新人教版八年级上册第十一章《三角形》单元测试(附答案)(2)

合集下载

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案

人教版八年级数学上册《第十一章三角形》单元测试卷-附含答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列长度的各组线段能组成一个三角形的是()A.1cm,2cm,3cm B.3cm,8cm,5cmC.4cm,5cm,10cm D.4cm,5cm,6cm2.以下四个图片中的物品,没有利用到三角形的稳定性的是()A.B.C.D.3.在△ABC中,若∠A=80°,∠B=20°则∠C=()A.80°B.70°C.60°D.100°4.如图,△ABC的面积为8,AD为BC边上的中线,E为AD上任意一点,连接BE,CE,图中阴影部分的面积为()A.2 B.3 C.4 D.55.如图AB∥CD,AE交CD于点F,连接DE,若∠D=28°,∠E=112°则∠A的度数为()A.48°B.46°C.42°D.40°6.如图∠A=100°,∠B=20°则∠ACD的度数是()A.100°B.110°C.120°D.140°7.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE= 91°∠DCE=124°,则∠AEC的度数是( )A.29°B.30°C.31°D.33°8.如图,小明从点A出发沿直线前进10米到达点B,向左转45°后又沿直线前进10米到达点C,再向左转45°后沿直线前进10米到达点D……照这样走下去,小明第一次回到出发点A时所走的路程为()A.100米B.80米C.60米D.40米二、填空题9.如图,A\B为池塘岸边两点,小丽在池塘的一侧取一点O,得到△OAB,测得OA=16米OB=12米,A\B 间最大的整数距离为米.10.正n形的每个内角都是120°,这个正n边形的对角线条数为条.11.如图,BD是△ABC的中线,DE⊥BC于点E,已知△ABD的面积是3,BC的长是4,则DE的长是.12.如图AB∥CD,若∠A=65°.∠E=38°,则∠C=.13.如图,△ABC中,AD\AE分别为角平分线和高∠B=46°,∠C=64°则∠DAE=.三、解答题14.若一个多边形的内角和比它的外角和的3倍多180°,求这个多边形的边数和对角线的条数.15.如图,在△ABC中,∠C=∠ABC=2∠A,BD是AC边上的高,求∠DBC的度数.16.如图,AD是△ABC的高,BE平分∠ABC交AD于E,若∠C=60°,∠BED=70°,求∠BAC的度数.17.如图,在△BCD中BC=3,BD=5.(1)若CD的长是偶数,直接写出CD的值;(2)若点A在CB的延长线上,点E、F在CD的延长线上,且AE∥BD,∠A=55°,∠BDE=125°,求∠C 的度数.18.如图,在五边形ABCDE中AE∥CD,∠A=100°,∠B=120°.(1)若∠D=110°,请求∠E的度数;(2)试求出∠C的度数.参考答案1.【答案】D2.【答案】D3.【答案】A4.【答案】C5.【答案】D6.【答案】C7.【答案】D8.【答案】B9.【答案】2710.【答案】911.【答案】3212.【答案】27°13.【答案】9°14.【答案】解:设这个多边形的边数为n,则内角和为180°(n−2),依题意得:180(n−2)=360×3+180解得n=9=27对角线条数:9×(9−3)2答:这个多边形的边数是9,对角线有27条15.【答案】解:∵∠C=∠ABC=2∠A∴∠C+∠ABC+∠A=5∠A=180°∴∠A=36°则∠C=∠ABC=2∠A=72°又BD是AC边上的高则∠DBC=90°-∠C=18°16.【答案】解:∵AD是△ABC的高.即AD⊥BC∴∠ADB=90°∵在Rt△EBD中∠BED=70°∴∠DBE=20°∵BE平分∠ABC∴∠ABE=∠DBE=20°∴∠ABD=40°∴∠BAC=180°−∠ABD−∠C=180°−40°−60°=80°17.【答案】(1)解:在△BCD中BC=3,BD=5∴2<CD<8∵CD的长是偶数∴CD的长为4或6故答案为:4或6;(2)解:∵AE∥BD∴∠CBD=∠A=55°∵∠BDE=∠C+∠CBD=125°∴∠C=∠BDE−∠CBD=125°−55°=70°18.【答案】(1)解:∵AE∥CD∴∠D+∠E=180°∴∠E=180°−∠D=180°−110°=70°(2)解:五边形ABCDE中∵∠D+∠E=180°,∠A=100°∴∠C=540°−(∠D+∠E)−∠A−∠B=140°。

人教版八年级上册《第11章三角形》 单元测试(含答案)

人教版八年级上册《第11章三角形》 单元测试(含答案)

人教版八年级上册《第11章三角形》单元测试考试时间:80分钟满分150分姓名:___________班级:___________考号:___________ 成绩:___________一、选择题(本大题共10小题,共40.0分。

在每小题列出的选项中,选出符合题目的一项)1. 已知一个三角形两边的长分别是4和6,则此三角形第三边的长不可能是( )A. 1B. 4C. 6D. 92. 如图,在△ABC中,∠BAC=90°,AD是高,BE是中线,CF是角平分线,CF交AD于点G,交BE于点H.下面说法正确的是( )①△ABE的面积=△BCE的面积;②∠AFG=∠AGF;③∠FAG=2∠ACF;④AF=FB.A. ①②③④B. ①②③C. ①②④D. ③④3. 如图,∠A=40°,∠CBD是△ABC的外角,∠CBD=120°,则∠C的大小是( )A. 90°B. 80°C. 60°D. 40°4. 已知△ABC中,∠A:∠B:∠C=3:4:7,则△ABC一定是( )A. 锐角三角形B. 直角三角形C. 钝角三角形D. 不能确定5. 如图,∠1=140°,∠2=120°,则∠3的度数为( )A. 100°B. 120°C. 140°D. 260°6. 内角和为1800°的多边形的边数是( )A. 12B. 10C. 14D. 157. 多边形的边数由3增加到2021时,其外角和的度数( )A. 不能确定B. 减少C. 增加D. 不变8. 如图,∠A+∠B+∠C+∠D+∠E+∠F度数为( )A. 180°B. 270°C. 360°D. 540°9. 若一个正多边形的一个外角是45°,则这个正多边形的边数是( )A. 7B. 8C. 9D. 1010. 一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的边数是( )A. 8B. 9C. 10D. 11二、填空题(本大题共6小题,共24.0分)11. 三角形两边a=2,b=9,第三边c为奇数,则此三角形周长为______.12. 如图,△ABC中,AB=15,BC=9,BD是AC边上的中线,若△ABD的周长为30,则△BCD的周长是______ .13. 射击队员在瞄准目标时,手、肘、肩构成托枪三角形,说明三角形具有______.14. 如图,在Rt△ABC中,∠B=90°,∠A=60°.将三角形沿EF翻折,使点C与边AB上的D点重合.若∠EFD=2∠AED,则∠AED的度数为______ .15. 如图,花瓣图案中的正六边形ABCDEF的每个内角的度数是______.16. 如图,五边形ABCDE中,∠A=125°,则∠1+∠2+∠3+∠4的度数是______.三、解答题(本大题共8小题,共86.0分。

人教版八年级数学第十一章《三角形》单元测试题(含答案)

人教版八年级数学第十一章《三角形》单元测试题(含答案)

人教版八年级数学第十一章《三角形》单元测试题(含答案)时间:120分钟满分:120分一、选择题(共10小题,满分30分,每小题3分)1.(3分)如图,在四边形ABCD中,AB>AD,对角线AC平分∠BAD,下列结论正确的是()A.AB﹣AD>|CB﹣CD|B.AB﹣AD=|CB﹣CD|C.AB﹣AD<|CB﹣CD|D.AB﹣AD与|CB﹣CD|的大小关系不确定2.(3分)有两条高在三角形外部的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不确定3.(3分)如图,为了估计池塘两岸A,B间的距离,在池塘的一侧选取点P,测得P A=15米,PB=11米那么A,B间的距离不可能是()A.5米B.8.7米C.27米D.18米4.(3分)一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是()A.11B.12C.13D.145.(3分)如图,在△ABC中,AF平分∠BAC交BC于点F、BE平分∠ABC交AC于点E,AF与BE相交于点O,AD是BC边上的高,若∠C=50°,BE⊥AC,则∠DAF的度数为()A.10°B.12°C.15°D.20°6.(3分)如图,∠ABC=∠ACB,AD、BD、CD分别平分△ABC的外角∠EAC、内角∠ABC、外角∠ACF,以下结论:①AD∥BC,②∠ACB=∠ADB,③∠ADC+∠ABD=90°,④∠ADB=45°﹣∠CDB,其中正确的结论有()A.1个B.2个C.3个D.4个7.(3分)如图,在三角形ABC中,AH⊥BC,BF平分∠ABC,BE⊥BF,EF∥BC,以下四个结论:①AH⊥EF;②∠ABF=∠EFB;③AC∥BE;④∠E=∠ABE.其中正确的结论有()A.4个B.3个C.2个D.1个8.(3分)如图,四边形ABCD为一长方形纸带,AD∥BC,将四边形ABCD沿EF折叠,C、D两点分别与C′、D′对应,若∠1=2∠2,则∠3的度数为()A.50°B.54°C.58°D.62°9.(3分)若n边形的内角和与外角和相加为1800°,则n的值为()A.7B.8.C.9D.1010.(3分)如图,大建从A点出发沿直线前进8米到达B点后向左旋转的角度为α,再沿直线前进8米,到达点C后,又向左旋转α角度,照这样走下去,第一次回到出发地点时,他共走了72米,则每次旋转的角度α为()A.30°B.40°C.45°D.60°二、填空题(共5小题,满分15分,每小题3分)11.(3分)如图,正六边形ABCDEF的顶点A、F分别在正方形BMGH的边BH、GH上.若正方形BMGH的边长为6,则正六边形ABCDEF的边长为.12.(3分)如图,在△ABC中,∠B=80°,∠C=42°,AD⊥BC于点D,AE平分∠BAC,则∠DAE=.13.(3分)如图,在△ABC中,∠A=65°,则∠1+∠2=°.14.(3分)如果一个三角形有一条边上的高等于这条边的一半,那么我们把这个三角形叫做半高三角形.已知直角三角形ABC是半高三角形,且斜边AB=10,则它的周长等于.15.(3分)如图,在△ABC中,AD是中线,DE⊥AB于E,DF⊥AC于F,若AB=6cm,AC=4cm,则.三、解答题(共10小题,满分75分)16.(7分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC =10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.17.(7分)如图,P为△ABC内任意一点,求证:AB+AC>PB+PC.18.(7分)已知a,b,c分别为△ABC的三边,且满足a+b=3c﹣2,a﹣b=2c﹣6.(1)求c的取值范围;(2)若△ABC的周长为12,求c的值.19.(7分)如图所示,在△ABC中,CD⊥AB于点D,EF⊥CD于点G,∠ADE=∠EFC.(1)证明AB∥EF.(2)请说明∠AED=∠ACB的理由.(3)若∠BDE=2∠B+36°,求∠DEF的度数.20.(7分)已知:在△ABC中,AE平分∠BAC,BF平分∠ABC,AE、BF交于点G.(1)如图1:若∠C=60°,求∠AGB的度数;(2)如图2:点D是AE延长线上一点,连接BD、CD,∠ADC=∠ABG+∠BAG,求证:CD∥BF;(3)如图3:在(2)的条件下,过点G作GK∥AB,交BD于点K,点M在线段DC 的延长线上,连接KM,若∠ACB=∠BDA,∠ABC+∠BAE=2∠DKM,∠M=16°,求∠BAC的度数.21.(7分)如图所示,在△ABC中,AD平分∠BAC交BC于点D,BE平分∠ABC交AD 于点E.(1)若∠C=60°,∠BAC=80°,求∠ADB的度数;(2)若∠BED=60°,求∠C的度数.22.(7分)如图,在三角形ABC中,点D是BC上一点,点F是AC上一点,连接AD、DF,点E是AD上一点,连接EF,且∠1+∠2=180°,∠B=∠3.(1)求证:AB∥DF;(2)若FD平分∠CFE,∠BAD=50°,∠3=70°,求∠CAD的度数.23.(8分)如图,四边形ABCD中,∠A=75°,∠C=105°,BE平分∠ABC,DF平分∠ADC.求:(1)∠ABC+∠ADC的值;(2)∠BED+∠BFD的值.24.(9分)已知如图1,线段AB,CD相交于O点,连接AD,CB,我们把如图1的图形称之为“8字形”.那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?下面就请你发挥你的聪明才智,解决以下问题:(1)在图1中,请写出∠A,∠B,∠C,∠D之间的数量关系,并说明理由;(2)如图2,计算∠A+∠B+∠C+∠D+∠E+∠F的度数.25.(9分)△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.参考答案一、选择题(共10小题,满分30分,每小题3分)1.A;2.C;3.C;4.C;5.C;6.B;7.B;8.B;9.D;10.B;二、填空题(共5小题,满分15分,每小题3分)11.4;12.19°;13.245;14.10+10或610;15.;三、解答题(共10小题,满分75分)16.解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC BC•AD,∴AD 4.8(cm),即AD的长度为4.8cm;(2)方法一:如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,∴S△ABC AB•AC6×8=24(cm2).又∵AE是边BC的中线,∴BE=EC,∴BE•AD EC•AD,即S△ABE=S△AEC,∴S△ABE S△ABC=12(cm2).∴△ABE的面积是12cm2.方法二:因为BE BC=5,由(1)知AD=4.8,所以S△ABE BE•AD5×4.8=12(cm2).∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.17.证明:延长BP交AC于点D,在△ABD中,PB+PD<AB+AD①在△PCD中,PC<PD+CD②①+②得PB+PD+PC<AB+AD+PD+CD,即PB+PC<AB+AC,即:AB+AC>PB+PC.18.解:(1)∵a,b,c分别为△ABC的三边,a+b=3c﹣2,a﹣b=2c﹣6,∴,解得:1<c<6.故c的取值范围为1<c<6;(2)∵△ABC的周长为12,a+b=3c﹣2,∴a+b+c=4c﹣2=12,解得c=3.5.故c的值是3.5.19.解:(1)证明:∵CD⊥AB于点D,EF⊥CD于点G,∴∠BDC=∠FGC,=90°,∴AB∥EF(同位角相等,两直线平行).(2)证明:由(1)得AB∥EF,∴∠B=∠EFC(两直线平行,同位角相等),又∵∠ADE=∠EFC.∴∠B=∠ADE;(3)由(2)得∠B=∠ADE,∴DE∥BC,由(1)得AB∥EF,∴四边形BDEF是平行四边形(两组对边平行的四边形是平行四边形),∴∠DEF=∠B(平行四边形对角相等),∵∠B=∠ADE,∠BDE=2∠B+36°,∴180°﹣∠B=2∠B+36°,∴∠B=48°,∴∠DEF=48°.20.(1)证明:如图1,∵AE、BF分别平分∠BAC与∠ABC,∴,,在△ABC中,∠ABC+∠ACB+∠C=180°,∠C=60°,∴∠ABC+∠BAC=180°﹣60°=120°,∴∠ABF+∠BAE∠ABC∠BAC(∠ABC+∠BAC)120°=60°,∴∠AGB=180°﹣60°=120°;(2)证明:如图2,∵∠BGD是△ABG得一个外角,∴∠BGD=∠BAG+∠ABG,∵∠ADC=∠BAG+∠ABG,∴∠BGD=∠ADC,∴CD∥BF;(3)解:如图3,∵∠BED=∠AEC,∠ACB=∠BDA,∴∠CAE=∠DBE,∵AE平分∠BAC,BF平分∠ABC,设∠ABF=∠CBF=α,∠BAD=∠CAD=∠DBC=β,∴∠AEC=2α+β,∵∠ABC+∠BAE=2∠DKM,∴,∵GK∥AB,∴∠BGK=∠ABG=α,∴∠GKD=∠GBK+∠BGK=2α+β,∴,∵GB∥DM,∠M=16°,∴∠GBK+∠MDK=180°,∵∠GBK+∠GKB+∠BGK+∠MKD+∠KDM+∠M=360°,∠BKG+∠MKD=180°﹣∠GKM,∴180°+180°﹣∠GKM+∠BGK+∠M=360°,∴∠GKM=∠BGK+∠M,∴,∴β=32°,∴∠BAC=2×32°=64°.21.解:(1)∵AD平分∠BAC,∠BAC=80°,∴∠DAC∠BAC=40°,∵∠ADB是△ADC的外角,∠C=60°,∴∠ADB=∠C+∠DAC=100°;(2)∵∠BED是△ABE的外角,∠BED=60°,∴∠BAD+∠ABE=∠BED=60°,∵AD平分∠BAC,BE平分∠ABC,∴∠BAC=2∠BAD,∠ABC=2∠ABE,∴∠BAC+∠ABC=2(∠BAD+∠ABE)=120°,∵∠BAC+∠ABC+∠C=180°,∴∠C=180°﹣(∠BAC+∠ABC)=60°.22.(1)证明:∵∠1+∠2=180°,∠1+∠DEF=180°,∴∠DEF=∠2.∴EF∥BC.∴∠3=∠FDC.∵∠B=∠3,∴∠B=∠FDC.∴AB∥DF.(2)解:∵AB∥DF,∴∠BAD=∠EDF=50°.∵FD平分∠CFE,∴∠EFC=2∠3=140°.∴∠AFE=180°﹣∠EFC=40°,∠1=∠3+∠EDF=70°+50°=120°.∴∠CAD=180°﹣∠1﹣∠AFE=20°.23.解:(1)∵四边形ABCD中,∠A=75°,∠C=105°,∴∠ABC+∠ADC=360°﹣75°﹣105°=180°;(2)如图,∵BE平分∠ABC,DF平分∠ADC,∴∠1∠ABC,∠2∠ADC,∴∠1+∠2(∠ABC+∠ADC)=90°,由三角形外角的性质可得,∠BED=∠1+∠A,∠BFD=∠2+∠A,∴∠BED+∠BFD=∠1+∠A+∠2+∠A=∠1+∠2+2∠A=90°+150°=240°.24.解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)如图3,连接AD,则∠BAD+∠B+∠C+∠ADC=360°,根据“8字形”数量关系,∠E+∠F=∠EDA+∠F AD,所以,∠A+∠B+∠C+∠D+∠E+∠F=360°.25.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC=40°,∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC=180°﹣∠B﹣∠C,∵AD是∠BAC的角平分线,∴∠CAD=∠BAD∠BAC,∵AE是△ABC的高,∴∠AEC=90°,∴∠CAE=90°﹣∠C,∴∠DAE=∠CAD﹣∠CAE∠BAC﹣(90°﹣∠C)(180°﹣∠B﹣∠C)﹣90°+∠C∠C∠B,即∠DAE∠C∠B;(3)不变,理由:连接BC交AD于F,过点A作AM⊥BC于M,过点D作DN⊥BC于N,∵AE是∠BAC的角平分线,AM是高,∴∠EAM(∠ACB﹣∠ABC),同理,∠ADN(∠BCD﹣∠CBD),∵∠AFM=∠DFN,∠AMF=∠DNF=90°,∴∠MAD=∠ADN,∴∠DAE=∠EAM+∠MAD=∠EAM+∠ADN(∠ACB﹣∠ABC)(∠BCD﹣∠CBD)(∠ACD﹣∠ABD).。

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

八年级数学上册试题 第十一章 三角形章节测试卷--人教版(含详解)

第十一章《三角形》章节测试卷一.选择题(共12小题,满分48分,每小题4分)1.已知△ABC中,∠A=20°,∠B=70°,那么△ABC是( )A.直角三角形B.锐角三角形C.钝角三角形D.正三角形2.下面四个图形中,线段BD是△ABC的高的是( )A.B.C.D.3.要使如图所示的五边形木架不变形,至少要再钉上几根木条( )A.1根B.2根C.3根D.4根4.能把一个任意三角形分成面积相等的两部分是( )A.以上都可以B.高C.中线D.角平分线5.长度分别为3,8,x的三条线段能组成一个三角形,x的值可以是( )A.4B.5C.6D.116.如图,在△ABC中,∠BAC=90°,AD是△ABC的高,若∠B=20°,则∠DAC=( )A.90°B.20°C.45°D.70°7.如图所示,∠1=∠2=150°,则∠3=( )A.30°B.150°C.120°D.60°8.如图,在△ABC中,AB=2021,AC=2018,AD为中线,则△ABD与△ACD的周长之差为( )A.1B.2C.3D.49.若一个多边形的每个内角都等于150°,则这个多边形的边数是( )A.10B.11C.12D.1310.如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于( )A.90°B.135°C.270°D.315°11.△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数.符合条件的三角形有( )A.1个B.2个C.3个D.4个12.如图,在四边形ABCD中,∠ABC与∠BCD的平分线的交点E恰好在AD边上,则∠BEC=( )A.∠A+∠D﹣45°B.12(∠A+∠D)+45°C.180°-(∠A+∠D)D.12∠A+12∠D二.填空题(共4小题,满分16分,每小题4分)13.如图,点D,B,C在同一直线上,∠A=60°,∠C=50°,∠D=20°,则∠1= °.14.如图,BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A= .15.如图,△ABC中,∠B=40°,∠C=30°,点D为边BC上一点,将△ADC沿直线AD折叠后,点C落到点E处,若DE∥AB,则∠AFD的度数为 .16.如图,D,E,F分别是△ABC的边AB,BC,AC上的中点,连接AE,BF,CD交于点G,AG:GE=2:1,△ABC的面积为6,设△BDG的面积为S1,△CGF的面积为S2,则S1+S2= .三.解答题(共8小题,满分86分)17.已知一个多边形的内角和是外角和的三倍,则这个多边形是几边形?18.如图,∠ABC=∠FEC=∠ADC=90°.(1)在△ABC中,BC边上的高是 ;(2)在△AEC中,AE边上的高是 ;(3)若AB=2.4cm,CD=2cm,AE=3cm,求△AEC的面积及CE的长.19.如图,已知D是△ABC边BC延长线上一点,DF⊥AB于点F,交AC于点E,∠A=35°,∠D=42°,求(1)∠ACD的度数;(2)∠AEF的度数.20.已知一等腰三角形的两边长x,y满足方程组{3x−y=55x+2y=23求此等腰三角形的周长.21.一个零件的形状如图,按规定∠A=90°,∠B和∠C应分别是32°和21°,检验工人量得∠BDC=149°,就判断这个零件不合格,运用三角形的有关知识说出零件不合格的理由.22.如图1所示,将一副三角板的直角顶点重合在点O处.(1)∠AOD ∠BOC;(填“>”“<”“=”)(2)若将三角尺按图2的位置摆放,∠AOC和∠BOD在数量上有何关系?说明理由;(3)在图2中,已知∠BOC与∠AOC的度数比为m:n,当a6m b11与a n+1b2n﹣11是同类项时,求∠BOD的度数.23.问题1现有一张△ABC纸片,点D、E分别是△ABC边上两点,若沿直线DE折叠.研究(1):如果折成图①的形状,使A点落在CE上,则∠1与∠A的数量关系是 研究(2):如果折成图②的形状,猜想∠1+∠2和∠A的数量关系是 研究(3):如果折成图③的形状,猜想∠1、∠2和∠A的数量关系,并说明理由.问题2研究(4):将问题1推广,如图④,将四边形ABCD纸片沿EF折叠,使点A、B落在四边形EFCD的内部时,∠1+∠2与∠A、∠B之间的数量关系是 .24.△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°,求∠DAE的度数;(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系;(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变.说明理由.答案一.选择题1.【解答】解:∵△ABC中,∠A=20°,∠B=70°,∴∠C=180°﹣20°﹣70°=90°,∴△ABC是直角三角形.故选:A.2.【解答】解:由图可得,线段BD是△ABC的高的图是D选项.故选:D.3.【解答】解:过五边形的一个顶点作对角线,有5﹣3=2条对角线,所以至少要钉上2根木条.故选:B.4.【解答】解:三角形的中线把三角形分成等底同高的两个三角形,面积相等,所以,能把一个任意三角形分成面积相等的两部分是中线.故选:C.5.【解答】解:8﹣3<x<8+3,5<x<11,只有选项C符合题意.故选:C.6.【解答】解:∵∠BAC=90°,∴∠DAC+∠BAD=90°,∵AD是△ABC的高,∴∠ADB=∠BAD+∠B=90°,∴∠DAC=∠B=20°,故选:B.7.【解答】解:∵∠1=∠2=150°,∴∠ABC=∠BAC=180°﹣150°=30°,∴∠3=∠ABC+∠BAC=60°.故选:D.8.【解答】解:∵AD为中线,∴DB=DC,∴△ABD与△ACD的周长之差为:(AB+AD+BD)﹣(AD+DC+AC)=AB+AD+BD﹣AD﹣DC﹣AC=AB﹣AC=2021﹣2018=3,故选:C.9.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.10.【解答】解:∵四边形的内角和为360°,直角三角形中两个锐角和为90°∴∠1+∠2=360°﹣(∠A+∠B)=360°﹣90°=270°.故选:C.11.【解答】解:方程组{x+2y=104x+3y=20的解为:{x=2 y=4,∵△ABC的两边是方程组{x+2y=104x+3y=20的解,第三边长为奇数,∴2<第三边长<6,1∴第三边长可以为:3,5.∴这样的三角形有2个.故选:B.12.【解答】解:∵四边形的内角和=360°,∴∠ABC+∠BCD=360°﹣(∠A+∠D),∵∠ABC与∠BCD的平分线的交点E恰好在AD边上,∴2∠EBC=∠ABC,2∠ECB=∠BCD,∴∠EBC+∠ECB=12(∠ABC+∠BCD)=12×[360°−(∠A+∠D)],∴∠BEC=180°﹣(∠EBC+∠ECB)=180°−12×[360°−(∠A+∠D)]=12(∠A+∠D),故选:D.二.填空题13.【解答】解:∵∠A=60°,∠C=50°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣60°﹣50°=70°,∴∠1=∠ABC﹣∠D=50°﹣20°=50°.故答案为:50.14.【解答】解:∵BP是△ABC中∠ABC的平分线,CP是∠ACB的外角的平分线,∴∠ABC=2∠ABP,∠ACM=2∠ACP,又∵∠ABP=20°,∠ACP=50°,∴∠ABC=2×20°=40°,∠ACM=2×50°=100°,∴∠A=∠ACM﹣∠ABC=60°,故答案为60°.15.【解答】解:∵∠B=40°,∠C=30°,∴∠BAC=110°,由折叠的性质得,∠E=∠C=30°,∠EAD=∠CAD,∵DE∥AB,∴∠BAE=∠E=30°,∴∠CAD=40°,∴∠ADC=180°﹣∠CAD﹣∠C=110°,∴∠AFD=110°﹣40°=70°,故答案为:70°.16.【解答】解:∵D,E,F分别是△ABC的边AB,BC,AC上的中点,∴AD=DB,AF=CF,∴△BDG的面积=△ADG的面积,△CFG的面积=△AGF的面积,∴设△BDG的面积为S1,△CGF的面积为S2,则S1+S2=四边形ADGF的面积,∵△ABC的面积为6,AG:GE=2:1,∴四边形ADGF的面积=23×12×6=2,∴S1+S2=2,故答案为:2三.解答题17.解:设这个多边形为n边形,n边形的内角和为:(n﹣2)×180°,n边形的外角和为:360°,根据题意得:(n﹣2)×180°=3×360°,解得:n=8,答:这个多边形是八边形.18.解:(1)在△ABC中,BC边上的高是线段AB;故答案为线段AB;(2)在△AEC中,AE边上的高是线段CD;故答案为线段CD;(3)∵S△AEC=12×AE×CD=12×CE×AB,∴CE=AE⋅CDAB= 2.5(cm).19.解:(1)∵DF⊥AB,∴∠B=90°﹣∠D=48°,∵∠ACD是△ABC的一个外角,∴∠ACD=∠A+∠B=83°;(2)∵DF⊥AB,∴∠AFD=90°,∴∠AEF=90°﹣∠A=55°.20.解:解方程组组{3x−y=55x+2y=23得{x=3 y=4,所以,等腰三角形的两边长为3,4.若腰长为3,底边长为4,由3+3=6>4知,三角形的周长为10.若腰长为4,底边长为3,则三角形的周长为11.所以,这个等腰三角形的周长为10或11.21.解:延长CD交AB于点E,∵∠BEC是△ACE的一个外角,∴∠BEC=∠A+∠C=90°+21°=111°,同理,∠BDC=∠BEC+∠B=111°+32°=143°,而检验工人量得∠BDC=149°,所以零件不合格.22.解:(1)∵∠AOB=∠COD=90°,∴∠AOB+∠BOD=∠COD+∠BOD,即∠AOD=∠BOC.故答案为:=;(2)∵∠AOB=∠COD=90°,∴∠AOC+∠BOD=180°.故∠AOC和∠BOD在数量上的关系为:∠AOC+∠BOD=180°;(3)∵a6m b11与a n+1b2n﹣11是同类项,∴{6m=n+111=2n−11,解得{m=2n=11,∵∠BOC与∠AOC的度数比为m:n,11﹣2=9,∴∠BOC=90°×2=20°,11−2∴∠BOD=90°﹣20°=70°.故∠BOD的度数是70°.23.解:(1)如图1,∠1=2∠A,理由是:由折叠得:∠A=∠DA′A,∵∠1=∠A+∠DA′A,∴∠1=2∠A;故答案为:∠1=2∠A;(2)如图2,猜想:∠1+∠2=2∠A,理由是:由折叠得:∠ADE=∠A′DE,∠AED=∠A′ED,∵∠ADB+∠AEC=360°,∴∠1+∠2=360°﹣∠ADE﹣∠A′DE﹣∠AED﹣∠A′ED=360°﹣2∠ADE﹣2∠AED,∴∠1+∠2=2(180°﹣∠ADE﹣∠AED)=2∠A;故答案为:∠1+∠2=2∠A;(3)如图3,∠2﹣∠1=2∠A,理由是:∵∠2=∠AFE+∠A,∠AFE=∠A′+∠1,∴∠2=∠A′+∠A+∠1,∵∠A=∠A′,∴∠2=2∠A+∠1,∴∠2﹣∠1=2∠A;(4)如图4,由折叠得:∠BMN=∠B′MN,∠ANM=∠A′NM,∵∠DNA+∠BMC=360°,∴∠1+∠2=360°﹣2∠BMN﹣2∠ANM,∵∠BMN+∠ANM=360°﹣∠A﹣∠B,∴∠1+∠2=360°﹣2(360°﹣∠A﹣∠B)=2(∠A+∠B)﹣360°,故答案为:∠1+∠2=2(∠A+∠B)﹣360°.24.解:(1)∵∠B=40°,∠C=60°,∠BAC+∠B+∠C=180°,∴∠BAC=80°,∵AD是∠BAC的角平分线,∠BAC=40°,∴∠CAD=∠BAD=12∵AE是△ABC的高,∴∠AEC=90°,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴∠DAE=∠CAD﹣∠CAE=10°;(2)∵∠BAC+∠B+∠C=180°,∴∠BAC =180°﹣∠B ﹣∠C ,∵AD 是∠BAC 的角平分线,∴∠CAD =∠BAD =12∠BAC ,∵AE 是△ABC 的高,∴∠AEC =90°,∴∠CAE =90°﹣∠C ,∴∠DAE =∠CAD ﹣∠CAE =12∠BAC ﹣(90°﹣∠C )=12(180°﹣∠B ﹣∠C )﹣90°+∠C =12∠C −12∠B ,即∠DAE =12∠C −12∠B ; (3)不变,理由:连接BC 交AD 于F ,过点A 作AM ⊥BC 于M ,过点D 作DN ⊥BC 于N ,∵AE 是∠BAC 的角平分线,AM 是高,∴∠EAM =12(∠ACB ﹣∠ABC ),同理,∠ADN =12(∠BCD ﹣∠CBD ),∵∠AFM =∠DFN ,∠AMF =∠DNF =90°,∴∠MAD =∠ADN ,∴∠DAE =∠EAM+∠MAD =∠EAM+∠ADN =12(∠ACB ﹣∠ABC )+12(∠BCD ﹣∠CBD )=12(∠ACD ﹣∠ABD ).。

人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)

人教版数学八年级上册 第11章 三角形单元测试(配套练习附答案)
解:如图,取CG的中点H,连接EH,
∵E是AC的中点,
∴EH是△ACG的中位线,
∴EH∥AD,
∴∠GDF=∠HEF,
∵F是DE的中点,
∴DF=EF,
在△DFG和△EFH中, ,
∴△DFG≌△EFH(ASA),
∴FG=FH,S△EFH=S△DGF,
又∵FC=FH+HC=FH+GH=FH+FG+FH=3FH,
所以,由题意可得180(n-2)=2×360º
解得:n=6
16.十边形的外角和是_____°.
【答案】360
【解析】
【分析】
根据多边形外角和等于360°性质可得.
【详解】根据多边形的外角和等于360°,即可得十边形的外角和是360°.
【点睛】本题考查了多边形的外角和.熟记多边形外角和是关键.
17.若三角形的周长是60cm,且三条边的比为3:4:5,则三边长分别为__________.
考点:找规律-图形的变化
点评:解答此类问题的关键是仔细分析所给图形的特征得到规律,再把这个规律应用于解题.
C. 一个等腰三角形一定不是锐角三角形
D. 一个等边三角形一定不是钝角三角形
【答案】
【解析】
【分析】
根据三角形的分类方法进行分析判断.三角形按角分为锐角三角形、直角三角形和钝角三角形;三角形按边分为不等边三角形和等腰三角形(等边三角形).
【详解】解:A、如等腰直角三角形,既是直角三角形,也是等腰三角形,故该选项错误;
A.4cm2B.6cm2C.8cm2D.9cm2
【答案】A
【解析】
试题分析:取CG的中点H,连接EH,根据三角形的中位线定理可得EH∥AD,再根据两直线平行,内错角相等可得∠GDF=∠HEF,然后利用“角边角”证明△DFG和△EFH全等,根据全等三角形对应边相等可得FG=FH,全等三角形的面积相等可得S△EFH=S△DGF,再求出FC=3FH,再根据等高的三角形的面积比等于底边的比求出两三角形的面积的比,从而得解.

(完整)新人教版八年级数学上册第十一章三角形单元测试题含答案,推荐文档

(完整)新人教版八年级数学上册第十一章三角形单元测试题含答案,推荐文档

初中数学八(上)学习过程评价题 班级: 内容:第11章三角形 姓名: 得分: 一、选择题(30分). 1. 从五边形的一个顶点出发的对角线,把这个五边形分成 A.5B.4C.3 2. 以下列各组线段长为边能组成三角形的是 (). A.lcm , 2cm, 4cm B.2cm , 4cm, 6cm C.4cm ,个三角形. D.24. 一个三角形的三条角平分线的交点在 (). A.三角形内 B.三角形外 C. 三角形的某边上5. 某人到瓷砖商店去买一种多边形形状的瓷砖用来铺设无缝地板, 是()• A.正三角形 B.矩形 C.正六边形6. 能把一个任意三角形分成面积相等的两部分的是 ( A.角平分线 B.中线 C.高 D.以上二种情形都有可能 他购买的瓷砖形状不可以 D. 正八边形 ). D.A7. 一个角的两边与另一个角的两边互相垂直,且这两个角之差为为(). A.70。

和 110° B.80 。

和 120° C.40 。

和 140° 8. 一个三角形三个内角的度数之比为 2:3:7,这个三角形一 A .直角三角形B.等腰三角形 C •锐角三角形 9. ( n+1)边形的内角和比 n 边形的内角和大(). A.180 ° B.360 °C.n • 180° 40 B 、C 都可以,那么这两个角分别 D.100 定是(). D .钝角三角形 和 140°D.n • 360°10.如图,把△ ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时,则/ A 与/ 1 + Z 2之间 有一种数量关系始终保持不变,试着找一找这个规律 .你发现的规律是().C. / A=2 (/ 1 + Z 2)D. 第11题图二、填空题. 11.木工师傅做完房门后,为防止变形,会在门上钉上一条斜拉的木条 是 (每题2分,共16 分)12. 某一个三角形的外角中有一个角是锐角,那么这个三角形是 ____________ 角三角形•13. 一个多边形的内角和是外角和的一半,则它的边数是—14. 如图所示:(1 )在厶ABC中,BC边上的高是_______ ;(2)在厶AEC中,AE边上的高是.15. 如图,正方形ABCD中,截去/ B、/ D后,/ 1、/ 2、/ 3、/ 4的和为16. 若一个等腰三角形的两边长分别是 3 cm和5 cm,则它的周长是cm~17. 三角形的三边长分别为5, 1+2x , 8,则x的取值范围是 ___________ .18. 一个四边形的四个内角中最多有 ________ 个钝角,最多有______ 个锐角?三、解答题(2X 4/=8/).19. 一个多边形的内角和等于它的外角和的6倍,这是一个几边形.20. 已知三角形的两个外角分别是久° , 3°,且满足(a—50)2=—|a +^—200|.求此三角形各角的度数.四、解答题(3X 5/=15/).21. △ ABC中,/ ABC / ACB的平分线相交于点0.(1)若/ ABC = 40 °,/ ACB = 50 °,则/ BOC = __________(2)若/ ABC +/ ACB =116°,则/ BOC = _________ .(3)_______________________________ 若/ A = 76 °,则/ BOC = .(4)_______________________________ 若/ BOC = 120°,则/ A = .22.如图的四边形是某地板厂加工地板时剩下的边角余料嵌吗?请说明理由.,用这种四边形的木板可以进行镶(5)你能找出/ A与/ BOC之间的数量关系吗?23. 已知等腰三角形中,AB= AC, —腰上的中线BD把这个三角形的周长分成15cm和6cm两部分,求这个等腰三角形的底边的长.四、解答题(3X 7/=21/).24. 如图,已知△ ABC D在BC的延长线上,E在CA的延长线上, F在AB上,试比较/ 1与/ 2的大小.25. 已知:如图,AC和BD相交于点0,说明:AC+BD>AB+CD.现测得/ A=145°, / B=75°, / C=85°Z D=55°,就断定这块模板是合格26.如图,它是一个大型模板,设计要求BA与CD相交成20°角, DA与CB相交成40°角, 的,这是为什么?五、解答题((3X 10/=30/)).27. 如图,四边形ABCD中,/ A=Z C= 90°, BE、DF分别是/ B/ D的平分线.(1)/ 1与/ 2大小有何关系,为什么?( 2) BE与DF有何关系?请说明理由C28. 如图1, / ACD>^ ABC的外角,BE平分/ ABC CE平分/ ACD且BE、CE交于点E.求证:⑴/ E= j / A;2(2)若BE、CE是厶ABC两外角的平分线且交于点E,则/ E与/ A又有什么关系?并说明理由29. 如图,/ ECM 90° ,线段AB的端点分别在CE和CF上,BD平分/ CBA并与/ CAB的外角平分线AG所在的直线交于一点 D. (1)Z D与/ C有怎样的数量关系?(2)点A在射线CE上运动(不与点C重合)时,其它条件不变,(1)中结论还成立吗?说说你的理由.参考答案1C ; 2.C ; 3.C ; 4.A ; 5.D ; 6.B ; 7.A ; 8.D ; 9.A ; 10.A ; 11.三角形具有稳定性; 12.钝;13.3 ; 14.AB 、CD 15.540 ° ; 16.11 或 13; 17.1 V x V 6; 18.3、3;22.能进行镶嵌;理由:由镶嵌的条件知,在一个顶点处各个内角的和为 360 °时,就能镶嵌.而任意四边形的内角和是 360 °,只要放在同一顶点的 4个内角和为360 ° 故能进行镶嵌. 23.如图,根据题意得: AB=AC, AD=CD, 设 BC=xcm, AD=CD=ycm 则 AB=AC=2ycm,①若 AB+AD=15cm, BC+CD=6cm 则 2y y 15x y 6解得:x 1 5 y即 AB=AC=10cm, BC=1cm ;②若 AB+AD=6cm , BC+CD=15cm2y 6 则x y 15解得:x 13y 2即 AB=AC=4cm, BC=13cm,19.14;20.13030°、 20°21. /OBC )••• 4+4=8V 13,不能组成三角形,舍去;•••这个等腰三角形的底边的长为1cm.24.根据三角形的外角性质,在△ AEF中,/ BAC >/ 1, 在厶ABC 中,/ 2>Z BAC ,所以,/ 2>Z 1.25.证明:••• AO+BO > AB , DO+CO > CD ,•AO+BO+DO+CO > AB+ CD ,即AC+BD > AB+ CD .26. 解:延长DA、CB,相交于F,•••/ C+Z ADC=85° +55°=140°,•••/ F=180° -140 ° =40 ° ;延长BA、CD相交于E,•/Z C+Z ABC=85° +75°=160°,•Z E=180° -160 °=20 °,故合格.27.(1 )Z 1+ Z 2=90°;•/ BE , DF分别是Z ABC , Z ADC的平分线, • Z 1 = Z ABE , Z 2=Z ADF ,/Z A= Z C=9C° ,• Z ABC+ Z ADC=180 ,••• 2 (/ 1+ / 2) =180° , • BE // DF .28. (1)证明:•••/ ACD= Z A+ /ABC ,1 •••Z2= — (/A+ /ABC )2•••左+ 72= 1 (/A+ ZABC )2•••左+ 1 (/A+ ZACB ) + 1 (/A+ /ABC ) =180。

人教版八年级数学上册第十一章《三角形》单元检测题(二)

人教版八年级数学上册第十一章《三角形》单元检测题(二)

第十一章《三角形》单元检测题(二)一.选择题1.下列每组数分别是三根木棒的长度,能用它们摆成三角形的是()A.3,4,8 B.13,12,20 C.8,7,15 D.5,5,11 2.如图,已知∠ACD=60°,∠B=20°,那么∠A的度数是()A.40°B.60°C.80°D.120°3.已知AB=3,BC=1,则AC的长度的取值范围是()A.2≤AC≤4 B.2<AC<4 C.1≤AC≤3 D.1<AC<3 4.在一个n(n≥3)边形的n个外角中,钝角最多有()A.2个B.3个C.4个D.5个5.若△ABC有一个外角是锐角,则△ABC一定是()A.钝角三角形B.锐角三角形C.等边三角形D.等腰三角形6.如图是由线段AB,CD,DF,BF,CA组成的平面图形,∠D=28°,则∠A+∠B+∠C+∠F的度数为()A.62°B.152°C.208°D.236°7.下面给出的四个三角形都有一部分被遮挡,其中不能判断三角形类型的是()A.B.C.D.8.如图,在△ABC中,若AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,则AD是几个三角形的高线()A.4个B.5个C.6个D.8个9.如图,AD⊥BC于D,DE是△ADC的中线,则以AD为高的三角形有()A.3个B.4个C.5个D.6个10.如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A.1 B.2 C.3 D.4二.填空题11.小明发现交通指示牌中“停车让行标志”可以看成是正八边形,如图所示,则∠1=°.12.如图,△ABC被撕去了一角,经测量得∠A=66°,∠B=23°,则△ABC是三角形.(填“锐角”“直角”或“钝角”)13.如图,若∠1+∠2=220°,则∠A=度.14.一副分别含有30°和45°角的两个直角三角板,拼成如图图形,则∠1=度.15.如图,将一副直角三角板,按如图所示叠放在一起,则图中∠COB=.16.如图,点E为∠BAD和∠BCD平分线的交点,且∠B=40°,∠D=30°,则∠E =.三.解答题17.如图,△EFG的顶点F、G分别落在直线AB、CD上,GE平分∠FGD交AB于点H,∠EFG=90°,∠E=36°,∠FHG=54°.(1)求∠EFH的度数;(2)AB与CD平行吗?请说明理由.18.如图,在Rt△ABC中,∠ACB=90°,∠A=34°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.19.如图,点A、B分别在射线OM、ON上运动(不与点O重合).(1)如图1,若∠MON=90°,∠OBA、∠OAB的平分线交于点C,则∠ACB =°;(2)如图2,若∠MON=n°,∠OBA、∠OAB的平分线交于点C,求∠ACB的度数;(3)如图2,若∠MON=n°,△AOB的外角∠ABN、∠BAM的平分线交于点D,求∠ACB与∠ADB之间的数量关系,并求出∠ADB的度数;(4)如图3,若∠MON=80°,BC是∠ABN的平分线,BC的反向延长线与∠OAB 的平分线交于点E.试问:随着点A、B的运动,∠E的大小会变吗?如果不会,求∠E 的度数;如果会,请说明理由.20.同学们,学习几何一个重要方法就是要学会抓住基本图形,让我们今天来做一次研究性学习.(1)如图1所示的图形,像我们常见的学用品﹣﹣圆规.我们常把这样图形叫做“规形图”,那么请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:(2)如图2,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;(3)如图3,若△ABC中,∠ABO=∠ABC,∠ACO=∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为.21.如图,直角△ABC中,∠ACB=90°,CD⊥AB于D,CE平分∠ACB交AB于E,EF⊥AB交CB于F.(1)求证:CD∥EF;(2)若∠FEC=25°,求∠A的度数.22.(1)如图1,请证明∠A+∠B+∠C=180°(2)如图2的图形我们把它称为“8字形”,请证明∠A+∠B=∠C+∠D(3)如图3,E在DC的延长线上,AP平分∠BAD,CP平分∠BCE,猜想∠P与∠B、∠D之间的关系,并证明(4)如图4,AB∥CD,PA平分∠BAC,PC平分∠ACD,过点P作PM、PE交CD 于M,交AB于E,则①∠1+∠2+∠3+∠4不变;②∠3+∠4﹣∠1﹣∠2不变,选择正确的并给予证明.参考答案一.选择题1.解:A、3+4<8,不能摆成三角形;B、13+12>20,能摆成三角形;C、8+7=15,不能摆成三角形;D、5+5<11,不能摆成三角形.故选:B.2.解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD﹣∠B=60°﹣20°=40°,故选:A.3.解:若A,B,C三点共线,则AC=2或AC=4;若A,B,C三点不共线,则根据三角形的三边关系:第三边大于两边之差1,而小于两边之和7.即:2<AC<4.故线段AC的长度的取值范围是2≤AC≤4.故选:A.4.解:∵一个多边形的外角和为360°,∴外角为钝角的个数最多为3个.故选:B.5.解:∵△ABC有一个外角为锐角,∴与此外角相邻的内角的值为180°减去此外角,故相邻的内角大于90度,故△ABC是钝角三角形.故选:A.6.解:∵如图可知∠BED=∠F+∠B,∠CGE=∠C+∠A,又∵∠BED=∠D+∠EGD,∴∠F+∠B=∠D+∠EGD,又∵∠CGE+∠EGD=180°,∴∠C+∠A+∠F+∠B﹣∠D=180°,又∵∠D=28°,∴∠A+∠B+∠C+∠F=180°+28°=208°,故选:C.7.解:A、知道两个角,可以计算出第三个角的度数,因此可以判断出三角形类型;B、露出的角是钝角,因此是钝角三角形;C、露出的角是锐角,其他两角都不知道,因此不能判断出三角形类型;D、露出的角是钝角,因此是钝角三角形;故选:C.8.解:∵在△ABC中,AD⊥BC,点E是BC边上一点,且不与点B、C、D重合,∴AD是△ABD,△ABE,△ABC,△ADE,△ADC,△AEC的高.故选:C.9.解:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有3个,∴以AD为高的三角形有3个.故选:A.10.解:①根据角平分线的性质易求∠1=∠2;②∵△ABC的三条内角平分线相交于点I,∴∠BIC=180°﹣(∠3+∠2)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠BAC)=90°+∠BAC;∵AI平分∠BAC,∴∠DAI=∠DAE.∵DE⊥AI于I,∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC.∴∠BIC=∠BDI.∴180°﹣(∠4+∠5)=180°﹣(∠2+∠3).又∵∠3=∠4,∴∠2=∠5,∴∠5=∠1,综上所述,图中与∠ICE一定相等的角(不包括它本身)有2个.故选:B.二.填空题(共6小题)11.解:∵“停车让行标志”可以看成是正八边形,∴∠1=360°÷8=45°;故答案为:45.12.解:由三角形内角和定理得:∠C=180°﹣∠A﹣∠B=180°﹣66°﹣23°=91°>90°,∴△ABC是钝角三角形;故答案为:钝角.13.解:∵∠1+∠2+∠B+∠C=360°,∠1+∠2=220°,∴∠B+∠C=360°﹣(∠1+∠2)=140°,∵∠A+∠B+∠C=180°,∴∠A=180°﹣(∠B+∠C)=40°.故答案为:4014.解:∠1=∠2=180°﹣30°﹣45°=105°,故答案为:105.15.解:如图,∠ECD=45°,∠BDC=60°,∴∠COB=∠ECD+∠BDC=45°+60°=105°,故答案为:105°.16.解:∵∠D+∠DCE=∠E+∠DAE,∠E+∠ECB=∠B+∠EAB,∴∠D+∠DCE+∠B+∠EAB=2∠E+∠DAE+∠ECB,∵EC平分∠ECB,AE平分∠BAD,∴∠DCE=∠ECB,∠DAE=∠BAE,∴2∠E=∠B+∠D,∴∠E=(∠B+∠D)∴∠E=(30°+40°)=×70°=35°;故答案为:35°;三.解答题(共6小题)17.解:(1)∵∠FHG=54°,∴∠EHF=180°﹣∠FHG=126°.在△EFH中,∠EHF=126°,∠E=36°,∴∠EFH=180°﹣∠EHF﹣∠E=18°.(2)AB∥CD,理由如下:在△EFG中,∠EFG=90°,∠E=36°,∴∠EGF=180°﹣∠EFG﹣∠E=54°.∵GE平分∠FGD,∴∠HGD=∠EGF=54°.∵∠FHG=54°,∴∠FHG=∠HGD,∴AB∥CD.18.解:(1)∵∠ACB=90°,∠A=34°,∴∠CBD=124°,∵BE是∠CBD的平分线,∴∠CBE=∠CBD=62°;(2)∵∠ECB=90°,∠CBE=62°,∴∠CEB=28°,∵DF∥BE,∴∠F=∠CEB=28°.19.解:(1)∵∠MON=90°,∴∠OBA+∠OAB=90°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=×90°=45°,∴∠ACB=180°﹣45°=135°;故答案为:135;(2)在△AOB中,∠OBA+∠OAB=180°﹣∠AOB=180°﹣n°,∵∠OBA、∠OAB的平分线交于点C,∴∠ABC+∠BAC=(∠OBA+∠OAB)=(180°﹣n°),即∠ABC+∠BAC=90°﹣n°,∴∠ACB=180°﹣(∠ABC+∠BAC)=180°﹣(90°﹣n°)=90°+n°;(3)∵BC、BD分别是∠OBA和∠NBA的角平分线,∴∠ABC=∠OBA,∠ABD=∠NBA,∠ABC+∠ABD=∠OBA+∠NBA,∠ABC+∠ABD=(∠OBA+∠NBA)=90°,即∠CBD=90°,同理:∠CAD=90°,∵四边形内角和等于360°,∴∠ACB+∠ADB=360°﹣90°﹣90°=180°,由(1)知:∠ACB=90°+n°,∴∠ADB=180°﹣(90°+n°)=90°﹣n°,∴∠ACB+∠ADB=180°,∠ADB=90°﹣n°;(4)∠E的度数不变,∠E=40°;理由如下:∵∠NBA=∠AOB+∠OAB,∴∠OAB=∠NBA﹣∠AOB,∵AE、BC分别是∠OAB和∠NBA的角平分线,∴∠BAE=∠OAB,∠CBA=∠NBA,∠CBA=∠E+∠BAE,即∠NBA=∠E+∠OAB,∠NBA=∠E+(∠NBA﹣80°),∠NBA=∠E+∠NBA﹣40°,∴∠E=40°.20.解:(1)结论:∠BOC=∠BAC+∠B+∠C.理由:如图1中,连接AO,延长AO到H.∵∠BOH=∠B+∠BAH,∠CAH=∠C+∠CAH,∴∠BOC=∠B+∠BAH+∠CAH+∠C=∠BAC+∠B+∠C.(2)结论:∠BOC=90°+∠A.理由:如图2中,∵OB,OC是△ABC的角平分线,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A.(3)结论:∠BOC=60°+∠A.理由:∵∠ABO=∠ABC,∠ACO=∠ACB,∴∠BOC=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=60°+∠A.故答案为:∠BOC=60°+∠A.21.解:(1)∵CD⊥AB,EF⊥AB,∴∠CDB=∠FEB=90°,∴CD∥EF;(2)∵∠FEC=25°,CD∥EF,∴∠DCE=∠FEC=25°,∵CE平分∠ACB,∠ACB=90°,∴∠ACE=∠ACB=45°,∴∠ACD=45°﹣25°=20°,∵CD⊥AB,∴∠CDA=90°,∴∠A=180°﹣90°﹣20°=70°.22.解:(1)证明:如图1,延长BC到D,过点C作CE∥BA,∵BA∥CE,∴∠B=∠1,∠A=∠2,又∵∠BCD=∠BCA+∠2+∠1=180°,∴∠A+∠B+∠ACB=180°;(2)证明:如图2,在△AOB中,∠A+∠B+∠AOB=180°,在△COD中,∠C+∠D+∠COD=180°,∵∠AOB=∠COD,∴∠A+∠B=∠C+∠D;(3)解:如图3,∵AP平分∠BAD,CP平分∠BCD的外角∠BCE,∴∠1=∠2,∠3=∠4,∵(∠1+∠2)+∠B=(180°﹣2∠3)+∠D,∠2+∠P=(180°﹣∠3)+∠D,∴2∠P=180°+∠D+∠B,∴∠P=90°+(∠B+∠D);(4)解:②∠3+∠4﹣∠1﹣∠2不变正确.理由如下:作PQ∥AB,如图4,∵AB∥CD,∴PQ∥CD,由AB∥PQ得∠APQ+∠3+∠4=180°,即∠APQ=180°﹣∠3﹣∠4,由PQ∥CD得∠5=∠2,∵∠APQ+∠5+∠1=90°,∴180°﹣∠3﹣∠4+∠2+∠1=90°,∴∠3+∠4﹣∠1﹣∠2=90°.。

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》单元检测(含答案)

(人教版)八年级上册数学第11章《三角形》练习一.选择题(共19小题)1.(2020春•开福区校级期末)如图,在三角形ABC中,∠A=45°,三角形ABC的高线BD,CE交于点O,则∠BOC的度数()A.120°B.125°C.135°D.145°2.(2020春•永州期末)富有灿烂文化的永州,现今保留着许多具有历史和文化价值的建筑,古朴的建筑物上雕刻的优美图案是我们数学研究的重要内容.图1中的“冰裂纹窗格”图案就是永州古建筑雕刻图案其中的代表,无规则多边形的形状,蕴含了丰富而和谐的数学美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的多边形,根据绘制的图形,则∠1+∠2+∠3+∠4+∠5的度数为()A.72°B.108°C.360°D.540°3.(2020春•雨花区校级期末)以下列各组线段的长为边,能组成三角形的是()A.3cm,6cm,8cm B.3cm,2cm,6cmC.5cm,6cm,11cm D.2cm,7cm,4cm4.(2020春•雨花区期末)在一个直角三角形中,有一个锐角等于25°,则另一个锐角的度数是()A.25°B.55°C.65°D.75°5.(2020春•雨花区期末)如图,已知CD和BE是△ABC的角平分线,∠A=60°,则∠BOC=()A.60°B.100°C.120°D.150°6.(2020春•天心区期末)如图,一副直角三角板图示放置,点C在DF的延长线上,点A在边EF上,AB ∥CD,∠ACB=∠EDF=90°,则∠CAF=()A.10°B.15°C.20°D.25°7.(2019秋•赫山区期末)已知三角形三边长3,4,x,则x的取值范围是()A.x>1B.x<7C.1<x<7D.﹣1<x<78.(2019秋•永定区期末)长度分别为3,7,x的三条线段能组成一个三角形,x的值可以是()A.2B.3C.4D.59.(2020春•天心区期末)△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC的形状是()A.直角三角形B.等腰三角形C.锐角三角形D.钝角三角形10.(2020春•天心区期末)已知三角形三边长为2,3,x,则x的取值范围是()A.x>1B.x<5C.1<x<5D.﹣1<x<511.(2020春•岳麓区校级期末)如图,点C在线段AB的延长线上,∠DAC=15°,∠DBC=110°,则∠D的度数是()A.95°B.85°C.100°D.125°12.(2019秋•浏阳市期末)以下列长度的线段为边,可以作一个三角形的是()A.6cm,16cm,21cm B.8cm,16cm,30cmC.6cm,16cm,24cm D.8cm,16cm,24cm13.(2020春•衡阳期末)如果一个多边形的内角和与外角和相等,那么这个多边形是()A.七边形B.六边形C.五边形D.四边形14.(2019秋•永定区期末)如果n边形的内角和是它外角和的3倍,则n等于()A.6B.7C.8D.915.(2020春•赫山区期末)若一个多边形的每个内角都等于150°,则这个多边形的边数是()A.10B.11C.12D.1316.(2020春•长沙期末)△ABC中BC边上的高作法正确的是()A.B.C.D.17.(2019春•永州期末)在Rt△ABC中,若∠A=40°,∠C=90°,则∠B的度数是()A.20°B.30°C.40°D.50°18.(2019春•靖州县期末)下列度数不可能是多边形内角和的是()A.360°B.560°C.720°D.1440°19.(2018秋•江华县期末)以下列各组长度的线段为边,其中a>3,能构成三角形的是()A.2a+7,a+3,a+4B.5a2,6a2,10a2C.3a,4a,a D.a﹣1,a﹣2,3a﹣3二.填空题(共9小题)20.(2020春•涟源市期末)如图,在Rt△ABC中,∠B=90°,∠ACD=130°,则∠A=°.21.(2020春•长沙期末)如图,四边形ABCD中,且∠1,∠2分别是∠BCD和∠BAD的邻补角,若∠1+∠2=150°.则∠B+∠ADC=.22.(2020春•开福区校级期末)已知三条线段长度分别为1、2、4,能否组成三角形?.(填“能”或“不能”).23.(2020春•雨花区期末)如图,若∠A=30°,∠ACD=105°,则∠EBC=°.24.(2020春•衡阳期末)如图,小明从P点出发,沿直线前进5米后向右转α,接着沿直线前进5米,再向右转α,…,照这样走下去,第一次回到出发地点P时,一共走了120米,则α的度数是.25.(2019秋•涟源市期末)如图,∠BDC=130°,∠A=40°,∠B+∠C的大小是.26.(2020春•岳麓区校级期末)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.27.(2020春•常德期末)如图,两直线AB与CD平行,则∠1+∠2+∠3+∠4+∠5+∠6=°.28.(2019春•开福区校级期末)三角形的两边长分别为5cm和12cm,第三边与前两边中的一边相等,则三角形的周长为.三.解答题(共7小题)29.(2020春•永州期末)如图所示,在四边形ABCD中,∠A=110°,∠ABC=70°,BD⊥CD于点D,EF⊥CD于点F,试说明∠1=∠2.30.(2019秋•双清区期末)如图,点A在MN上,点B在PQ上,连接AB,过点A作AC⊥AB交PQ于点C,过点B作BD平分∠ABC交AC于点D,且∠NAC+∠ABC=90°.(1)求证:MN∥PQ;(2)若∠ABC=∠NAC+10°,求∠ADB的度数.31.(2020春•益阳期末)阅读:如图1,CE∥AB,所以∠1=∠A,∠2=∠B.所以∠ACD=∠1+∠2=∠A+∠B.这是一个有用的结论,请用这个结论,在图2的四边形ABCD内引一条和一边平行的直线,求∠A+∠B+∠C+∠D的度数.32.(2018秋•靖州县期末)已知:如图,△ABC中,AD⊥BC于D,BE是三角形的角平分线,交AD于F.(1)若∠ABC=40°,求∠AFE的度数.(2)若∠BAC是直角,请猜想:△AFE的形状,并写出证明.33.(2019春•雨花区校级期末)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH ⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.34.(2018秋•安仁县期末)如图,D是△ABC的BC边上的一点,AD=BD,∠ADC=80°.(1)求∠B的度数;(2)若∠BAC=70°,判断△ABC的形状,并说明理由.35.(2019春•天心区校级期末)一个多边形的内角和与外角和的和是1440°,通过计算说明它是几边形.参考答案与试题解析一.选择题(共19小题)1.【解答】解:∵∠A+∠ABC+∠ACB=180°,∠A=45°,∴∠ABC+∠ACB=135°,∵BD⊥AC,CE⊥AB,∴∠ABC+∠BCE=∠ACB+∠CBD=90°,∴∠ABC+∠BCE+∠ACB+∠CBD=180°,∴∠BCE+∠CBD=45°,∵∠BOC+∠BCE+∠DBC=180°,∴∠BOC=135°.故选:C.2.【解答】解:由多边形的外角和等于360度,可得∠1+∠2+∠3+∠4+∠5=360度.故选:C.3.【解答】解:根据三角形的三边关系,A、3+6=9>8,能组成三角形;B、2+3=5<6,不能够组成三角形;C、5+6=11,不能组成三角形;D、4+2=6<7,不能组成三角形.故选:A.4.【解答】解:∵在一个直角三角形中,有一个锐角等于25°,∴另一个锐角的度数是90°﹣25°=65°.故选:C.5.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=180°﹣60°=120°,∵CD和BE是△ABC的角平分线,∴∠OBC+∠OCB=12∠ABC+12∠ACB=12(∠ABC+∠ACB)=60°,∴∠BOC=180°﹣(∠OBC+∠OCB)=120°,故选:C.6.【解答】解:∵AB∥CD,∴∠BAC=∠ACD=30°,∵∠AFD=∠CAF+∠ACF=45°,∴∠CAF=45°﹣30°=15°,故选:B.7.【解答】解:由题意得:4﹣3<x<4+3,即:1<x<7,故选:C.8.【解答】解:7﹣3<x<7+3,4<x<10,只有选项D符合题意.故选:D.9.【解答】解:∵在△ABC中,∠A:∠B:∠C=1:2:3,∴设∠A=x,则∠B=2x,∠C=3x.∵∠A+∠B+∠C=180°,即x+2x+3x=180°,解得x=30°,∴∠C=3x=90°,∴△ABC是直角三角形.故选:A.10.【解答】解:由三角形三边关系可知,3﹣2<x<3+2,∴1<x<5,故选:C.11.【解答】解:∵∠DBC是△ABD的外角,∴∠DBC=∠D+∠A,则∠D=∠DBC﹣∠A=110°﹣15°=95°,故选:A.12.【解答】解:A、∵6+16=22>21,∴6、16、21能组成三角形;B、∵8+16=24<30,∴8、16、30不能组成三角形;C、∵6+16=22<24,∴6、16、24不能组成三角形;D、∵8+16=24,∴8、16、24不能组成三角形.故选:A.13.【解答】解:设多边形的边数为n,根据题意得(n﹣2)•180°=360°,解得n=4.故选:D.14.【解答】解:由题意得:180(n﹣2)=360×3,解得:n=8,故选:C.15.【解答】解:由题意可得:180°•(n﹣2)=150°•n,解得n=12.故多边形是12边形.故选:C.16.【解答】解:为△ABC中BC边上的高的是D选项.故选:D.17.【解答】解:∵∠A=40°,∠C=90°,∴∠B=90°﹣40°=50°,故选:D.18.【解答】解:360°、720°、1440°都是180°的倍数,它们是多边形内角和;560°不是180°的倍数,所以它不可能是多边形内角和;故选:B.19.【解答】解:当a>3时,根据三角形的三边关系,得A、a+3+a+4=2a+7,不能组成三角形;B、5a2+6a2>10a2,能组成三角形;C、a+3a=4a,不能够组成三角形;D、a﹣1+a﹣2=2a﹣3,3a﹣3﹣2a+3=a>3,2a﹣3<3a﹣3,不能组成三角形.故选:B.二.填空题(共9小题)20.【解答】解:∵∠ACD的△ABC的一个外角,∴∠A=∠ACD﹣∠B=130°﹣90°=40°,故答案为:40.21.【解答】解:∵∠1+∠2=150°,∴∠DAB+∠DCB=360°﹣150°=210°,∵∠B+∠D+∠DAB+∠DCB=360°,∴∠B+∠ADC=360°﹣(∠DAB+∠DCB)=150°,故答案为150°.22.【解答】解:根据三角形的三边关系,1+2=3<4,不能组成三角形;故答案为:不能.23.【解答】解:∵∠ACD=∠A+∠ABC,∴105°=30°+∠ABC,∴∠ABC=75°,∴∠EBC=180°﹣∠ABC=105°,故答案为105.24.【解答】解:向左转的次数120÷5=24(次),则左转的角度是360°÷24=15°.故答案是:15°.25.【解答】解:延长BD交AC于H,∵∠BDC=∠DHC+∠C,∠DHC=∠A+∠B,∴∠BDC=∠A+∠B+∠C,∵∠BDC=130°,∠A=40°,∴∠B+∠C=130°﹣40°=90°故答案为90°.26.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.27.【解答】解:分别过E点,F点,G点,H点作L1,L2,L3,L4平行于AB 利用内错角和同旁内角,把这六个角转化一下,可得,有5个180°的角,∴180×5=900°.故答案为:900.28.【解答】解:当第三边为5cm时,此时三角形的三边分别为:5cm,5cm和12cm,∵5+5<12,∴不能组成三角形;当第三边为12cm时,此时三角形的三边分别为:5cm,12cm和12cm,∵5+12>12,∴能组成三角形;此时周长为5+12+12=29cm,故答案为:29cm.三.解答题(共7小题)29.【解答】解:∵∠A=110°,∠ABC=70°,∴∠A+∠ABC=180°,∴AD∥BC(同旁内角互补,两直线平行),∴∠1=∠3(两直线平行,内错角相等),∵BD⊥CD,EF⊥CD,∴∠BDC=∠EFC=90°,∴BD∥EF,∴∠2=∠3(两直线平行,同位角相等),∴∠1=∠2(等量代换).30.【解答】(1)证明:∵AC⊥AB,∴∠BAC=90°,∴∠ABC+∠ACB=90°,∵∠NAC+∠ABC=90°,∴∠NAC=∠ACB,∴MN∥PQ;(2)解:∵∠ABC=∠NAC+10°=∠ACB+10°,∵∠ACB+∠ABC=90°,∴∠ACB+∠ACB+10°=90°,∴∠ACB=40°,∴∠ABC=50°,∵BD平分∠ABC,∴∠ABD=12∠ABC=25°,∵∠BAC=90°,∴∠ADB=90°﹣25°=65°.31.【解答】解:作DE∥AB,交BC于E,由题意,∠DEB=∠C+∠EDC,∴∠A+∠ADE=180°,∠B+∠DEB=180°,则∠A+∠B+∠C+∠ADC=∠A+∠B+∠C+∠EDC+∠ADE=∠A+∠B+∠DEB+∠ADE=360°.32.【解答】解:(1)∵AD⊥BC,∴∠ADB=90°,∵∠ABC=40°,BE平分∠ABC,∴∠DBF=12∠ABC=20°,∴∠BFD=90°﹣20°=70°∴∠AFE=∠BFD=70°(2)结论:△AEF是等腰三角形.理由:∵∠BAE=∠ADF=90°,∴∠AEF+∠ABE=90°,∠BFD+∠FBD=90°,∵∠ABE=∠DBF,∴∠AEF=∠BFD,∵∠BFD=∠AFE,∴∠AFE=∠AEF,∴AE=AF,∴△AEF是等腰三角形.33.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=12∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.34.【解答】解:(1)∵在△ABD中,AD=BD,∴∠B=∠BAD,∵∠ADC=∠B+∠BAD,∠ADC=80°,∴∠B=12∠ADC=40°;(2)△ABC是等腰三角形.理由:∵∠B=40°,∠BAC=70°,∴∠C=180°﹣∠B﹣∠BAC=70°,∴∠C=∠BAC,∴BA=BC,∴△ABC是等腰三角形.35.【解答】解:设它是n边形,依题意得:(n﹣2)180°+360°=1440°.解得:n=8.答:它是八边形.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版八年级数学上册第11章《三角形》测试题
一、选择题
1.一个多边形内角和是10800,则这个多边形的边数为()
A、 6
B、 7
C、 8
D、 9
2.能将三角形面积平分的是三角形的()
A、角平分线
B、高
C、中线
D、外角平分线
3.已知三角形的两边长分别为4cm和9cm,则下列长度的四条线段中能作为第三边的是()
A.13cm B.6cm C.5cm D.4cm
4.三角形一个外角小于与它相邻的内角,这个三角形是()
A.直角三角形B.锐角三角形 C.钝角三角形 D.属于哪一类不能确定
5.如图,在直角三角形ABC中,AC≠AB,AD是斜边上的高,
DE⊥AC,DF⊥AB,垂足分别为E、F,则图中与∠C
(∠C除外)相等的角的个数是()
A、3个
B、4个
C、5个
D、6个
6.如图,将一副三角板叠放在一起,使直角的顶点重合于O,
则∠AOC+∠DOB=()
A、900
B、1200
C、1600
D、1800
7.以长为13cm、10cm、5cm、7cm的四条线段中的三条线段为边,可以画出三角形的个数是()(A)1个 (B)2个 (C)3个 (D)4个
8.给出下列命题:①三条线段组成的图形叫三角形②三角形相邻两边组成的角叫三角形的内角③三角形的角平分线是射线④三角形的高所在的直线交于一点,这一点不在三角形内就在三角形外⑤任何一个三角形都有三条高、三条中线、三条角平分线
⑥三角形的三条角平分线交于一点,且这点在三角形内。

正确的命题有( )
A.1个
B.2个
C.3个
D.4个
二、填空题
9.如图,一面小红旗其中∠A=60°, ∠B=30°,则∠BCD= 。

10.为了使一扇旧木门不变形,木工师傅在木门的背面加钉了一根木条这样做的道理是___________________.
11.把一副常用的三角板如图所示拼在一起,那么图中∠ADE是
度。

12.如图,∠1=_____.
第5题图
第6题图
C
D
B
A
第9题图第10题图
A
B C
D
E
第11题图
第12题图第14题图
1 2
B
A
E
C
D
I
16题图
13.若三角形三个内角度数的比为2:3:4,则相应的外角比是 . 14.如图,⊿ABC 中,∠A = 40°,∠B = 72°,CE 平分∠ACB ,CD ⊥AB 于D ,DF ⊥CE , 则∠CDF = 度。

15.如果将长度为a-2、a+5和a+2的三根线段首尾顺次相接可以得到一个三角形,那么a 的取值范围是
16.如图,△ABC 中,∠A=1000,BI 、CI 分别平分∠ABC ,∠ACB ,则∠BIC= ,若BM 、CM 分别平分∠ABC ,∠ACB 的外角平分线,则∠M=
三、解答题
17.有人说,自己的步子大,一步能走三米多,你相信吗? 用你学过的数学知识说明理由。

18.(小颖要制作一个三角形木架,现有两根长度为8m 和5m 的木棒。

如果要求第三根木棒的长度是整数,小颖有几种选法?第三根木棒的长度可以是多少?
19.小华从点A 出发向前走10m ,向右转36°然后继续向前走10m ,再向右转36°,他以同样的方法继续走下去,他能回到点A 吗?若能,当他走回到点A 时共走多少米?若不能,写出理由。

20.⊿ABC 中,∠A BC 、∠ACB 的平分线相交于点O 。

(1)若∠ABC = 40°,∠ACB = 50°,则∠BOC = 。

(2)若∠ABC +∠ACB =116°,则∠BOC = 。

(3)若∠A = 76°,则∠BOC = 。

(4)若∠BOC = 120°,则∠A = 。

(5)你能找出∠A 与∠BOC 之间的数量关系吗? 21.一个零件的形状如图,按规定∠A=90º ,∠ C=25º,∠B=25º,检验已量得∠BCD=150º,就判断这个零件不合格,运用三角形的有关知识说明零件不合格的理由。

A C
D B 第20题图
四、拓广探索
22.已知,如图,在△ ABC中,AD,AE分别是△ ABC的高和角平分线,若∠B=30°,∠C=50°.
(1)求∠DAE的度数。

(2)试写出∠DAE与∠C-∠B有何关系?(不必证明)
23.如图,已知D为△ABC边BC延长线上一点,DF⊥AB于F交
AC于E,∠A=35°,∠D=42°,求∠ACD的度数.
24.如图,在△ABC中,∠B=∠C,∠BAD=40°,且∠ADE=∠AED,
求∠CDE的度数.
A
C
D
第26题图
F
D
C
B
E
A
第27题图
D
E
A
第28题图
参考答案
一、1.A;2.C;3.B;4.C;5.B;6.D;7.A;8.D;9.C;10.B
二、11.9;12.三角形的稳定性;13.135;14.1200;15.7:6:5;16.74;
17.a>5;18.720,720,360;19.1400,400;20.6;
三、
21.不能。

如果此人一步能走三米多,由三角形三边的关系得,此人两腿的长大于3米多,这与实际情况不符。

所以他一步不能走三米多。

22.小颖有9种选法。

第三根木棒的长度可以是4cm,5cm,6cm,7cm,8cm,9cm,10cm,11cm,12cm。

23.小华能回到点A。

当他走回到点A时,共走1000m。

24.(1)135°;(2)122°;(3)128°;(4)60°;(5)∠BOC = 90°+ 1
2
∠A
25.零件不合格。

理由略
四、26.(1) ∠DAE=10°
(2)∠C - ∠B=2∠DAE
27.解:因为∠AFE=90°,所以∠AEF=90°-∠A=90°-35°=55°.所以∠CED=•∠AEF=55°,
所以∠ACD=180°-∠CED-∠D=180°-55°-42=83°.
28.解:设∠DAE=x,则∠BAC=40°+x. 因为∠B=∠C,所以2∠2=180°-∠BAC,
∠C=90°-1
2
∠BAC=90°-
1
2
(40°+x). 同理∠AED=90°-
1
2
∠DAE=90°-
1
2
x.
∠CDE=∠AED-∠C=(90°-1
2
x)-[90°-
1
2
(40°+x)]=20°.。

相关文档
最新文档