高中物理动量易错试题解析

合集下载

高中物理动量定理易错剖析及解析

高中物理动量定理易错剖析及解析

高中物理动量定理易错剖析及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求:(1)整个过程中摩擦阻力所做的总功;(2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL【解析】【分析】【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=- 由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小.(2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s);②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.3.甲图是我国自主研制的200mm 离子电推进系统, 已经通过我国“实践九号”卫星空间飞行试验验证,有望在2015年全面应用于我国航天器.离子电推进系统的核心部件为离子推进器,它采用喷出带电离子的方式实现飞船的姿态和轨道的调整,具有大幅减少推进剂燃料消耗、操控更灵活、定位更精准等优势.离子推进器的工作原理如图乙所示,推进剂氙原子P 喷注入腔室C 后,被电子枪G 射出的电子碰撞而电离,成为带正电的氙离子.氙离子从腔室C 中飘移过栅电极A 的速度大小可忽略不计,在栅电极A 、B 之间的电场中加速,并从栅电极B 喷出.在加速氙离子的过程中飞船获得推力.已知栅电极A 、B 之间的电压为U ,氙离子的质量为m 、电荷量为q .(1)将该离子推进器固定在地面上进行试验.求氙离子经A 、B 之间的电场加速后,通过栅电极B 时的速度v 的大小;(2)配有该离子推进器的飞船的总质量为M ,现需要对飞船运行方向作一次微调,即通过推进器短暂工作让飞船在与原速度垂直方向上获得一很小的速度Δv ,此过程中可认为氙离子仍以第(1)中所求的速度通过栅电极B .推进器工作时飞船的总质量可视为不变.求推进器在此次工作过程中喷射的氙离子数目N .(3)可以用离子推进器工作过程中产生的推力与A 、B 之间的电场对氙离子做功的功率的比值S 来反映推进器工作情况.通过计算说明采取哪些措施可以增大S ,并对增大S 的实际意义说出你的看法.【答案】(1)(2)(3)增大S 可以通过减小q 、U 或增大m 的方法.提高该比值意味着推进器消耗相同的功率可以获得更大的推力.【解析】试题分析:(1)根据动能定理有 解得:(2)在与飞船运动方向垂直方向上,根据动量守恒有:MΔv=Nmv 解得:(3)设单位时间内通过栅电极A 的氙离子数为n ,在时间t 内,离子推进器发射出的氙离子个数为N nt =,设氙离子受到的平均力为F ',对时间t 内的射出的氙离子运用动量定理,F t Nmv ntmv ='=,F '= nmv根据牛顿第三定律可知,离子推进器工作过程中对飞船的推力大小F=F '= nmv电场对氙离子做功的功率P= nqU 则根据上式可知:增大S 可以通过减小q 、U 或增大m 的方法.提高该比值意味着推进器消耗相同的功率可以获得更大的推力.(说明:其他说法合理均可得分)考点:动量守恒定律;动能定理;牛顿定律.4.如图所示,两个小球A 和B 质量分别是m A =2.0kg,m B =1.6kg,球A 静止在光滑水平面上的M 点,球B 在水平面上从远处沿两球的中心连线向着球A 运动,假设两球相距L ≤18m 时存在着恒定的斥力F ,L >18m 时无相互作用力.当两球相距最近时,它们间的距离为d =2m,此时球B 的速度是4m/s.求:(1)球B 的初速度大小;(2)两球之间的斥力大小;(3)两球从开始相互作用到相距最近时所经历的时间.【答案】(1) 09B m v s = ;(2) 2.25F N =;(3) 3.56t s = 【解析】试题分析:(1)当两球速度相等时,两球相距最近,根据动量守恒定律求出B 球的初速度;(2)在两球相距L >18m 时无相互作用力,B 球做匀速直线运动,两球相距L≤18m 时存在着恒定斥力F ,B 球做匀减速运动,由动能定理可得相互作用力(3)根据动量定理得到两球从开始相互作用到相距最近时所经历的时间.(1)设两球之间的斥力大小是F ,两球从开始相互作用到两球相距最近时所经历的时间是t 。

高考物理动量守恒定律易错剖析及解析

高考物理动量守恒定律易错剖析及解析

高考物理动量守恒定律易错剖析及解析一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg和1kg的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P.现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s,此时乙尚未与P相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P碰撞反弹后,不能再与弹簧发生碰撞.求挡板P对乙的冲量的最大值.【答案】v乙=6m/s. I=8N【解析】【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A、B已由向左的共同速度减小到零后反向加速到向右的,故B 的最小速度为零.考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A、B发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A球与B球碰撞中损耗的机械能.当B、C速度相等时,弹簧伸长量最大,弹性势能最大,结合B、C在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答3.如图甲所示,物块A、B的质量分别是m A=4.0kg和m B=3.0kg.用轻弹簧拴接,放在光滑的水平地面上,物块B右侧与竖直墙相接触.另有一物块C从t=0时以一定速度向右运动,在t=4s时与物块A相碰,并立即与A粘在一起不再分开,物块C的v-t图象如图乙所示.求:①物块C的质量?②B离开墙后的运动过程中弹簧具有的最大弹性势能E P?【答案】(1)2kg(2)9J【解析】试题分析:①由图知,C与A碰前速度为v1=9 m/s,碰后速度为v2=3 m/s,C与A碰撞过程动量守恒.m c v1=(m A+m C)v2即m c=2 kg②12 s时B离开墙壁,之后A、B、C及弹簧组成的系统动量和机械能守恒,且当A、C与B的速度相等时,弹簧弹性势能最大(m A+m C)v3=(m A+m B+m C)v4得E p=9 J考点:考查了动量守恒定律,机械能守恒定律的应用【名师点睛】分析清楚物体的运动过程、正确选择研究对象是正确解题的关键,应用动量守恒定律、能量守恒定律、动量定理即可正确解题.4.如图所示,质量M=1kg的半圆弧形绝缘凹槽放置在光滑的水平面上,凹槽部分嵌有cd 和ef两个光滑半圆形导轨,c与e端由导线连接,一质量m=lkg的导体棒自ce端的正上方h=2m处平行ce由静止下落,并恰好从ce端进入凹槽,整个装置处于范围足够大的竖直方向的匀强磁场中,导体棒在槽内运动过程中与导轨接触良好。

高中物理动量定理易错剖析及解析

高中物理动量定理易错剖析及解析

【答案】(1)打在板的中间(2) 2Nmv0 方向竖直向下(3) 3Nmv0 方向水平向左
3t
3t
【解析】(1)在加速电场中加速时据动能定理: qU 1 mv2 , 2
代入数据得 v
2 3
v0
在磁场中洛仑兹力提供向心力: qvB m v2 ,所以半径 r mv 2mv0 2 a
r
qB 3qB 3
由动量定理 F Gt p
得小球受到地面的平均作用力是 F=12N
9.如图所示,在粗糙的水平面上 0.5a—1.5a 区间放置一探测板( a mv0 )。在水平面 qB
的上方存在水平向里,磁感应强度大小为 B 的匀强磁场,磁场右边界离小孔 O 距离为 a,位于 水平面下方离子源 C 飘出质量为 m,电荷量为 q,初速度为 0 的一束负离子,这束离子经
【答案】(1) g v2 (2) v v 2h
R 2h
(3)
F
m0v t
m0 g
【解析】
【详解】
(1)由自由落体规律可知:
v2 2gh
解得月球表面的重力加速度:
g v2 2h
(2)做圆周运动向心力由月表重力提供,则有:
解得月球的第一宇宙速度:
mg mv2 R
v v R 2h
(3)由动量定理可得:
所以水平面需要给探测板的摩擦力大小为 3Nmv0 ,方向水平向左。 3t
10.小物块电量为+q,质量为 m,从倾角为 θ 的光滑斜面上由静止开始下滑,斜面高度为 h,空间中充满了垂直斜面匀强电场,强度为 E,重力加速度为 g,求小物块从斜面顶端滑 到底端的过程中: (1)电场的冲量. (2)小物块动量的变化量.
轨迹如图:
OO 1 a , OOA 300 , OA 2 acos300 3 a

高中物理动量守恒定律易错剖析及解析

高中物理动量守恒定律易错剖析及解析

高中物理动量守恒定律易错剖析及解析一、高考物理精讲专题动量守恒定律1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求:(1)A球与B球碰撞中损耗的机械能;(2)在以后的运动过程中弹簧的最大弹性势能;(3)在以后的运动过程中B球的最小速度.【答案】(1);(2);(3)零.【解析】试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有:碰后A、B的共同速度损失的机械能(2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大根据动量守恒定律有:三者共同速度最大弹性势能(3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速.弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有:根据机械能守恒定律:此时A、B的速度,C的速度可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的,故B的最小速度为零 .考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞.【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答2.如图所示,两块相同平板P 1、P 2置于光滑水平面上,质量均为m 。

P 2的右端固定一轻质弹簧,左端A 与弹簧的自由端B 相距L 。

高考物理动量定理易错剖析及解析

高考物理动量定理易错剖析及解析

高考物理动量定理易错剖析及解析一、高考物理精讲专题动量定理1.如图所示,静置于水平地面上的二辆手推车沿一直线排列,质量均为m ,人在极短的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时停。

车运动时受到的摩擦阻力恒为车所受重力的k 倍,重力加速度为g ,若车与车之间仅在碰撞时发生相互作用,碰撞吋间很短,忽咯空气阻力,求: (1)整个过程中摩擦阻力所做的总功; (2)人给第一辆车水平冲量的大小。

【答案】(1)-3kmgL ;(2)10m kgL 【解析】 【分析】 【详解】(1)设运动过程中摩擦阻力做的总功为W ,则W =-kmgL -2kmgL =-3kmgL即整个过程中摩擦阻力所做的总功为-3kmgL 。

(2)设第一辆车的初速度为v 0,第一次碰前速度为v 1,碰后共同速度为v 2,则由动量守恒得mv 1=2mv 222101122kmgL mv mv -=- 221(2)0(2)2k m gL m v -=-由以上各式得010v kgL =所以人给第一辆车水平冲量的大小010I mv m kgL ==2.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度; (2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上 【解析】 【分析】 【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得: –μ Mg t =M v – M v 0 解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B Cmv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2CN v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.3.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求:(1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度.【答案】(1)4.5N s ⋅ (2)5.5m【解析】①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有:0011()o m v m m v =+,可解得110/v m s =;对子弹由动量定理有:10I mv mv -=-, 4.5I N s =⋅ (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有:0110122()()m m v m m v m v +=++;设小车长为L ,由能量守恒有:22220110122111()()222m gL m m v m m v m v μ=+-+- 联立并代入数值得L =5.5m ;点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度.4.滑冰是青少年喜爱的一项体育运动。

物理动量守恒定律易错剖析含解析

物理动量守恒定律易错剖析含解析

450.
【答案】最多碰撞 3 次 【解析】 解:设小球 m 的摆线长度为 l
小球 m 在下落过程中与 M 相碰之前满足机械能守恒:

m 和 M 碰撞过程是弹性碰撞,故满足: mv0=MVM+mv1 ②

联立 ②③得:

说明小球被反弹,且 v1 与 v0 成正比,而后小球又以反弹速度和小球 M 再次发生弹性碰 撞,满足: mv1=MVM1+mv2 ⑤
1 4
mv0
(1 4
m
3 4
m
m)v
解得
v
1 8
v0
7.一列火车总质量为 M,在平直轨道上以速度 v 匀速行驶,突然最后一节质量为 m 的车
厢脱钩,假设火车所受的阻力与质量成正比,牵引力不变,当最后一节车厢刚好静止时, 前面火车的速度大小为多少? 【答案】Mv/(M-m) 【解析】 【详解】 因整车匀速运动,故整体合外力为零;脱钩后合外力仍为零,系统的动量守恒.
能为 E,根据动能定理有-μm2gx=0- 1 m2v2 2
解得:v=4.0 m/s(1 分)
根据动量守恒定律 m1v0=m1v1+m2v(1 分)
解得:v1=2.0 m/s(1 分)
能量守恒
1 2
m1 v02

1 2
m1 v12

1 2
m2v2+E(1
分)
解得:E=0.80 J(1 分)
考点:考查了机械能守恒,动量守恒定律
(1) 物块 A 沿斜槽滑下与物块 B 碰撞前瞬间的速度大小;
(2) 滑动摩擦力对物块 B 做的功;
(3) 物块 A 与物块 B 碰撞过程中损失的机械能。
【答案】(1)v0=4.0m/s(2)W=-1.6J(3)E=0.80J

易错点15 动量 动量定理(解析版) -备战2023年高考物理易错题

易错点15 动量 动量定理(解析版) -备战2023年高考物理易错题

易错点15 动量动量定理例题1.(2022·山东·高考真题)我国多次成功使用“冷发射”技术发射长征十一号系列运载火箭。

如图所示,发射仓内的高压气体先将火箭竖直向上推出,火箭速度接近零时再点火飞向太空。

从火箭开始运动到点火的过程中()A.火箭的加速度为零时,动能最大B.高压气体释放的能量全部转化为火箭的动能C.高压气体对火箭推力的冲量等于火箭动量的增加量D.高压气体的推力和空气阻力对火箭做功之和等于火箭动能的增加量【答案】A【解析】A.火箭从发射仓发射出来,受竖直向下的重力、竖直向下的空气阻力和竖直向上的高压气体的推力作用,且推力大小不断减小,刚开始向上的时候高压气体的推力大于向下的重力和空气阻力之和,故火箭向上做加速度减小的加速运动,当向上的高压气体的推力等于向下的重力和空气阻力之和时,火箭的加速度为零,速度最大,接着向上的高压气体的推力小于向下的重力和空气阻力之和时,火箭接着向上做加速度增大的减速运动,直至速度为零,故当火箭的加速度为零时,速度最大,动能最大,故A正确;B.根据能量守恒定律,可知高压气体释放的能量转化为火箭的动能、火箭的重力势能和内能,故B错误;C.根据动量定理,可知合力冲量等于火箭动量的增加量,故C错误;D.根据功能关系,可知高压气体的推力和空气阻力对火箭做功之和等于火箭机械能的增加量,故D错误。

故选A。

【误选警示】误选B的原因:不能根据能量守恒定律判断能量转化的过程。

误选C 的原因:对动量的定理的理解有误,合力的冲量等于物体动量的变化量。

误选D 的原因:对几种功能关系理解不清,不能准确判断合力的功和除了重力或弹力做功与机械能变化的关系。

例题2. (多选)(2022·重庆·高考真题)一物块在倾角为45︒的固定斜面上受到方向与斜面平行、大小与摩擦力相等的拉力作用,由静止开始沿斜面向下做匀变速直线运动,物块与斜面间的动摩擦因数处处相同。

若拉力沿斜面向下时,物块滑到底端的过程中重力和摩擦力对物块做功随时间的变化分别如图曲线①、②所示,则( )A .物块与斜面间的动摩擦因数为23B .当拉力沿斜面向上,重力做功为9J 时,物块动能为3JC .当拉力分别沿斜面向上和向下时,物块的加速度大小之比为1∶3D .当拉力分别沿斜面向上和向下时,物块滑到底端时的动量大小之比为2【答案】BC【解析】A .对物体受力分析可知,平行于斜面向下的拉力大小等于滑动摩擦力,有cos 45F f mg μ==︒由牛顿第二定律可知,物体下滑的加速度为12sin 45a g = 则拉力沿斜面向下时,物块滑到底端的过程中重力和摩擦力对物块做功为222G 11sin 4524mg W mg a t t =⋅⋅︒= 222f 11cos 4524mg W mg a t t μμ=-⋅︒⨯=- 代入数据联立解得13μ=故A 错误;C .当拉力沿斜面向上,由牛顿第二定律有 2sin 45mg F f ma ︒--=解得2222cos 45=26a g g g μ=-︒ 则拉力分别沿斜面向上和向下时,物块的加速度大小之比为2113a a = 故C 正确;B .当拉力沿斜面向上,重力做功为G2sin45W mg x =︒⋅合力做功为2W ma x =⋅合 则其比值为G223212W W g ==合 则重力做功为9J 时,物块的动能即合外力做功为3J ,故C 正确;D .当拉力分别沿斜面向上和向下时,物块滑到底端时的动量大小为2P mv m ax ==则动量的大小之比为22113a P P a ==故D 错误。

高中物理动量定理易错剖析含解析

高中物理动量定理易错剖析含解析

高中物理动量定理易错剖析含解析一、高考物理精讲专题动量定理1.如图所示,光滑水平面上有一轻质弹簧,弹簧左端固定在墙壁上,滑块A以v0=12 m/s 的水平速度撞上静止的滑块B并粘在一起向左运动,与弹簧作用后原速率弹回,已知A、B 的质量分别为m1=0.5 kg、m2=1.5 kg。

求:①A与B撞击结束时的速度大小v;②在整个过程中,弹簧对A、B系统的冲量大小I。

【答案】①3m/s;②12N•s【解析】【详解】①A、B碰撞过程系统动量守恒,以向左为正方向由动量守恒定律得m1v0=(m1+m2)v代入数据解得v=3m/s②以向左为正方向,A、B与弹簧作用过程由动量定理得I=(m1+m2)(-v)-(m1+m2)v代入数据解得I=-12N•s负号表示冲量方向向右。

2.如图所示,质量M=1.0kg的木板静止在光滑水平面上,质量m=0.495kg的物块(可视为质点)放在的木板左端,物块与木板间的动摩擦因数μ=0.4。

质量m0=0.005kg的子弹以速度v0=300m/s沿水平方向射入物块并留在其中(子弹与物块作用时间极短),木板足够长,g取10m/s2。

求:(1)物块的最大速度v1;(2)木板的最大速度v2;(3)物块在木板上滑动的时间t.【答案】(1)3m/s ;(2)1m/s ;(3)0.5s。

【解析】【详解】(1)子弹射入物块后一起向右滑行的初速度即为物块的最大速度,取向右为正方向,根据子弹和物块组成的系统动量守恒得:m 0v 0=(m +m 0)v 1解得:v 1=3m/s(2)当子弹、物块和木板三者速度相同时,木板的速度最大,根据三者组成的系统动量守恒得:(m +m 0)v 1=(M +m +m 0)v 2。

解得:v 2=1m/s(3)对木板,根据动量定理得:μ(m +m 0)gt =Mv 2-0解得:t =0.5s3.如图所示,一个质量为m 的物体,初速度为v 0,在水平合外力F (恒力)的作用下,经过一段时间t 后,速度变为v t 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动 量
典型错误之一、忽视动量守恒定律的系统性
动量守恒定律描述的对象是由两个以上的物体构成的系统,研究的对象具有系统性,若在作用前后丢失任一部分,在解题时都会得出错误的结论。

例29、一门旧式大炮在光滑的平直轨道上以V=5m/s 的速度匀速前进,炮身质量为M=1000kg ,现将一质量为m=25kg 的炮弹,以相对炮身的速度大小u=600m/s 与V 反向水平射出,求射出炮弹后炮身的速度V /.
错解:根据动量守恒定律有:
MV=MV /+m[─(u ─V /)],解得s m M
m mu MV V /5.19/=++= 分析纠错:以地面为参考系,设炮车原运动方向为正方向,根据动量定律有: (M+m )V=MV /+m[─(u ─V /)] 解得s m m
M mV V V /6.19/=++= 典型错误之二、忽视动量守恒定律的矢量性
动量守恒定律的表达式是矢量方程,对于系统内各物体相互作用前后均在同一直线上运动的问题,应首先选定正方向,凡与正方向相同的动量取正,反之取负。

对于方向未知的动量一般先假设为正,根据求得的结果再判断假设真伪。

例30、质量为m 的A 球以水平速度V 与静止在光滑的水平面上的质量为3m 的B 球正碰,A 球的速度变为原来的1/2,则碰后B 球的速度是(以V 的方向为正方向).
A.V/2,
B.─V
C.─V/2
D.V/2
错解:设B 球碰后速度为V /,由动量守恒定律得:/321mV mV mV +=,6
/V V =. 分析纠错:碰撞后A 球、B 球若同向运动,A 球速度小于B 球速度,显然答案中没有,因此,A 球碰撞后方向一定改变,A 球动量应m(─V/2). 由动量守恒定律得:/3)2
(mV V m mV +-
=,V /=V/2. 故D 正确。

典型错误之三、忽视动量守恒定律的相对性
动量守恒定律表达式中各速度必须是相对同一参考系。

因为动量中的速度有相对性,在应用动量守恒定律列方程时,应注意各物体的速度必须是相对同一参考系的速度。

若题设条件中物体不是相对同一参考系的,必须将它们转换成相对同一参考系的,必须将它们转换成
相对同一参考系的速度。

一般以地面为参考系。

例31、某人在一只静止的小船上练习射击,船、人和枪(不包含子弹)及船上固定靶的总质量为M ,子弹质量m ,枪口到靶的距离为L ,子弹射出枪口时相对于枪口的速率恒为V ,当前一颗子弹陷入靶中时,随即发射后一颗子弹,则在发射完全部n 颗子弹后,小船后退的距离多大?(不计水的阻力)
错解:选船、人、枪上固定靶和子弹组成的系统为研究对象,开始时整个系统处于静止,系统所受合外力为0,当子弹射向靶的过程中,系统动量守恒,船将向相反的方向移动。

当第一颗子弹射向靶的过程中,船向相反的方向运动,此时与船同时运动的物体的总质量为M+(n-1)m,当第一颗子弹射入靶中后,根据动量守恒,船会停止运动,系统与初始状态完全相同。

当第二颗子弹射向靶的过程中,子弹与船重复刚才的运动,直到n 颗子弹全部射入靶中,所以在发射完全部n 颗子弹的过程中,小船后退的距离应是发射第一颗子弹的过程中小船后退距离的n 倍。

设子弹运动方向为正方向,在发射第一颗子弹的过程中小船后退的距离S ,子弹飞行的距离为L ,则由动量守恒定律有:
mL ─[M+(n-1)m]S=0 解得:m
n M m L S )1(-+= 每颗子弹射入靶的过程中,小船后退的距离都必须是相同,因此n 颗子弹全部射入的过程,小船后退的我总距离为nS=m
n M nmL )1(-+. 分析纠错:没有把所有的速度变换成相对于同一参考系的速度。

由于船的速度是相对于地面的,而子弹的速度是相对于船的,导致船的位移是相对于地面的,而子弹的位移是相对于船的,所以解答错误。

设子弹运动方向为正方向,在发射第一颗子弹的过程中小船后退的距离为S ,根据题意知子弹飞行的距离为(L ─S),则由动量守恒定律有:
m(L ─S)─[M+(n ─1)m]S=0
解得:S=nm
M mL + 每颗子弹射入靶的过程中,小船后退的距离都相同,因此n 颗子弹全部射入的过程,小
船后退的总距离为nS=nm
M nmL +. 典型错误之四、忽视动量守恒定律的同时性
动量守恒定律方程两边的动量分别是系统在初、末态的总动量,初态动量的速度都应该是互相作用前同一时刻的瞬时速度,末态动量中的速度都必须是相互作用后同一时刻的瞬时速度。

例32、平静的水面上有一载人小船,船和人共同质量为M ,站立在船上的人手中拿一质量为m 的物体。

起初人相对船静止,船、人、物体以共同速度V 0前进,当人相对于船以速度u 向相反方向将物体抛出时,人和船的速度为多大?(水的阻力不计)。

错解:取人、船、物组成的系统为研究对象,由于水的阻力不计,系统的动量守恒。

以船速V 0的方向为正方向,设抛出物体后人和船的速度为V ,物体对地的速度为(V 0─u ).由动量守恒定律得:
(M+m )V 0=MV+m(V 0-u), 解得M
MV m V V 0+=. 分析纠错:错误在于没有注意同时性,应明确物体被抛出的同时,船速已发生变化,不再是原来的V 0,而变成了V,即V 与u 是同一时刻,抛出后物对地速度是(V-u ),而不是(V 0-u ).
由动量守恒定律得:(M+m )V 0=MV+m(V-u) 解得:m
M mu V V ++=0 典型错误之五、忽视动量定理的矢量性
例33、蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。

一个质量为60kg 的运动员,从离水平网面3.2m 高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m 高处。

已知运动员与网接触的时间为1.2s 。

若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。

(g=10m/s 2)
错解:将运动员看质量为m 的质点,从h 1高处下落,刚接触网时速度的大小
112gh V = (向下)
, 弹跳后到达的高度为h 2,刚离网时速度的大小 222gh V =(向上) ,以t ∆表示接触时间, 接触过程中运动员受到向上的弹力F 和向下的重力mg 。

由动量定理得:(F-mg )Δt=mV 2-mV 1, 由以上各式解得,t gh gh m
mg F ∆-+=1222 , 代
入数值得: N F 700= 。

分析纠错:错误原因是忽视了动量定理的矢量性。

由动量定理得: (F-mg )Δt=mV 2+mV 1,由以上各式解得,t gh gh m mg F ∆++=1222 。

代入数值得: N F 1500= 。

典型错误之六、运用动量定理解题受力分析掉重力
对于例33还有如下一种常见错误:
错解:将运动员看质量为m 的质点,从h 1高处下落,刚接触网时速度的大小
112gh V = (向下)
, 弹跳后到达的高度为h 2,刚离网时速度的大小 222gh V =(向上) ,以t ∆表示接触时间,由动量定理得:F Δt=mV 2+mV 1, 由以上各式解得,t gh gh m F ∆+=1
222 , 代入数值得: N F 900= 。

分析纠错:错误原因是受力分析时掉重力。

相关文档
最新文档