的要求,用 ;反之用 .其次,要弄清目标的实现,是分步达到的,还是分类完成的.前者用乘法原理,后者用加法原理.事实上,一个复杂的问题,往往是分类和分步交织在一起的,这就要准确分清,哪一步用乘法原理,哪一步用加法原理.
2若颜色是2种,4种,5种又会什么样的结果呢?
75600有多少个正约数?有多少个奇约数?
解:由于75600=24×33×52×7
(1) 75600的每个约数都可以写成 的形式,其中 , , ,
于是,要确定75600的一个约数,可分四步完成,即 分别在各自的范围内任取一个值,这样有5种取法,有4种取法,有3种取法,有2种取法,根据分步计数原理得约数的个数为5×4×3×2=120个.
对于较复杂的问题,一般都有两个方向的列式途径,一个是“正面凑”,一个是“反过来剔”.前者指,按照要求,一点点选出符合要求的方案;后者指,先按全局性的要求,选出方案,再把不符合其他要求的方案剔出去.
(3)若从这些书中取不同的科目的书两本,有多少种不同的取法?
两个基本计数原理教案

两个基本计数原理教案第一章:概述1.1 计数原理的定义解释计数原理的概念和重要性强调计数原理在数学和实际生活中的应用1.2 两个基本计数原理介绍两个基本计数原理:排列原理和组合原理解释排列原理:从n个不同元素中取出m(m≤n)个元素的所有排列方式的个数解释组合原理:从n个不同元素中取出m(m≤n)个元素的所有组合方式的个数第二章:排列原理2.1 排列原理的公式介绍排列公式:P(n, m) = n! / (n-m)!解释排列公式的含义和推导过程2.2 排列原理的应用举例说明排列原理在实际问题中的应用练习题:根据给定的问题,运用排列原理计算不同的排列方式个数第三章:组合原理3.1 组合原理的公式介绍组合公式:C(n, m) = n! / [m! (n-m)!]解释组合公式的含义和推导过程3.2 组合原理的应用举例说明组合原理在实际问题中的应用练习题:根据给定的问题,运用组合原理计算不同的组合方式个数第四章:排列与组合的综合应用4.1 排列与组合的区别与联系解释排列与组合的概念及其区别强调排列与组合在解决实际问题中的综合应用4.2 综合应用举例举例说明排列与组合在实际问题中的综合应用练习题:根据给定的问题,运用排列与组合原理计算不同的方式个数第五章:练习与拓展5.1 练习题提供一系列练习题,巩固排列与组合原理的应用鼓励学生自主思考,提高解题能力5.2 拓展与应用探讨排列与组合原理在其他领域的应用鼓励学生发现生活中的数学问题,运用排列与组合原理解决第六章:排列与组合在概率论中的应用6.1 排列与组合在概率计算中的作用解释排列与组合在概率计算中的重要性介绍排列与组合在计算事件概率时的应用6.2 具体案例分析通过具体案例,展示排列与组合在概率计算中的应用练习题:根据给定的概率问题,运用排列与组合原理进行计算第七章:排列与组合在日常生活中的应用7.1 排列与组合在日常生活中的实例探讨排列与组合原理在日常生活中的应用实例强调排列与组合原理在解决实际问题中的重要性7.2 练习题提供一系列与日常生活相关的练习题,运用排列与组合原理进行解答鼓励学生自主思考,提高解决实际问题的能力第八章:排列与组合在算法与编程中的应用解释排列与组合在算法与编程中的应用介绍排列与组合在解决算法与编程问题时的作用第八章:排列与组合在算法与编程中的应用8.1 排列与组合在算法中的应用解释排列与组合在算法中的重要性介绍排列与组合在算法设计中的应用实例8.2 排列与组合在编程语言中的应用探讨排列与组合在编程语言中的应用实例强调排列与组合在编程问题解决中的重要性第九章:排列与组合在数学竞赛中的应用9.1 排列与组合在数学竞赛中的题目特点分析数学竞赛中排列与组合题目的特点解释排列与组合在数学竞赛中的重要性9.2 练习题提供一系列数学竞赛中的排列与组合题目,进行练习鼓励学生自主思考,提高解决竞赛题目的能力第十章:总结与提高10.1 排列与组合原理的总结回顾本教案的主要内容,总结排列与组合原理的重要性和应用强调排列与组合原理在数学和实际生活中的重要性10.2 提高题与研究性学习提供一系列提高题,鼓励学生深入研究排列与组合原理鼓励学生开展研究性学习,探索排列与组合原理在其他领域的应用重点和难点解析六、排列与组合在概率论中的应用重点:排列与组合在概率计算中的作用,具体案例分析难点:理解排列与组合在概率计算中的应用,以及如何将实际问题转化为概率问题七、排列与组合在日常生活中的应用重点:排列与组合在日常生活中的实例,练习题难点:将抽象的排列与组合原理应用到具体的生活情境中,提高解决实际问题的能力八、排列与组合在算法与编程中的应用重点:排列与组合在算法与编程中的应用,练习题难点:理解算法与编程中排列与组合的概念,以及在实际编程中应用这些概念九、排列与组合在数学竞赛中的应用重点:排列与组合在数学竞赛中的题目特点,练习题难点:解决数学竞赛中的排列与组合问题,需要学生具备较高的逻辑思维和解题能力十、总结与提高重点:排列与组合原理的总结,提高题与研究性学习难点:巩固所学知识,进一步探索排列与组合原理在其他领域的应用全文总结与概括:本教案主要介绍了排列与组合两个基本计数原理,通过讲解排列与组合的概念、公式及其在概率论、日常生活、算法与编程、数学竞赛等领域的应用,使学生能够理解并掌握这两个基本计数原理。
苏教版 高中数学选择性必修第二册 两个基本计数原理 课件2

例2 (1)在图(1)的电路中,只合上一只开 关以接通电路,有多少种不同的方法? (2)在图(2)的电路中,合上两只开关以接通电路,有多少种不同的方法?
解:(1)由分类计数原理得:2+3=5种; (2)由分步计数原理得:2×3=6种.
穷举法
计数
分类计数
分步计数
树形图 分类 分步
计数原理的应用 1、分清是分类还是分步问题 (1)采用不同的方案都可完成事件属分类; (2)要分几步才能完成事件, 则每运作一次只是一步.
2、有时分类中含有分步, 分步中也需分类.
穷举法
树形图
计数
分类计数
分类
之间 联系?
分类 变 分步
每一类的方法个数相同时
Nm1×m2×…×mn
弄清两个原理的区别与联系,是正确使用这两个原理的前提和条件.这 两个原理都是指完成一件事,区别在于:
(1)分类(加法)计数原理是“分类”,每类办法中的每一种 方法都能独立完成一件事;
(2)分步(乘法)计数原理是“分步”;每种方法都只能做这 件事的一步, 不能独立完成这件事, 只有各个步骤都完成才算完 成这件事情!
思考:两个问题的区别在哪里?
数学探究
我们一起来考察下面两个问题:
1、从甲地到乙地有3条公 路、2条铁路,那么从 甲地到乙地,共有多少
种不同的方法?
2、从甲地到乙地有3条道路, 从乙地到丙地有2条道路, 那么从甲地经乙地到丙 地,共有多少种不同的 方法?
32 5
第一类 第二类
每一类都能完成任务 分类计数 (相加)
7.1两个基本计数原理
两个基本计数原理教案共5页

第一章计数原理第1节两个基本计数原理教材分析本节课《分类计数原理与分步计数原理》是苏教版普通高中课程标准试验教科书(选修2-3)第一章第一节的内容,是本章后续知识的基础,对后续内容的学习有着举足轻重的作用,另外本节课涉及的分步、分类的思想是解决实际问题的最有效武器,是人们思考问题的最根本方法.学情分析高二学生已具备一定的数学知识和方法,能很容易的接受两个原理的内容,并应用原理解决一些简单的实际问题,这些形成了学生思维的“最近发展区”.虽然学生已经具备了一定的归纳、类比能力,但在数学的应用意识与应用能力方面尚需进一步培养.另外,学生的求知欲强,参与意识,自主探索意识明显增强,对能够引起认知冲突,表现自身价值的学习素材特别感兴趣。
但在合作交流意识欠缺,有待加强. 目标分析⑴知识与技能①掌握分类计数原理与分步计数原理的内容②能根据具体问题的特征选择分类计数原理与分步计数原理解决一些简单实际问题.⑵过程与方法①通过具体问题情境总结出两个计数原理,并通过实际事例学生感悟两个原理的应用并最终学会应用②通过“学生自主探究、合作探究,师生共究”更深刻的理解分类计数与分步计数原理,并应用它们解决实际问题⑶情感、态度、价值观树立学生积极合作的意识,增强数学应用意识,激发学生学习数学的热情和兴趣.教学重难点分析教学重点:分类计数原理与分步计数原理的掌握教学难点:根据具体问题特征选择分类计数原理与分步计数原理解决实际问题.教法、学法分析教法分析:①启发探究法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。
②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。
学法分析:本节课要求学生自主探究,学会用类比的思想解决问题,树立学生的合作交流意识.教学过程一、创设情境:对于分类计数原理设计如下情境(看多媒体):该情境是原教材上情境经过加工设计的,比原教材情境更加贴近学生生活,能够增强学生的有意注意,激发学生的兴趣,调动学生的主动性和积极性,从而进入思维情境接着是对情境的处理:在情境处理过程中要启发学生由特殊情形归纳出一般原理,遵循由简单到复杂的认知规律,我处理情境的办法是:第一步在解决问题时首先让学生尝试分析,然后由学生代表分析解答,教师及时给出评价,并由老师给出解题过程,在这里由老师按分类计数原理给出解题过程,为学生顺利总结概括出原理做好铺垫.第二步对原问题加以引申:若当天有4次航班,则有多少种不同方法?设计的意图是让学生更清楚的认识到总方法数是各类方法数之和.第三步提出问题:你能否尽可能简练的总结出问题1中的计数规律?接着由学生分组讨论、总结问题1中计数规律,这样由学生总结归纳,并通过讨论准确叙述出分类计数原理,可以提高学生的数学表达意识,激发合作意识和竞争意识,体验获得成功的喜悦,也就完成了情感目标.第四步由教师板书分类计数原理(加法原理)并说明由于总方法数是各类方法数之和,树立学生平时学习生活中的讲道理意识.在分类计数原理中设计如下问题情境,问题2与问题1的背景一样:都是乘车方法的计数问题.对于问题2的处理办法是:第一步由学生自主尝试分析解答,但该问题并没有问题1般简单所以就有了第二步教师电脑屏幕显示分析及解题过程,利用多媒体显示动画,辅助分析,展示不同的走法,帮助学生更直观的解决问题,然后由感性进入理性,这也符合一般的认知规律.第三步问题引申将问题引申为若从兰州到天水新增一辆4号汽车,则有多少种乘车方法?设计的意图是:通过引申让学生更加清楚的认识到总方法数是各步方法数相乘.第四步提出问题:你能否对照分类计数原理,归纳概括出问题2蕴含的计数规律,并尝试命名,这样设计一可指导学生通过类比给出分步计数原理,渗透类比思想第二也可在自主探究中掌握本节重点,当然重点的突破也为难点突破打下了知识基础第五部教师板书:分步计数原理(乘法原理),由学生说明其称为乘法原理的理由.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有m1种不同的方法,做第二步有m2种不同的方法,……,做第n步有m n种不同的方法,那么完成这件事有N=m1×m2×…×m n种不同的方法.二、建构数学在总结出两个计数原理的基础上让学生进行如下三个问题的探究,初步突破难点.探究1:对比两计数原理,指出相同点与不同点设计探究1的意图是通过自主探究合作探究,加深两个定理的理解并且在两个定理内容的比较中提高学生阅读数学的能力.探究方式:分组讨论(合作交流,加深理解)探究结果:共同点是:研究对象相同,它们都是研究完成一件事情,共有多少种不同的方法.不同点是:它们研究完成一件事情的方式不同,分类计数原理是“分类完成”,分步计数原理是“分步完成”由于学生的认识水平有限,在这里只要求认识到分类计数原理是“分类完成”,分步计数原理是“分步完成”.探究2:何时用分类计数原理,何时用分步计数原理探究方式:自主探究,代表发言,共同总结.探究结果:若完成一件事情有n类方法,则用分类计数原理.若完成一件事情有n个步骤,则用分步计数原理.设计意图:在探究1基础上进一步突破重难点,培养学生分析问题的能力.探究3:用两个计数原理解决计数问题的思维步骤探究方式:分组讨论,合作探究,代表发言,共同总结.探究结果:1、明确要完成什么事2、判断分类还是分步3、计算总方法数(一)两个计数原理内容1、分类计数原理:完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法……在第n类办法中有m n种不同的方法,那么完成这件事共有N=m1 +m2 +……+m n种不同的方法.2、分步计数原理:完成一件事,需要分n个步骤,做第1步骤有m1种不同的方法,做第2步骤有m2种不同的方法……做第n步骤有m n种不同的方法,那么完成这件事共有N=m1×m2×……×m n种不同的方法.(二)例题分析例1 某学校食堂备有5种素菜、3种荤菜、2种汤。
人教版数学选修2-3第一章《计数原理》教案

XX中学课时教学设计模板XX中学课时教学设计模板XX中学课时教学设计模板一、复习知识点:1、分类计数原理:(1)加法原理:如果完成一件工作有k种途径,由第1种途径有n1种方法可以完成,由第2种途径有n2种方法可以完成,……由第k种途径有n k种方法可以完成。
那么,完成这件工作共有n1+n2+……+n k种不同的方法。
2,乘法原理:如果完成一件工作可分为K个步骤,完成第1步有n1种不同的方法,完成第2步有n2种不同的方法,……,完成第K步有n K种不同的方法。
那么,完成这件工作共有n1×n2×……×n k种不同方法二、典型例题1、.用5种不同颜色给图中的A、B、C、D四个区域涂色, 规定一个区域只涂一种颜色, 相邻区域必须涂不同的颜色, 不同的涂色方案有种。
2、将一个四棱锥的每个顶点染上一种颜色,并使同一条棱上的两端异色,若只有5种颜色可用,则不同的染色方法共有多少种?3、用数字1,2,3,4,5组成的无重复数字的四位偶数的个数为_______.4、用0,1,2,3,4五个数字(1)可以排出多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?5、用0,1,2,3,4,5可以组成无重复数字的比2000大的四位奇数______个。
XX中学课时教学设计模板求以按依次填个空位来考虑,排列数公式:=()说明:(1)公式特征:第一个因数是,后面每一个因数比它前面一个 少1,最后一个因数是,共有个因数;(2)全排列:当时即个不同元素全部取出的一个排列全排列数:(叫做n 的阶乘)4.例子:例1.计算:(1); (2); (3). 解:(1) ==3360 ; (2) ==720 ; (3)==360例2.(1)若,则 , .(2)若则用排列数符号表示 . 解:(1) 17 , 14 . (2)若则= .例3.(1)从这五个数字中,任取2个数字组成分数,不同值的分数共有多少个?(2)5人站成一排照相,共有多少种不同的站法?(3)某年全国足球甲级(A 组)联赛共有14队参加,每队都要与其余各队在主客场分别比赛1次,共进行多少场比赛?解:(1); (2); (3)课堂练习:P20 练习 第1题mn A m (1)(2)(1)m n A n n n n m =---+(1)(2)(1)m n A n n n n m =---+!()!n n m -,,m n N m n *∈≤n 1n m -+m n m =n (1)(2)21!nn A n n n n =--⋅=316A 66A 46A 316A 161514⨯⨯66A 6!46A 6543⨯⨯⨯17161554m n A =⨯⨯⨯⨯⨯n =m =,n N ∈(55)(56)(68)(69)n n n n ----n =m =,n N ∈(55)(56)(68)(69)n n n n ----1569n A -2,3,5,7,11255420A =⨯=5554321120A =⨯⨯⨯⨯=2141413182A =⨯=XX 中学课时教学设计模板解排列问题问题时,当问题分成互斥各类时,当问题考虑先后次序时,根据乘法原理,可用位置法;当问题的反面简单明了时,可通过求差排除采用间接法求解;问题可以用“捆绑法”;“分离”2)(n m -+(1)(2)21!n n n n =-⋅=等.解排列问题和组合问题,一定要防止“重复”与“遗漏”.互斥分类——分类法先后有序——位置法反面明了——排除法相邻排列——捆绑法分离排列——插空法例1求不同的排法种数:(1)6男2女排成一排,2女相邻;(2)6男2女排成一排,2女不能相邻;(3)4男4女排成一排,同性者相邻;(4)4男4女排成一排,同性者不能相邻.例2在3000与8000之间,数字不重复的奇数有多少个?分析符合条件的奇数有两类.一类是以1、9为尾数的,共有P21种选法,首数可从3、4、5、6、7中任取一个,有P51种选法,中间两位数从其余的8个数字中选取2个有P82种选法,根据乘法原理知共有P21P51P82个;一类是以3、5、7为尾数的共有P31P41P82个.解符合条件的奇数共有P21P51P82+P31P41P82=1232个.答在3000与8000之间,数字不重复的奇数有1232个.例3 某小组6个人排队照相留念.(1)若分成两排照相,前排2人,后排4人,有多少种不同的排法?(2)若分成两排照相,前排2人,后排4人,但其中甲必须在前排,乙必须在后排,有多少种排法?(3)若排成一排照相,甲、乙两人必须在一起,有多少种不同的排法?(4)若排成一排照相,其中甲必在乙的右边,有多少种不同的排法?(5)若排成一排照相,其中有3名男生3名女生,且男生不能相邻有多少种排法?(6)若排成一排照相,且甲不站排头乙不站排尾,有多少种不同的排法?分析:(1)分两排照相实际上与排成一排照相一样,只不过把第3~6个位子看成是第二排而已,所以实际上是6个元素的全排列问题.(2)先确定甲的排法,有P21种;再确定乙的排法,有P41种;最后确定其他人的排法,有P44种.因为这是分步问题,所以用乘法原理,有P21·P41·P44种不同排法.(3)采用“捆绑法”,即先把甲、乙两人看成一个人,这样有P55种不同排法.然后甲、乙两人之间再排队,有P22种排法.因为是分步问题,应当用乘法原理,所以有P55·P22种排法.(4)甲在乙的右边与甲在乙的左边的排法各占一半,有P66种排法.(5)采用“插空法”,把3个女生的位子拉开,在两端和她们之间放进4张椅子,如____女____女____女____,再把3个男生放到这4个位子上,就保证任何两个男生都不会相邻了.这样男生有P43种排法,女生有P33种排法.因为是分步问题,应当用乘法原理,所以共有P43·P33种排法.(6)符合条件的排法可分两类:一类是乙站排头,其余5人任意排有P55种排法;一类是乙不站排头;由于甲不能站排头,所以排头只有从除甲、乙以外的4人中任选1人有P41种排法,排尾从除乙以外的4人中选一人有P41种排法,中间4个位置无限制有P44种排法,因为是分步问题,应用乘法原理,所以共有P41P41P44种排法.XX 中学课时教学设计模板一、复习引入:1.排列数公式及其推导:()2、解排列问题问题时,当问题分成互斥各类时,根据加法原理,可用分类法;当问题考虑先后次序时,根据乘法原理,可用位置法;这两种方法又称作直接法.当问题的反面简单明了时,可通过求差排除采用间接法求解;另外,排列中“相邻”问题可以用“捆绑法”;“分离”问题可能用“插空法”等.二、典型例题1.满足不等式>12的n 的最小值为 ( ) A .7 B . 8C .9D .10【解析】选D .由排列数公式得:>12,即(n -5)(n -6)>12, 整理得n 2-11n +18>0, 所以n <2(舍去)或n >9. 又因为n ∈N *,所以n min =10. 2.若=89,则n =______.【解析】原方程左边==(n -5)(n -6)-1.(1)(2)(1)m n A n n n n m =---+,,m n N m n *∈≤所以原方程可化为(n-5)(n-6)-1=89,即n2-11n-60=0,解得n=15或n=-4(舍去).15>7满足题意.3.解关于x的不等式:>6.【解析】原不等式可变形为>,即(11-x)(10-x)>6,(x-8)(x-13)>0,所以x>13或x<8,又所以2<x≤9且x∈N*,所以2<x<8且x∈N*,所以原不等式的解集为.4.求证:+m+m(m-1)=(n,m∈N*,n≥m>2).【证明】因为左边=+m+m(m-1)======右边,所以等式成立.习题1.2 B组第2、3题XX 中学课时教学设计模板组合的概念:一般地,从个不同元素中取出个不同元素中取出个元素的一个组合说明:⑴不同元素;⑵“只取不排”——无序性;⑶相同组合:元素相同2)(n m -+(1)(2)21!n n n n =-⋅=n m(2);2)(1)!n m m -+710C2)(1)!n m m -+,m N ∈*且XX 中学课时教学设计模板.2)(1)!n m m -+mn n C -=XX 中学课时教学设计模板.=+2)(1)!n m m -+mn n C -=m C.2)(1)!n m m -+,N m ∈*且mn n C -=XX 中学课时教学设计模板a+b )相乘,每个(a+b )在相乘时,有两种选择,(r n r rn nn n C a b C b n N -++++∈叫二项式系数表示,即通项0,1,)n 1+1)1n r rn n n C C x x =+++++23344111)()()C x x x++(r n r rn nn n C a b C b n N -++++∈XX 中学课时教学设计模板9)的展开式常数项; (r n r r n nn n C a b C b n N -++++∈(r n r r n nn n C a b C b n N -++++∈XX 中学课时教学设计模板.二项展开式的通项公式:二项式系数表(杨辉三角)展开式的二项式系数,当依次取…时,二项式系数表,表)增减性与最大值.的增减情况由二项式系数逐渐增大.的,且在中间取得最大值;(r n r r n n n n C a b C b n N -++++∈1r n r rr n T C a b -+=n 1,2,32)(1)!n k k -+n,的展开式中,奇数项的二项式系数的和等于偶数项的二项,,,的展开式中,奇数项的二项式系数的和等于偶数项的二项式系说明:由性质(3)及例1知.,求:;); (.时,,展开式右边为,,∴ ,r r n n C x x ++++12rnn n n n C C C C ++++++(nr n r r n nn n a b C a b C b n N -++++∈23(1)n nn n n C C C +-++-13)()n n C C +-++13n n C C +=++021312n n n n n C C C C -++=++=7277(12)x a a x a x a x -=++++7a ++1357a a a a +++7||a ++1x =7(122)1-=-127a a a ++++27a a +++1=-1=127a a a +++=-0127a a a ++++1=-234567a a a a a a +-+-+-77)13a +=--(1+x)+(1+x)2+…+(1+x)+3x+2)5的展开式中,求本节课学习了二项式系数的性质 7||a ++=61)(a a +-。
高中数学新苏教版精品教案《苏教版高中数学选修2-3 1.1.1 两个基本计数原理》

追问4:如果还有3个班次的动车呢?
问题2:小包同学进入大学后对自己严格要求、勤奋好学、积极上进,学习游刃有余,所以小包同学想再选修第二专业。通过了解,他在以下学院中选择一个专业,那么他可能选择的专业有几种?
追问1:这里小包同学完成了什么事?
追问2:这里有几种可供他选择的类型?
追问3:中选择这里任何一个专业时,这件事有没有完成?
问题3:小包同学暑期放假,他想“既要读万卷书、也要行万里路〞所以他决定到舍友的家乡杭州游历,欣赏一下西湖美景,然后再回常州。他准备先乘火车去杭州,两天后乘汽车回常州。每天适宜的火车有4个班次,汽车有3个班次,那么他从上海回到常州有几种不同的走法?
请看下面几个问题:
问题1:如果我班班长包栋梁同学经过自己的努力,一年后考上了上海的大学开学报到时,他在思考如何选择适宜的交通工具如果从常州到上海一天中适宜的高铁有3班次,直达客车有2个班次,那么一天中乘坐这些交通工具从常州到上海会有多少种不同的直达方法?
追问1:“5〞是怎么来的?为什么将他们相加?
追问2:这里,小包同学完成了一件什么事?
在图⑵的电路中,仅合上2只开关接通电路,有多少种不同的方法?
问题7:上述问题⑴中需要完成什么事?
问题8:能否一步完成?采用哪种计数原理?
问题9:对于问题⑵你有是怎么想的?
解:在图⑴中,按要求接通电路,只要在中的2只开关或中的3只开关中合上1只即可根据分类计数原理,共有种不同的方法
在图⑵中,按要求接通电路,必须分两步进行:第一步,合上中的1只开关;第二步,合上中的1只开关根据分步计数原理,共有种不同的方法
高中数学苏教版选修2-3第1章《计数原理》(1-5-1)ppt课件

+
C
2 5
(2x)3·-23x2
2
+
C
3 5
(2x)2·-23x2
3
+
C
4 5
(2x)-23x24+C55-23x25 =32x5-120x2+18x0-1x345+480x57 -3224x310.
法二
2x-23x2
5=
4x3-35 32x10
1.5 二项式定理
1.5.1 二项式定理
【课标要求】
1.能熟练运用通项公式求二项展开式中指定的项(如常 数项、有理项等).
2.能正确区分“项”、“项的系数”和“二项式系数” 等概念.
【核心扫描】
1.二项式定理,掌握通项公式.(重点)
2.用二项式定理进行有关的计算和证明.(难点)
自学导引 1.二项式定理
=
1 32x10
[C
0 5
(4x3)5+C
1 5
(4x3)4(-3)+C
2 5
(4x3)3·(-3)2+C
3 5
(4x3)2·(-3)3+C
4 5
(4x3)(-3)4+C
5 5
(-3)5]=
1 32x10
(1
024x15-3 840x12+5 760x9-4 320x6+1 620x3-243)=32x5-120x2
⑥ 利用笔记抓住老师的思路。记笔记不仅有利于理解和记忆,而且有利于抓住老师的思路。
2019/8/29
最新中小学教学课件
24
谢谢欣赏!
2019/8/29
最新中小学教学课件
25
规律方法 熟练掌握二项式(a+b)n的展开式,是解答好
与二项式有关问题的前提条件.当二项式较复杂时,可 先将式子化简,然后再展开.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
p
k k
2
1
分析: (1) 完成从三好学生中任选一人去领奖这件事,共有 2 类办法, 第一类办法, 从男三好学 生中任选一人, 共有 m1 = 5 种不同的方法; 第 二类办法, 从女三好学生中任选一人, 共有 m2 = 4 种不同的方法; 所以, 根据 分类原理, 得到不同选法种数共有 N = 5 + 4 = 9 种。 (2) 完成 从三好学生中任选男、女各一人去参加座谈会这件事, 需分 2 步完成, 第一步, 选一名男三好学生,有 m1 = 5 种方法; 第二步, 选一名女三好学生,有 m2 = 4 种方法; 所以, 根据分步原理, 得到不同选法种数共有 N = 5 × 4 = 20 种。 例2 1 在图 1-1-3(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法? 2 在图 1-1-3(2)的电路中,合上两只开关以接通电路,有多少种不同的方法 图见书本第 7 页 分析略 例 3 为了确保电子信箱的安全,在注册时,通常要设置电子信箱密码,在某网站设置的信 箱中, 1 密码为 4 位,每位均为 0 到 9 这 10 个数字中的一个数字,这样的密码共有多少个? 2 密码为 4 位, 每位是 0 到 9 这 10 个数字中的一个, 或是从 A 到 Z 这 26 个英文字母中的 1 个,这样 的密码共有多少个? 3 密码为 4-6 位,每位均为 0 到 10 个数字中的一个,这样的密码共有多少个? 分析略 巩固练习:书本第 9 页 练习 1,2,3 习题 1. 1 1,2 课外作业:第 9 页 习题 1. 1 3 , 4 , 5 教学反思: 分配问题 把一些元素分给另一些元素来接受.这是排列组合应用问题中难度较大的一类问题.因 为这涉及到两类元素:被分配元素和接受单位.而我们所学的排列组合是对一类元素做排列 或进行组合的,于是遇到这类问题便手足无措了. 事实上,任何排列问题都可以看作面对两类元素.例如,把 10 个全排列,可以理解为 在 10 个人旁边,有序号为 1,2,„„,10 的 10 把椅子,每把椅子坐一个人,那么有多少 种坐法?这样就出现了两类元素, 一类是人, 一类是椅子。 于是对眼花缭乱的常见分配问题, 可归结为以下小的“方法结构” : ①.每个 “接受单位” 至多接受一个被分配元素的问题方法是
教具准备:与教材内容相关的资料。 教学设想:引导学生形成 “自主学习”与“合作学习”等良好的学习方式。 教学过程: 学生探究过程: 问题 1. 从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船。一天中,火车 有 4 班, 汽车有 2 班,轮船有 3 班。那么一天中乘坐这些交 通工具从甲地到乙地共有多少 种不同的走法? 分析: 从甲地到乙地有 3 类方法, 第一类方法, 乘火车,有 4 种方法; 第二类方法, 乘汽车,有 2 种方法; 第三类方法, 乘轮船, 有 3 种方法; 所以 从甲地到乙地共有 4 + 2 + 3 = 9 种方法。 问题 2. 如图,由 A 村去 B 村的道路有 3 条,由 B 村去 C 村的道路有 2 条。从 A 村 经 B 村去 C 村,共有多少种不同的走法?
p
m n
, 这里 n m .其中 m 是
“接受单位”的个数。至于谁是“接受单位” ,不要管它在生活中原来的意义,只要 n m . 个数为 m 的一个元素就是“接受单位” ,于是,方法还可以简化为
p
少 多
.这里的“多”只要
“少” ②.被分配元素和接受单位的每个成员都有“归宿”,并且不限制一对一的分配问题,方法是 分组问题的计算公式乘以
课题
1.1 两个基本原理
分类加法计数原 理与分步乘法计 数原理
第一课时
知识与技能:①理解分类加法计数原理与分步乘法计数原理; ②会利用两个原理分析和解决一些简单的应用问题; 教学目标 过程与方法:培养学生的归纳概括能力; 情感、态度与价值观:引分类计数原理与分步计数原理导学生形成 “自 主学习”与“合作学习”等良好的学习方式 教学重点 教学难点 分类加法计数原理与分步乘法计数原理的应用理解 利用两个原理分析和解决一些简单的应用问题
北 北 中 A 南 B 南 C 分析 : 从 A 村经 B 村去 C 村有 2 步, 村 , 由 A 村去 B 村有村 第一步 3 种方法, 村
第二步, 由 B 村去 C 村有 3 种方法, 所以 从 A 村经 B 村去 C 村共有 3 ×2 = 6 种不同的方法。 分类计数 原理 完成一件事,有 n 类办 法,在第一类办法中有 m1 种不同的方法,在第二 类办法中有 m2 种不同的方法,„„,在第 n 类办法中有 mn 种不同的方法。那么完成这件事 共有 N=m1+m2+„+mn 种不同的方法。 分步计数原理 完成一件事,需要分成 n 个步骤,做第一步有 m1 种不同的 方法,做第 二步有 m2 种不同的方法,„„,做第 n 步有 mn 种不同的方法,那么完成这件事有 N=m1×m2ׄ×mn 种不同的方法。 、㈢ 例题 1. 某班级有男三好学生 5 人,女三好学生 4 人。 (1)从中任选一人去领奖, 有多少种不同的选法? (2) 从中任选男、女三好学生各一人去参加座谈会, 有多少种不同的选法?