2017年秋季学期新版新人教版九年级数学上学期21.3、实际问题与一元二次方程教案63
21.3 实际问题与一元二次方程 教案 【新人教版九年级上册数学】

21.3 实际问题与一元二次方程教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1. 掌握用“倍数关系”、“面积法”等建立数学模型,并利用它解决实际问题.2. 掌握建立数学模型以解决增长率与降低率问题.3. 经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.教学难点根据“倍数关系”、“面积法”等之间的等量关系建立一元二次方程的数学模型.课时安排3课时.1教案A第1课时教学内容21.3 实际问题与一元二次方程(1):由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.教学目标1.掌握用“倍数关系”建立数学模型,并利用它解决实际问题.2.经历由事实问题中抽象出一元二次方程等有关概念的过程,使同学们体会到通过一元二次方程也是刻画现实世界中的数量关系的一个有效数学模型.教学重点用“倍数关系”建立数学模型.教学难点用“倍数关系”建立数学模型.教学过程一、导入新课师:同学们好,我们已经学过用一元一次方程来解决实际问题,你还记得列一元一次方程解决实际问题的步骤吗?生:审题、设未知数、找等量关系、列方程、解方程,最后答题.试:同一元一次方程、二元一次方程(组)等一样,一元二次方程也可以作为反映某些实际问题中数量关系的数学模型.这一节我们就讨论如何利用一元二次方程解决实际问题.二、新课教学探究1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师引导学生审题,让学生思考怎样设未知数,找等量关系列出方程.分析:设每轮传染中平均一个人传染了x个人.开始有一个人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有个人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,用代数式表示,第二轮后共有个人患了流感.列方程1+x+x(x+1)=121,整理,得x2+2x-120=0.解方程,得x1=10,x2=-12(不合题意,舍去)2答:每轮传染中平均一个人传染了10个人.思考:按照这样的传染速度,经过三轮传染后共有多少人患流感?121+121×10=1331(人)通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗?后一轮被传染的人数是前一轮患病人数的x倍.三、巩固练习某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支、主干,如果支干和小分支的总数是91,每个支干长出多少小分支?解:设每个支干长出x个小分支,则1+x+xx=91,即x2+x-90=0.解得x1=9,x2=-10(不合题意,舍去)答:每个支干长出9个小分支.四、课堂小结本节课应掌握:1.利用“倍数关系”建立关于一元二次方程的数学模型,并利用恰当方法解它.2.解一元二次方程的一般步骤:一审、二设、三列、四解、五验(检验方程的解是否符合题意,将不符合题意的解舍去)、六答.五、布置作业习题21.3 第6题.第2课时教学内容21.3实际问题与一元二次方程(2):建立一元二次方程的数学模型,解决增长率与降低率问题.教学目标掌握建立数学模型以解决增长率与降低率问题.教学重点如何解决增长率与降低率问题.教学难点解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x是增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.教学过程一、导入新课同学们好,我们上节课学习了探究1关于“倍数”的问题,知道了解一元二次方程的一般步骤.今天,我们就学习如何解决“增长率”与“降低率”的问题.二、新课教学探究2:两年前生产1 t甲种药品的成本是5 000元,生产1 t乙种药品的成本是6 0003元,随着生产技术的进步,现在生产1 t甲种药品的成本是3 000元,生产1 t乙种药品的成本是3 600元,哪种药品成本的年平均下降率较大?分析:根据题意,很容易知道甲种药品成本的年平均下降额为(5 000-3 000)÷2=1 000(元);乙种药品成本的年平均下降额为(6 000-3 600)÷2=1 200(元).显然,乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率(百分数).解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5 000(1-x)元,两年后甲种药品成本为5 000(1-x)2元,于是有5 000(1-x)2=3 000.解方程,得x1≈0.225,x2≈1.775.根据药品的实际意义,甲种药品成本的年平均下降率约为22.5%.答:甲种药品成本的年平均下降率约为22.5%.算一算:乙种药品成本的年平均下降率是多少?试比较这两种药品成本的年平均下降率.解:设乙种药品成本的年平均下降率为x,则一年后乙种药品成本为6 000(1-x)元,两年后甲种药品成本为6 000(1-x)2元,于是有6 000(1-x)2=3 600.解方程,得x1≈0.225,x2≈1.775.同理,乙种药品成本的年平均下降率约为22.5%.甲、乙两种药品成本的年平均下降率相同,均约为22.5%.思考:经过计算,你能得出什么结论?成本下降额较大的药品,它的成本下降率一定也较大吗?应怎样全面地比较对象的变化状况?经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.小结:类似地,这种增长率的问题有一定的模式.若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(增长取+,降低取-).三、巩固练习某人将2 000元人民币按一年定期存入银行,到期后支取1 000元用于购物,剩下的1 000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1 320元,求这种存款方式的年利率.分析:设这种存款方式的年利率为x,第一次存2 000元取1 000元,剩下的本金和利息是1 000+2 000x×80%;第二次存,本金就变为1 000+2000x×80%,其它依此类推.解:设这种存款方式的年利率为x,则1 000+2 000x×80%+(1 000+2 000x×8%)x×80%=1 320.整理,得1 280x2+800x+1 600x=320,即8x2+15x-2=0.解得4。
2017年秋季学期新版新人教版九年级数学上学期21.3、实际问题与一元二次方程课件34

16.如图,在长方形ABCD中,AB=5 cm,BC=6 cm,点P从点A开 始沿边AB向终点B以1 cm/s的速度移动,与此同时,点Q从点B开始沿
边BC向终点C以2 cm/s的速度移动,如果点P,Q分别从A,B同时出发,
当点Q运动到点C时,两点停止运动,设运动时间为t(t≠0)秒. (1)BQ=________cm,PB=________cm;(用含t的代数式表示) (2)当t为何值时,PQ的长度等于5 cm? (3)是否存在t的值,使得五边形APQCD的面积 等于26 cm2?若存在,请求出此时t的值;若不 存在,请说明理由.
九年级上册数学(人教版)
第二十一章
21.3
第3课时
一元二次方程
实际问题与一元二次方程
用一元二次方程解决几何图形问题
知识点1:几何图形的面积问题 1.(2016·兰州)公园有一块正方形的空地 ,后来从这块空地上划
出部分区域栽种鲜花(如图),原空地一边减少了1 m,另一边减少
了2 m,剩余空地的面积为18 m2,求原正方形空地的边长.设原 正方形的空地的边长为x m,则可列方程为( C ) A.(x+1)(x+2)=18 B.x2-3x+16=0
C.(x-1)(x-2)=18
D.x2+3x+16=0
2.有一个面积为16 cm2的梯形,它的一条底边长为3 cm,另一条
底边比它的高线长1 cm.若设这条底边长为x cm,依题意,列出方
程整理后得( A ) A.x2+2x-35=0 B.x2+2x-70=0 C.x2-2x-35=0 D.x2-2x+70=0
10 .如图 ,矩形ABCD 的周长是20 cm,以AB,AD为边向外作正方形 ABEF和正方形ADGH,若正方形ABEF和ADGH的面积之和为68 cm2, 那么矩形ABCD的面积是( B ) A.21 cm2 B.16 cm2 C.24 cm2 D.9 cm2
新人教版 九年级上册21.3实际问题与一元二次方程传人病、增长率、图形问题、数字问题、握手问题、合同问题

分析 1
第一轮传染 后
1+1· x
1+x+x(1+x)
如果按照这样的传染 速度三轮传染后有多 少人患流感?
(2009年中山市)某种电脑病毒传播非常快,如果 一台电脑被感染,经过两轮感染后就会有81台电 脑被感染.请你用学过的知识分析,每轮感染中 平均一台电脑会感染几台电脑? 若病毒得不到有效控制,3轮感染后,被感染的 电脑会不会超过700台?
练习
1. 当x取什么值时,一元二次多项式x -x-6与一元 一次多项式3x-2的值相等?
2
答: x 2 2 2 .
2. 当t取什么值,关于x的一元二次方程
x 1 x t 1 . 4 2 有两个相等的实数根?
2
2
答: t 2 .
2
15
3. 要组织一场篮球联赛, 每两队之间都赛2场,计划 安排90场比赛,应邀请多少个球队参加比赛?
x( x 1) 90
4.参加一次聚会的每两人都握了一次手,所有人共 握手10次,有多少人参加聚会? x( x 1)
2
10
3、要组织一场篮球联赛,赛制为单循环形式,即每两队 之间都赛一场,计划安排15场比赛,应邀请多少个球队参 加比赛? 4、要组织一场篮球联赛, 每两队之间都赛2场,计划安 排90场比赛,应邀请多少个球队参加比赛? 5、参加一次聚会的每两人都握了一次手,所有人共 握手10次,有多少人参加聚会?
●
解得, x x1=9,x2=-10(不合题意,舍去) 支干
即 x
2
x 90 0
小 分 支
小 分 支
…… ……
小 分 支
小 分 支
……
2017年秋季学期新版新人教版九年级数学上学期21.3、实际问题与一元二次方程教案34

实际问题与一元二次方程教学内容根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.教学目标掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.重难点关键1.•重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.2.•难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.教具、学具准备小黑板教学过程一、复习引入(口述)1.直角三角形的面积公式是什么?•一般三角形的面积公式是什么呢?2.正方形的面积公式是什么呢?长方形的面积公式又是什么?3.梯形的面积公式是什么?4.菱形的面积公式是什么?5.平行四边形的面积公式是什么?6.圆的面积公式是什么?(学生口答,老师点评)二、探索新知现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,•上口宽比渠深多2m,渠底比渠深多0.4m.(1)渠道的上口宽与渠底宽各是多少?(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?分析:因为渠深最小,为了便于计算,不妨设渠深为xm,则上口宽为x+2,•渠底为x+0.4,那么,根据梯形的面积公式便可建模.解:(1)设渠深为xm则渠底为(x+0.4)m,上口宽为(x+2)m依题意,得:12(x+2+x+0.4)x=1.6整理,得:5x2+6x-8=0解得:x1=45=0.8m,x2=-2(舍)∴上口宽为2.8m,渠底为1.2m.(2)1.675048=25天答:渠道的上口宽与渠底深各是2.8m和1.2m;需要25天才能挖完渠道.学生活动:例2.如图,要设计一本书的封面,封面长27cm,宽21cm,•正中央是一个与整个封面长宽比例相同的矩形,•如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,•应如何设计四周边衬的宽度(精确到0.1cm)?九年级 练数学 习同步老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,•由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,•则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.因为四周的彩色边衬所点面积是封面面积的14,则中央矩形的面积是封面面积的.所以(27-18x)(21-14x)=34×27×21整理,得:16x2-48x+9=0解方程,得:x=64±,x1≈2.8cm,x2≈0.2所以:9x1=25.2cm(舍去),9x2=1.8cm,7x2=1.4cm因此,上下边衬的宽均为1.8cm,左、右边衬的宽均为1.4cm.三、巩固练习有一张长方形的桌子,长6尺,宽3尺,有一块台布的面积是桌面面积的2倍,并且铺在桌面上时,各边垂下的长度相同,求台布的长和宽各是多少?(精确到0.1尺)四、应用拓展例3.如图(a)、(b)所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A•开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.(1)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.(2)如果P、Q分别从A、B同时出发,并且P到B后又继续在BC边上前进,Q到C•后又继续在CA边上前进,经过几秒钟,使△PCQ的面积等于12.6cm2.(友情提示:过点Q•作DQ⊥CB,垂足为D,则:DQ CQ AB AC=)(a)BACQP(b)BACQ DP分析:(1)设经过x秒钟,使S△PBQ=8cm2,那么AP=x,PB=6-x,QB=2x,由面积公式便可得到一元二次方程的数学模型.(2)设经过y秒钟,这里的y>6使△PCQ的面积等于12.6cm2.因为AB=6,BC=8,由勾股定理得:AC=10,又由于PA=y,CP=(14-y),CQ=(2y-8),又由友情提示,便可得到DQ,那么根据三角形的面积公式即可建模.解:(1)设x秒,点P在AB上,点Q在BC上,且使△PBQ的面积为8cm2.则:12(6-x)·2x=8整理,得:x2-6x+8=0解得:x1=2,x2=4∴经过2秒,点P到离A点1×2=2cm处,点Q离B点2×2=4cm处,经过4秒,点P 到离A点1×4=4cm处,点Q离B点2×4=8cm处,所以它们都符合要求.(2)设y秒后点P移到BC上,且有CP=(14-y)cm,点Q在CA上移动,且使CQ=(2y-8)cm,过点Q作DQ⊥CB,垂足为D,则有DQ CQ AB AC=∵AB=6,BC=8∴由勾股定理,得:∴DQ=6(28)6(4) 105y y--=则:12(14-y)·6(4)5y-=12.6整理,得:y2-18y+77=0解得:y1=7,y2=11即经过7秒,点P在BC上距C点7cm处(CP=14-y=7),点Q在CA上距C点6cm处(CQ=•2y-8=6),使△PCD的面积为12.6cm2.经过11秒,点P在BC上距C点3cm处,点Q在CA上距C点14cm>10,∴点Q已超过CA的范围,即此解不存在.∴本小题只有一解y1=7.五、归纳小结本节课应掌握:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.六、布置作业1.教材P53综合运用5、6 拓广探索全部.2.选用作业设计:一、选择题1.直角三角形两条直角边的和为7,面积为6,则斜边为().A B.5 C.72.有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是().A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;D.以上都不对3.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是().A.8cm B.64cm C.8cm2 D.64cm2二、填空题1.矩形的周长为,面积为1,则矩形的长和宽分别为________.2.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.3.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.三、综合提高题1.如图所示的一防水坝的横截面(梯形),坝顶宽3m,背水坡度为1:2,迎水坡度为1:1,若坝长30m,完成大坝所用去的土方为4500m2,问水坝的高应是多少?(说明:•背水坡度CF BF =12,迎水坡度11DEAE)(精确到0.1m)ACEDF2.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2•的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少?3.谁能量出道路的宽度:如图22-10,有矩形地ABCD一块,要在中央修一矩形花辅EFGH,使其面积为这块地面积的一半,且花圃四周道路的宽相等,今无测量工具,•只有无刻度的足够长的绳子一条,如何量出道路的宽度?请同学们利用自己掌握的数学知识来解决这个实际问题,相信你一定能行.答案:一、1.B 2.B 3.D二、1.2.32cm3.20m 和7.5m 或15m 和10m 三、1.设坝的高是x ,则AE=x ,BF=2x ,AB=3+3x , 依题意,得:12(3+3+3x )x ×30=4500 整理,得:x 2+2x-100=0 解得x ≈220.102-+即x ≈9.05(m ) 2.设宽为x ,则12×8-8=2×8x+2(12-2x )x整理,得:x 2-10x+22=0解得:x 1,x 23.设道路的宽为x ,AB=a ,AD=b 则(a-2x )(b-2x )=12ab 解得:x=14[(a+b )量法为:用绳子量出AB+AD (即a+b )之长,从中减去BD 之长(对角线,得L=•AB+AD-BD ,再将L 对折两次即得到道路的宽4AB AD BD +-,即4a b +.。
最新人教版数学九年级上册第二十一章3 实际问题与一元二次方程 (第2课时)

21.3 实际问题与一元二次方程/
1.某种植基地2016年蔬菜产量为80吨,预计2018年蔬菜
产量达到100吨,求蔬菜产量的年平均增长率,设蔬菜
产量的年平均增长率为x,则可列方程为( A )
A.80(1+x)2=100
B.100(1﹣x)2=80
C.80(1+2x)=100
D.80(1+x2)=100
链接中考
21.3 实际问题与一元二次方程/
2.某市从2017年开始大力发展“竹文化”旅游产业.
据统计,该市2017年“竹文化”旅游收入约为2亿元.
预计2019“竹文化”旅游收入达到2.88亿元,据此估
计该市2018年、2019年“竹文化”旅游收入的年平均
增长率约为( C )
A.2%
B.4.4%
C.20%
知识点
有关增长/下降率的问题
两年前生产1t甲种药品的成本是5000元,生产1t乙种药
品的成本是6000元,随着生产技术的进步,现在生产1t甲种
药品的成本是3000元,生产1t乙种药品的成本是3600元,哪
种药品成本的年平均下降率较大?
【思考】下降率是什么意思?它与原成本、终成本之间
有何数量关系?
探究新知
D.44%
课堂检测
21.3 实际问题与一元二次方程/
基础巩固题
1.某厂今年一月的总产量为500பைடு நூலகம்,三月的总产量为720
吨,平均每月增长率是x,列方程( B )
A.500(1+2x)=720
B.500(1+x)2=720
C.500(1+x2)=720
D.720(1+x)2=500
2017年秋季学期新版新人教版九年级数学上学期21.3、实际问题与一元二次方程课件118

六、归纳小结
• 1.利用已学的特殊图形的面积公式建立一 元二次方程的数学模型,并运用它解决实 际问题的关键是弄清题目中的数量关系. • 2.根据面积与面积之间的等量关系建立一 元二次方程,并能正确解方程,最后对所 得结果是否合理要进行检验.
七、布置作业
• 教材 综合运用5、6 8 拓广探索全部.
五、活动4:巩固练习
• •
如图,在宽为20m,长为32m的矩形地面上,• 修筑同样宽的两条平行且与 另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的 面积为504m2,道路的宽为多少?
•
• • • • • •
解法一: 设道路的宽为x,我们利用“图形经过移动,它的面积大小不会改 变”的道理,把纵、横两条路移动一下,使列方程容易些(目的是求出路 面的宽,至于实际施工,仍可按原图的位置修路)则可列方程:(20-x) (32-2x)=504 ,整理,得: , x 36 x 68 0 解得x1=2,x2=34,(不合题意,舍去), 答:道路的宽为2m. 解法二: 设道路的宽为x,可列方程: 20 32 2 20 x 32 x 2 x2 504 , 整理,得: x2 36 x 68 0 , 解得x1=2,x2=34,(不合题意,舍去), 答:道路的宽为2m.
一、复习引入
2a 2b ,面 • 1.一个长方形的长是a,宽是b,则周长________ ab ,如果高是c,则长方体的体积公式 积________ ________ abc . • 2.如图所示:一块长方形铁皮的长是10 cm,宽是8 cm, 四角各截去一个边长为x cm的小正方形,制成一个长方 (10 2x)(8 2x)cm 体容器,这个长方体容器的底面积是__________ ,高 3 xcm ,体积是____________ 是________ . (10 2x)(8 2x) xcm
人教版九年级数学上册:21.3 实际问题与一元二次方程 教学设计1

人教版九年级数学上册:21.3 实际问题与一元二次方程教学设计1一. 教材分析人教版九年级数学上册第21.3节“实际问题与一元二次方程”是本册教材的重要内容,旨在让学生通过解决实际问题,掌握一元二次方程的解法和应用。
本节内容通过引入实际问题,让学生理解一元二次方程的模型,培养学生的数学建模能力,提高学生解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了代数基础知识,对一元二次方程有一定的了解,但解决实际问题的能力还有待提高。
因此,在教学过程中,要注重培养学生的数学建模能力,引导学生将实际问题转化为数学问题,并用一元二次方程进行解决。
三. 教学目标1.理解实际问题与一元二次方程的关系,掌握一元二次方程的解法。
2.培养学生将实际问题转化为数学问题的能力,提高学生的数学建模能力。
3.培养学生解决实际问题的能力,提高学生的综合素质。
四. 教学重难点1.教学重点:理解实际问题与一元二次方程的关系,掌握一元二次方程的解法。
2.教学难点:将实际问题转化为数学问题,并用一元二次方程进行解决。
五. 教学方法采用问题驱动法,情境教学法,案例教学法和小组合作学习法。
通过引入实际问题,激发学生的学习兴趣,引导学生主动探究,培养学生解决实际问题的能力。
六. 教学准备1.准备相关实际问题,用于引导学生理解和应用一元二次方程。
2.准备多媒体教学设备,用于展示和讲解。
七. 教学过程1.导入(5分钟)通过展示一些实际问题,如物体运动问题、面积问题等,引导学生关注实际问题中的一元二次方程,激发学生的学习兴趣。
2.呈现(10分钟)讲解一元二次方程的定义和解法,让学生理解一元二次方程的模型,并能熟练运用解法求解。
3.操练(10分钟)让学生分组讨论,将导入环节中的实际问题转化为数学问题,并用一元二次方程进行解决。
教师巡回指导,帮助学生解决问题。
4.巩固(10分钟)让学生独立完成一些类似的实际问题,巩固所学知识,提高解决实际问题的能力。
人教版九年级数学上册:21.3实际问题与一元二次方程握手问题和互赠礼物问题说课稿

人教版九年级数学上册:21.3 实际问题与一元二次方程握手问题和互赠礼物问题说课稿一. 教材分析人教版九年级数学上册第21.3节“实际问题与一元二次方程——握手问题和互赠礼物问题”,是在学生学习了方程与方程组、一元二次方程的基础上进行的教学。
本节课通过生活中的握手问题和互赠礼物问题,引导学生运用一元二次方程解决实际问题,培养学生的数学应用能力。
二. 学情分析九年级的学生已经具备了一定的方程解法能力和问题解决能力,但对于如何将实际问题转化为数学模型,并运用一元二次方程进行求解,仍然存在一定的困难。
因此,在教学过程中,需要帮助学生建立实际问题与一元二次方程之间的联系,提高他们的数学应用能力。
三. 说教学目标1.知识与技能目标:让学生掌握一元二次方程在实际问题中的应用,学会将实际问题转化为数学模型,并运用一元二次方程进行求解。
2.过程与方法目标:通过解决握手问题和互赠礼物问题,培养学生运用数学知识解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养他们勇于探索、积极思考的精神。
四. 说教学重难点1.教学重点:握手问题和互赠礼物问题的数学模型建立与求解。
2.教学难点:如何引导学生将实际问题转化为一元二次方程,并运用方程求解。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例教学法和小组合作学习法,引导学生主动参与课堂,提高他们的实践能力。
2.教学手段:利用多媒体课件、实物模型等辅助教学,生动形象地展示问题解决过程。
六. 说教学过程1.导入新课:通过一个简单的握手问题,激发学生的兴趣,引出本节课的主题。
2.知识讲解:讲解握手问题和互赠礼物问题的数学模型建立方法,引导学生掌握一元二次方程在实际问题中的应用。
3.案例分析:分析具体的握手问题和互赠礼物问题,引导学生运用一元二次方程进行求解。
4.小组讨论:让学生分组讨论其他实际问题,尝试将问题转化为一元二次方程,并求解。
5.总结提升:对本节课的知识进行总结,引导学生学会将实际问题转化为数学模型,并运用一元二次方程进行求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究一:有一人患了流 感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?教师提出问题:
解:设每轮传染中平均一个 人传染了x个人
开始有一人患了流感,第一轮的传染源就是这个人,他传染了x个人,用代数式表示,第一轮后共有_____人患了流感;第二轮传染中,这些人中的每个人又传染了x个人,
甲种药品成本为5000(1-x)元,两年后甲种药品成本
为5000(1-x)2元,依题意得
六 、练习及检测题
练习一:
某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,每个支干长出多少小分支?
(提示:这棵植物的主干长出多少支干?一个支干又长出多少分支)
2.据报道:2008年底某市自然保护区覆盖率(即自然保护区面积占全市面积的百分比)为4.65%,尚未达到国家A级标准.因此,市政府决定加快绿化建设,力争到2010年底自然保护区覆盖率达到8%以上.若要达到最低目标8%,则该自然保护区面积的年平均增长率应是多少?(结果保留三位有效数字)
难点
有关成本下降和增长率问题的数量关系.
五、教学过程设计
一 、复习
第一步:弄清题意和题目中的已知数、未知数,用字;
第三步:根据这些相等关系列出需要的代数式(简称关系式)从而列出方程;
第四步:解这个方程, 求出未知数的值;
第五步:在检查求得的答数是否符合应用题的实际意义后,写出答案(及单位名 称)。
21.3实际问题与一元二次方程
一、教材分析
用列一元二次方程的方法解决有关成本下降和增长率问题.
二、学情分析
学生对应用题的分析比较困难,本节内容应讲江详细些。讲练结合,重在列方程。
三、教学目标
通过列一元二次方程的方法解决日常生活及生产实际中遇到的有关成本下降和增长率问题.
四、教学重点难点
重点
会用列一元二次方程的方法解有关下降和增长率问题.
用代数式表示,第二轮后共有____________人患了流感.
探究二:两年前生产1吨甲种药品的成本是5000元,生产吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?
解:设甲种药品成本的年平均下降率为x,则一年后
3.某校去年对实验器材的投资为2 万元,预计今明两年的投资总额为8万元,若设该校今明两年在实验器材投资上的平均增长率是x,则可列方程为
七、作业设计
21页:2. 22页:7选做:26页:9