2017-2018学年九年级数学期末试卷及答案

合集下载

2017-2018学年第一学期期末检测九年级数学试题及参考答案

2017-2018学年第一学期期末检测九年级数学试题及参考答案

2017—2018学年度第一学期期末调研考试九年级数学试题注意:本份试卷共8页,三道大题,26个小题,总分120分,时间120分钟。

题号一二三20 21 22 23 24 25 26得分一、选择题(本大题共16个小题,共42分.1~10每小题3分,11~16每小题2分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将正确的选项填在下表中.)题号 1 2 3 4 5 6 7 8 答案题号9 10 11 12 13 14 15 16 答案1.自行车车轮要做成圆形,实际上是根据圆的特征A.圆是轴对称图形B.直径是圆中最长的弦C.圆上各点到圆心的距离相等D.圆是中心对称图形2.下列说法中正确的是A.“任意画出一个等边三角形,它是轴对称图形”是随机事件B.“概率为0.0001的事件”是不可能事件C.“任意画出一个平行四边形,它是中心对称图形”是必然事件D.任意掷一枚质地均匀的硬币10次,正面向上的一定是5次3.两个相似多边形的面积比是9:16,其中小多边形的周长为36cm,则较大多边形的周长为A.48cm B.54cm C.56cm D.64cm4.图中正比例函数和反比例函数的图象相交于A、B两点,分别以A、B两点为圆心,画与y轴相切的两个圆,若点A的坐标为(1,2),则图中两个阴影部分面积的和是A.条件不足,无法求B.π C.4πD.π5.如图,用一个半径为5cm的定滑轮带动重物上升,滑轮上一点P旋转了108°,假设绳索(粗细不计)与滑轮之间没有摩擦,则重物上升了A.5πcm B.3πcm C.2πcm D.πcm6.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为A.2cm B.cm C.2cm D.2cm7.如图,在直角坐标系中,正方形EFOH是正方形ABCD经过位似变换得到的,对角线OE=4,则位似中心的坐标是A.(,)B.(0,0)C.(,)D.(-2,2)8.如图,在△ABC中,∠ABC=90°,AB=8cm,BC=6cm.动点P,Q分别从点A,B同时开始移动,点P的速度为1cm/秒,点Q的速度为2cm/秒,点Q移动到点C后停止,点P也随之停止运动.下列时间瞬间中,能使△PBQ的面积为15cm2的是A.2秒钟B.3秒钟C.4秒钟D.5秒钟9.如图,是用围棋子摆出的图案(用棋子的位置用用有序数对表示,如A点在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)10.如图,A、B是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C,恰好能使△ABC的面积为1的概率是A.B.C.D.11.已知关于x的方程kx2+(2k+1)x+(k-1)=0有实数根,则k的取值范围为A.k≥-B.k>-C.k≥-且k≠0D.k<-12.如图,路灯距地面8米,身高1.6米的小明从距离灯底(点O)20米的点A处,沿AO所在直线行走12米到达点B时,小明身影长度A.变长2.5米B.变短2米C.变短2.5米D.变短3米13.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则正比例函数y=(b+c)x与反比例函数y=在同一坐标系中的大致图象是A.B.C. D.14.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是①当c=0时,函数的图象经过原点;②当b=0时,函数的图象关于y轴对称;③函数的图象最高点的纵坐标是;④当c>0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根.A.0个B.1个C.2个D.3个15.如图,在平面直角坐标系中,A(-5,0),B(0,10),C(8,0),⊙A的半径为5.若F是⊙A上的一个动点,线段CF与y轴交于E点,则△CBE面积的最大值是A.B.40 C.20 D.16.如图,将矩形ABCD沿AE折叠,点D的对应点落在BC上点F处,过点F作FG∥CD,连接EF,DG,下列结论中正确的有①∠ADG=∠AFG;②四边形DEFG是菱形;③DG2=AE•EG;④若AB=4,AD=5,则CE=1.A.①②③④B.①②③C.①③④D.①②二、填空题(本大题共3小题,共10分.17~18小题各3分;19小题有2个空,每空2分.把答案写在题中横线上)17.已知方程x2+mx+3=0的一个根是1,则它的另一个根是.18.如图,AB是⊙O的直径,AC是弦,D是AC的中点,若∠BAC=30°,则∠DCA=.19.如图,在平面直角坐标系中,已知点A(-3,0),B(0,4),对△AOB连续作旋转变化,依次得到三角形①、②、③、④、…,则第⑦个三角形的直角顶点的坐标是;第17个三角形的直角顶点的坐标是.三、解答题(本大题共7小题,共68分.解答应写出文字说明、证明过程或演算步骤)20.(本题满分8分)小明同学解一元二次方程x2-4x-1=0的过程如下所示问题:(1)小明解方程的方法是,他的求解过程从第步开始出现错误,这一步的运算依据应该是;(2)利用上面的方法正确解这个方程.21.(本题满分9分)在不透明的袋子中有四张标着数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树状图如图所示:小华列出表格如下:回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为谁获胜的可能性大?为什么?22.(本题满分9分)如图,点E是正方形ABCD的边DC上一点,把△ADE顺时针旋转△ABF的位置.(1)旋转中心是点,旋转角度是度;(2)若连结EF,则△AEF是三角形;(3)若四边形AECF的面积为25,DE=2,求AE的长.23.(本题满分9分)如图,AB是⊙O的直径,BC是⊙O的切线,D是⊙O上的一点,且AD∥CO.(1)求证:△ADB∽△OBC;(2)连结CD,试说明CD是⊙O的切线;(3)若AB=2,,求AD的长.(结果保留根号)24.(本题满分10分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,-2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C (2,n )沿OA 方向平移个单位长度得到点B ,判断四边形OABC的形状并证明你的结论.25.(本题满分11分)足球比赛中,某运动员将在地面上的足球对着球门踢出,图中的抛物线是足球的飞行高度y (m )关于飞行时间x (s )的函数图象(不考虑空气的阻力),已知足球飞出1s 时,足球的飞行高度是2.44m ,足球从飞出到落地共用3s . (1)求y 关于x 的函数关系式;(2)足球的飞行高度能否达到4.88米?请说明理由;(3)假设没有拦挡,足球将擦着球门左上角射入球门,球门的高为2.44m (如图所示,足球的大小忽略不计).如果为了能及时将足球扑出,那么足球被踢出时,离球门左边框12m 处的守门员至少要以多大的平均速度到球门的左边框?26.(本题满分12分)如图,在平面直角坐标系中,二次函数y=x 2+bx+c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,OA=1,OC=3. (1)求二次函数的解析式;(2)若点P 是抛物线在第四象限上的一个动点,当四边形ABPC 的面积最大时,求点P 的坐标,并求出四边形ABPC 的最大面积;(3)若Q 为抛物线对称轴上一动点,且△QBC 为直角三角形,求点Q 的坐标. (备注:两点()11M x y ,,()22N x y ,之间的距离为()()222121MN x x y y =-+-)参考答案一、(本大题有16小题,共43分.1~10每小题各3分,11~16每小题各2分)题号 1 2 3 4 5 6 7 8答案 C C A D B D D B题号9 10 11 12 13 14 15 16 答案 B A A D C B A B 二、(本大题有3个小题,共10分.17~18小题每个3分;19小题有2个空,每空2分)17.3;18.30°;19.(24,0),(67,).三、(本大题有7小题,共68分)20. (1)配方法,②,等式的基本性质;解:(2)x2-4x=1,x2-4x+4=1+4,(x-2)2=5,x-2=,x=2±,∴x1=2+,x2=2-.21.(1)不放回(2)(3,2)解:(3)小明获胜的可能性大.理由如下:∵根据小明的游戏规则,共有12种等可能的结果,数字之和为奇数的有8种,∴概率为:=;∵根据小华的游戏规则,共有16种等可能的结果,数字之和为奇数的有8种,∴概率为:=,∵>∴小明获胜的可能性大.22. (1)A、90.(2)等腰直角.解:(3)由题意得:△ADE≌△ABF,∴S四边形AECF=S正方形ABCD=25,∴AD=5,又∵∠D=90°,DE=2,∴.23.(1)证明:∵AB是⊙O的直径,∴∠ADB=90°,。

2017-2018学年人教版初三数学第一学期期末试卷含答案

2017-2018学年人教版初三数学第一学期期末试卷含答案

2017-2018学年九年级(上)期末数学试卷一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:273.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x26.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于______.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=______.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为______.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=______.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为______;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为______.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为______.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有______.24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为______.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为______.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).28.(12分)(2015•通辽)如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P 在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形(1)求该抛物线的解析式;(2)求点P的坐标;(3)求证:CE=EF;(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2=(+1)2].2017-2018学年九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题10小题,每小题3分,共30分)1.反比例函数y=﹣的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限【考点】反比例函数的性质.【分析】根据反比例函数y=(k≠0)的图象是双曲线;当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大进行解答.【解答】解:∵k=﹣1,∴图象在第二、四象限,故选:C.【点评】此题主要考查了反比例函数的性质,关键是掌握反比例函数图象的性质.2.如果两个相似三角形对应边的比为2:3,那么这两个相似三角形面积的比是()A.2:3 B.:C.4:9 D.8:27【考点】相似三角形的性质.【分析】根据相似三角形的面积的比等于相似比的平方,据此即可求解.【解答】解:两个相似三角形面积的比是(2:3)2=4:9.故选C.【点评】本题考查对相似三角形性质的理解.(1)相似三角形周长的比等于相似比;(2)相似三角形面积的比等于相似比的平方;(3)相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.3.一个几何体的三视图如图所示,则该几何体的形状可能是()A.B.C.D.【考点】由三视图判断几何体.【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.【解答】解:由主视图和左视图可得此几何体上面为台,下面为柱体,由俯视图为圆环可得几何体为.故选D.【点评】此题主要考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.4.已知反比例函数y=的图象经过点(3,2),那么下列四个点中,也在这个函数图象上的是()A.(3,﹣2)B.(﹣2,﹣3) C.(1,﹣6)D.(﹣6,1)【考点】反比例函数图象上点的坐标特征.【分析】把已知点坐标代入反比例解析式求出k的值,即可做出判断.【解答】解:把(2,3)代入反比例解析式得:k=6,∴反比例解析式为y=,则(﹣2,﹣3)在这个函数图象上,故选B.【点评】此题考查了反比例函数图象上点的坐标特征,熟练掌握待定系数法是解本题的关键.5.下列一元二次方程中,有两个相等实数根的是()A.x2﹣8=0 B.2x2﹣4x+3=0 C.9x2﹣6x+1=0 D.5x+2=3x2【考点】根的判别式.【分析】分别求出各个选项中一元二次方程的根的判别式,进而作出判断.【解答】解:A、x2﹣8=0,△=32>0,方程有两个不相等的实数根,此选项错误;B、2x2﹣4x+3=0,△=42﹣4×2×3=﹣8<0,方程没有实数根,此选项错误;C、9x2﹣6x+1=0,△=(﹣6)2﹣4×9×1=0,方程有两个相等的实数根,此选项正确;D、5x+2=3x2=,△(﹣5)2﹣4×3×(﹣2)=49>0,方程有两个不相等的实数根,此选项错误;故选C.【点评】本题考查了根的判别式.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.6.已知两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则点A的对应点C的坐标为()A.(2,3) B.(3,1) C.(2,1) D.(3,3)【考点】位似变换;坐标与图形性质.【分析】由两点A(4,6),B(6,2),以原点O为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD,根据位似的性质,即可求得答案.【解答】解:∵A(4,6),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴点A的对应点C的坐标为:(2,3).故选A.【点评】此题考查了位似变换的性质.注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.7.若ab<0,则正比例函数y=ax与反比例函数y=在同一坐标系中的大致图象可能是()A.B.C.D.【考点】反比例函数的图象;正比例函数的图象.【分析】根据ab<0及正比例函数与反比例函数图象的特点,可以从a>0,b<0和a<0,b>0两方面分类讨论得出答案.【解答】解:∵ab<0,∴分两种情况:(1)当a>0,b<0时,正比例函数y=ax数的图象过原点、第一、三象限,反比例函数图象在第二、四象限,无此选项;(2)当a<0,b>0时,正比例函数的图象过原点、第二、四象限,反比例函数图象在第一、三象限,选项B符合.故选B.【点评】本题主要考查了反比例函数的图象性质和正比例函数的图象性质,要掌握它们的性质才能灵活解题.8.如图,点P是▱ABCD边AB上的一点,射线CP交DA的延长线于点E,则图中相似的三角形有()A.0对B.1对C.2对D.3对【考点】相似三角形的判定;平行四边形的性质.【分析】利用相似三角形的判定方法以及平行四边形的性质得出即可.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AD∥BC,∴△EAP∽△EDC,△EAP∽△CBP,∴△EDC∽△CBP,故有3对相似三角形.故选:D.【点评】此题主要考查了相似三角形的判定以及平行四边形的性质,熟练掌握相似三角形的判定方法是解题关键.9.某商品经过连续两次降价,销售单价由原来200元降到162元.设平均每次降价的百分率为x,根据题意可列方程为()A.200(1﹣x)2=162 B.200(1+x)2=162 C.162(1+x)2=200 D.162(1﹣x)2=200 【考点】由实际问题抽象出一元二次方程.【分析】此题利用基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格,列方程即可.【解答】解:由题意可列方程是:200×(1﹣x)2=168.故选A.【点评】此题考查一元二次方程的应用最基本数量关系:商品原价×(1﹣平均每次降价的百分率)=现在的价格.10.将抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,那么所得到的抛物线的函数关系式是()A.y=(x+2)2+3 B.y=(x+2)2﹣3 C.y=(x﹣2)2+3 D.y=(x﹣2)2﹣3【考点】二次函数图象与几何变换.【分析】根据平移规律:“左加右减,上加下减”,直接代入函数解析式求得平移后的函数解析式.【解答】解:抛物线y=x2+1先向左平移2个单位,再向下平移4个单位,得y=(x+2)2﹣3,故选:B.【点评】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用规律求函数解析式.二、填空题(本题4个小题,每小题4分,共16分)11.如果=,那么的值等于.【考点】比例的性质.【分析】根据比例的性质,可用b表示a,根据分式的性质,可得答案.【解答】解:由=,得a=.当a=时,===,故答案为:.【点评】本题考查了比例的性质,利用了比例的性质,分式的性质.12.在Rt△ABC中,若∠C=90°,BC=1,AC=2,tanB=2.【考点】锐角三角函数的定义.【分析】由正切的定义可知tanB=,代入计算即可.【解答】解:∵∠C=90°,AC=4,BC=2,∴tanB===2,故答案为:2.【点评】本题主要考查三角函数的定义,掌握正切的定义是解题的关键.13.如图,点P是反比例函数y=﹣图象上一点,PM⊥x轴于M,则△POM的面积为1.【考点】反比例函数系数k的几何意义.【分析】因为过双曲线上任意一点引x轴、y轴垂线,所得矩形面积S是个定值|k|,△POD 的面积为矩形面积的一半,即|k|.【解答】解:由于点P是反比例函数y=﹣图象上的一点,所以△POD的面积S=|k|=|﹣2|=1.故答案为:1.【点评】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y 轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.14.如图,△ABC中,点D、E分别在边AB、BC上,DE∥AC.若BD=4,DA=2,BE=3,则EC=.【考点】平行线分线段成比例.【分析】根据平行线分线段成比例定理即可直接求解.【解答】解:∵DE∥AC,∴,即,解得:EC=.故答案为:.【点评】本题考查了平行线分线段成比例定理,理解定理内容是解题的关键.三、解答题(15题每小题12分,16题6分,共18分)15.(12分)(2015秋•崇州市期末)(1)解方程:x2﹣2x﹣3=0(2)计算:(π﹣)0+()﹣1﹣﹣tan60°.【考点】实数的运算;解一元二次方程-因式分解法.【分析】(1)方程利用因式分解法求出解即可;(2)原式利用零指数幂、负整数指数幂,以及特殊角的三角函数值计算即可得到结果.【解答】解:(1)分解得:(x﹣3)(x+1)=0,可得x﹣3=0或x+1=0,解得:x1=3,x2=﹣1;(2)原式=1+2﹣3﹣=3﹣4.【点评】此题考查了实数的运算,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.16.已知:如图,△ABC中,AD=DB,∠1=∠2.求证:△ABC∽△EAD.【考点】相似三角形的判定.【分析】根据相似三角形的判定,解题时要认真审题,选择适宜的判定方法.【解答】证明:∵AD=DB,∴∠B=∠BAD.∵∠BDA=∠1+∠C=∠2+∠ADE,又∵∠1=∠2,∴∠C=∠ADE.∴△ABC∽△EAD.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.四、解答题17.如图,某建筑物BC顶部有一旗杆AB,且点A,B,C在同一条直线上,小红在D处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆AB的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.18.有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定:转动两个转盘各一次,指向大的数字获胜.(1)用树状图或列表格列出两个转盘转出的所有可能出现的结果;(2)如果由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?【考点】列表法与树状图法.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由转盘A获胜的有5种情况,转盘B获胜的有4种情况,即可求得其概率,继而求得答案.【解答】解:(1)画树状图得:则共有9种等可能的结果;(2)选择转盘A.理由:∵转盘A获胜的有5种情况,转盘B获胜的有4种情况,∴P(转盘A)=,P(转盘B)=,∴选择转盘A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(19题10分,20题10分,共20分)19.(10分)(2015秋•崇州市期末)如图,已知反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4).(1)试确定这两函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并求△AOB的面积;(3)根据图象直接写出反比例函数值大于一次函数值的x的取值范围.【考点】反比例函数与一次函数的交点问题.【分析】(1)根据反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),可以求得k的值,从而可以求得点A的坐标,从而可以求出一次函数y=x+b中b 的值,本题得以解决;(2)将第一问中求得的两个解析式联立方程组可以求得点B的坐标,进而可以求得△AOB 的面积;(3)根据函数图象可以解答本题.【解答】解;(1)∵反比例函数y=与一次函数y=x+b的图形在第一象限相交于点A(1,﹣k+4),∴,解得,k=2,∴点A(1,2),∴2=1+b,得b=1,即这两个函数的表达式分别是:,y=x+1;(2)解得,或,即这两个函数图象的另一个交点B的坐标是(﹣2,﹣1);将y=0代入y=x+1,得x=﹣1,∴OC=|﹣1|=1,∴S△AOB=S△AOC+S△BOC=,即△AOB的面积是;(3)根据图象可得反比例函数值大于一次函数值的x的取值范围是x<﹣2或0<x<1.【点评】本题考查反比例函数与一次函数的交点问题,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答问题.20.(10分)(2015秋•崇州市期末)如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s 的速度向A点运动.设运动时间为x(s).(1)当x为何值时,PQ∥BC;(2)当△APQ与△CQB相似时,AP的长为cm或20cm;(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.【考点】相似三角形的判定与性质.【分析】(1)当PQ∥BC时,根据平行线分线段成比例定理,可得出关于AP,PQ,AB,AC的比例关系式,我们可根据P,Q的速度,用时间x表示出AP,AQ,然后根据得出的关系式求出x的值.(2)本题要分两种情况进行讨论.已知了∠A和∠C对应相等,那么就要分成AP和CQ 对应成比例以及AP和BC对应成比例两种情况来求x的值;(3)当S△BCQ:S△ABC=1:3时,=,于是得到,通过相似三角形的性质得到,即可得到结论.【解答】解:(1)由题意得,PQ平行于BC,则AP:AB=AQ:AC,AP=4x,AQ=30﹣3x∴=∴x=;(2)假设两三角形可以相似,情况1:当△APQ∽△CQB时,CQ:AP=BC:AQ,即有=解得x=,经检验,x=是原分式方程的解.此时AP=cm,情况2:当△APQ∽△CBQ时,CQ:AQ=BC:AP,即有=解得x=5,经检验,x=5是原分式方程的解.此时AP=20cm.综上所述,AP=cm或AP=20cm;故答案为:cm或20cm;(3)当S△BCQ:S△ABC=1:3时,=,∴,由(1)知,PQ∥BC,∴△APQ∽△ABC,∴,∴S△APQ:S△ABQ=2.【点评】本题主要考查了相似三角形的判定和性质,根据三角形相似得出线段比或面积比是解题的关键.一、填空题(本题共5个小题,每小题4分,共20分)21.已知a、b是方程x2﹣2015x+1=0的两根,则a2﹣2014a+b的值为2014.【考点】根与系数的关系.【分析】根据一元二次方程的解的定义得到a2﹣2015a=﹣1,a2=2015a﹣1,再根据根与系数的关系得到a+b=2015,然后把要求的式子进行变形,再代入计算即可.【解答】解:∵a是方程x2﹣2015x+1=0的根,∴a2﹣2015a+1=0,∴a2﹣2015a=﹣1,a2=2015a﹣1,∵a,b是方程x2﹣2015x+1=0的两根,∴a+b=2015,∴a2﹣2014a+b=a2﹣2015a+a+b=﹣1+2015=2014;故答案为:2014.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的解.22.甲乙两人玩猜数字游戏,规则如下:有四个数分别为1,2,3,4,先由甲在心中任想其中一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b.若|a﹣b|≤1,则称甲乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与得出他们“心有灵犀”的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有16种等可能的结果,得出他们“心有灵犀”的有10种情况,∴得出他们“心有灵犀”的概率为:=.故答案为:.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.23.如图,已知二次函数y=ax2+bx+c的图象如图所示,给出以下四个结论:①abc=0;②a+b+c>0;③a>b;④4ac﹣b2<0.其中正确结论有①③④.【考点】二次函数图象与系数的关系.【分析】首先根据二次函数y=ax2+bx+c的图象经过原点,可得c=0,所以abc=0;然后根据x=1时,y<0,可得a+b+c<0;再根据图象开口向下,可得a<0,图象的对称轴为x=﹣=﹣,所以b=3a,a>b;最后根据二次函数y=ax2+bx+c图象与x轴有两个交点,可得△>0,所以b2﹣4ac>0,4ac﹣b2<0,据此解答即可.【解答】解:∵二次函数y=ax2+bx+c图象经过原点,∴c=0,∴abc=0,故①正确;∵x=1时,y<0,∴a+b+c<0,故②不正确;∵抛物线开口向下,∴a<0,∵抛物线的对称轴是x=﹣,∴﹣=﹣,∴b=3a,又∵a<0,b<0,∴a>b,故③正确;∵二次函数y=ax2+bx+c图象与x轴有两个交点,∴△>0,∴b2﹣4ac>0,4ac﹣b2<0,故④正确;综上,可得正确结论有3个:①③④.故答案为①③④.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a 与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y 轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).24.如图,点A(m,2),B(5,n)在函数y=(k>0,x>0)的图象上,将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′.图中阴影部分的面积为8,则k的值为2.【考点】反比例函数系数k的几何意义;平移的性质.【分析】利用平行四边形的面积公式得出M的值,进而利用反比例函数图象上点的性质得出k的值.【解答】解:∵将该函数图象向上平移2个单位长度得到一条新的曲线,点A、B的对应点分别为A′、B′,图中阴影部分的面积为8,∴5﹣m=4,∴m=1,∴A(1,2),∴k=1×2=2.故答案为:2.【点评】此题主要考查了平移的性质和反比例函数系数k的几何意义,得出A点坐标是解题关键.25.如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B,C重合的一个动点,把△EBF沿EF折叠,点B落在B′处.若△CDB′恰为等腰三角形,则DB′的长为16或4.【考点】翻折变换(折叠问题).【分析】根据翻折的性质,可得B′E的长,根据勾股定理,可得CE的长,根据等腰三角形的判定,可得答案.【解答】解:(i)当B′D=B′C时,过B′点作GH∥AD,则∠B′GE=90°,当B′C=B′D时,AG=DH=DC=8,由AE=3,AB=16,得BE=13.由翻折的性质,得B′E=BE=13.∴EG=AG﹣AE=8﹣3=5,∴B′G===12,∴B′H=GH﹣B′G=16﹣12=4,∴DB′===4(ii)当DB′=CD时,则DB′=16(易知点F在BC上且不与点C、B重合).(iii)当CB′=CD时,∵EB=EB′,CB=CB′,∴点E、C在BB′的垂直平分线上,∴EC垂直平分BB′,由折叠可知点F与点C重合,不符合题意,舍去.综上所述,DB′的长为16或4.故答案为:16或4.【点评】本题考查了翻折变换,利用了翻折的性质,勾股定理,等腰三角形的判定.二、解答题26.某蔬菜经销商去蔬菜生产基地批发某种蔬菜,已知这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元;若超过60千克时,批发的这种蔬菜全部打八折,但批发总金额不得少于300元.(1)根据题意,填写如表:(2)经调查,该蔬菜经销商销售该种蔬菜的日销售量y(千克)与零售价x(元/千克)是一次函数关系,其图象如图,求出y与x之间的函数关系式;(3)若该蔬菜经销商每日销售此种蔬菜不低于75千克,且当日零售价不变,那么零售价定为多少时,该经销商销售此种蔬菜的当日利润最大?最大利润为多少元?【考点】二次函数的应用;一次函数的应用.【分析】(1)根据这种蔬菜的批发量在20千克~60千克之间(含20千克和60千克)时,每千克批发价是5元,可得60×5=300元;若超过60千克时,批发的这种蔬菜全部打八折,则90×5×0.8=360元;(2)把点(5,90),(6,60)代入函数解析式y=kx+b(k≠0),列出方程组,通过解方程组求得函数关系式;(3)利用最大利润=y(x﹣4),进而利用配方法求出函数最值即可.【解答】解:(1)由题意知:当蔬菜批发量为60千克时:60×5=300(元),当蔬菜批发量为90千克时:90×5×0.8=360(元).故答案为:300,360;(2)设该一次函数解析式为y=kx+b(k≠0),把点(5,90),(6,60)代入,得,解得.故该一次函数解析式为:y=﹣30x+240;(3)设当日可获利润w(元),日零售价为x元,由(2)知,w=(﹣30x+240)(x﹣5×0.8)=﹣30(x﹣6)2+120,﹣30x+240≥75,即x≤5.5,当x=5.5时,当日可获得利润最大,最大利润为112.5元.【点评】此题主要考查了一次函数的应用以及二次函数的应用,得出y与x的函数关系式是解题关键.27.(10分)(2015•天津)将一个直角三角形纸片ABO,放置在平面直角坐标系中,点A(,0),点B(0,1),点0(0,0).过边OA上的动点M(点M不与点O,A 重合)作MN丄AB于点N,沿着MN折叠该纸片,得顶点A的对应点A′,设OM=m,折叠后的△AM′N与四边形OMNB重叠部分的面积为S.(Ⅰ)如图①,当点A′与顶点B重合时,求点M的坐标;(Ⅱ)如图②,当点A′,落在第二象限时,A′M与OB相交于点C,试用含m的式子表示S;(Ⅲ)当S=时,求点M的坐标(直接写出结果即可).【考点】一次函数综合题.【分析】(Ⅰ)根据折叠的性质得出BM=AM,再由勾股定理进行解答即可;(Ⅱ)根据勾股定理和三角形的面积得出△AMN,△COM和△ABO的面积,进而表示出S的代数式即可;(Ⅲ)把S=代入解答即可.【解答】解:(Ⅰ)在Rt△ABO中,点A(,0),点B(0,1),点O(0,0),∴OA=,OB=1,由OM=m,可得:AM=OA﹣OM=﹣m,根据题意,由折叠可知△BMN≌△AMN,∴BM=AM=﹣m,在Rt△MOB中,由勾股定理,BM2=OB2+OM2,可得:,解得m=,∴点M的坐标为(,0);(Ⅱ)在Rt△ABO中,tan∠OAB=,∴∠OAB=30°,。

2017-2018学年度九年级(上)数学期末复习试卷

2017-2018学年度九年级(上)数学期末复习试卷

2017-2018学年度九年级(上)数学练习试卷(A3)一、选择题:(本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑.1.2017的绝对值是()A.﹣2017 B.2017 C.D.﹣2.下列计算结果正确的是()A.2+=2B.÷=C.(﹣2a2)3=﹣6a6 D.(x+1)2=x2+13.下列英文字母既是轴对称图形又是中心对称图形的是()A.B.C.D.4.如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A.AB∥BC B.BC∥CD C.AB∥DC D.AB与CD相交5.如图,下列各数中,数轴上点A表示的数可能是()A.4的算术平方根B.4的立方根C.4的平方根D.8的算术平方根6.下列说法正确的是()A.了解2017年报考飞行员的学生的视力情况应采取抽样调查B.打开电视机,正在播放“神奇的动物去哪里”制作花絮是必然事件C.为了初三1200名学生的体能状况,从中抽取了100名学生的成绩进行分析,1200是样本容量D.7,9,9,4,9,8,8,这组数据的众数是97.在函数y=中,自变量x的取值范围是()A.x>1 B.x≥﹣2 C.x≥﹣2且x≠1 D.x>1且x≠﹣28.如图,⊙O中,弦AB与CD交于点页脚内容1M,∠C=35°,∠AMD=75°,则∠D的度数是()A.25° B.35°C.40°D.75°9.如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,则FG:AG是()A.1:4 B.1:3 C.1:2 D.2:310.如图,下面是按照一定规律画出的“树形图”,经观察可以发现:图A2比图A1多出2个“树枝”,图A3比图A2多出4个“树枝”,图A4比图A3多出8个“树枝”,…,照此规律,图A6比图A2多出“树枝”()A.32 B.56 C .60 D.6411.有“小蛮腰”之称的广州电视塔为中国第一高电视塔,其主体顶部450~454米处有世界最高摩天轮(即图中AC=4米),与一般竖立的摩天轮不一样,广州塔的摩天轮沿着倾斜的轨道运转,对地倾斜角为∠ABC=15.5°.小明操作无人机观察摩天轮,由于设备限制无法近距离拍摄,无人机在图中P点观察到摩天轮最低点B的仰角为∠BPD=60°,最高点A的仰角为∠APD=36°,请问此时无人机距离电视塔的水平距离PD 为()(参考数据:tan15.5°≈0.4,tan36°≈0.7,≈1.7)A.3 B.2.7 C.3.3 D.3.712.若实数a使函数y=(a+6)x2﹣3x+的图象同时经过四个象限,并且使不等式组无解,则所有符合条件的整数a的积是()A.﹣336 B.56C.0 D.42二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡(卷)中对应的横线上.13.11月30日消息,近日工信部公布了截止10月末通信业的各项数据.数据显示,我国移动电话4G用户持续爆发式增长,总数达到714000000户,其中页脚内容2714000000用科学记数法表示为.14.(π﹣3)0+|﹣1|﹣()﹣2=.15.如图,边长为3的正方形ABCD,以A为圆心,AB 为半径作弧交DA的延长线于E,连接CE,则图中阴影部分面积为.15题17题18题16.现将背面完全相同,正面分别标有数﹣2、﹣1、0、1的4张卡片洗匀后,背面朝上,从中任取两张,将该卡片上的数字分别记为m、n,则使点P(m,n)在平面直角坐标系xOy,落在直线y=﹣x+1上的概率为.17.小明和小强分别从A、B两地出发匀速相向而行,达到对方出发地后均立即以原速返回.已知小明到达B地半小时后,小强到达A 地.如图表示他们出发时间t(单位:小时)与距离A地的路程S(单位:千米)之间的关系图,则出发后小时,小明和小强第2次相遇.18.如图,边长为2的菱形ABCD中,∠BAD=60°,现有∠BFE=30°的三角板△BEF,将△BEF绕B旋转得△BE′F′,BE′,BF′所在直线分别交线段AC于点M,N,若点C关于直线BE′的对称点为C′,当C′N ⊥AC时,AN的长为.三、解答题:(本大题共8个小题,共78分)解答应写出必要的文字说明、证明过程或演算步骤。

初中数学2017-2018第一学期期末九数答案

初中数学2017-2018第一学期期末九数答案

2017—2018学年度第一学期期末教学质量检测九年级数学答案一、选择题:二、填空题:三、解答题:20.解:(1)∵关于x的一元二次方程x2+3x+1﹣m=0有两个不相等的实数根,∴△=b2﹣4ac=32﹣4(1﹣m)>0,………………………………………2分即5+4m>0,解得:m>﹣.………………………………………4分∴m的取值范围为m>﹣.(2)∵m为负整数,且m>﹣,∴m=﹣1 (6)分将m=﹣1代入原方程得:x2+3x+2=0,解得:x1=﹣1,x2=﹣2.………………………………………………………9分故当m=﹣1时,此方程的根为x1=﹣1和x2=﹣2.21.解:(1)根据题意得:3÷15%=20(人)∴参赛学生共20人……………………………………………………………2分B等级人数5人图略…………………………………………………………3分(2)40,72 ………………………………………………………………………5分……………………………………………………………………………………8分所有等可能的结果有6种,其中恰好是一名男生和一名女生的情况有4种,则P恰好是一名男生和一名女生== ………………………………………………………9分 22.解:(1)在Rt△ACE中,cos 22°=ACCE………………………………………………2分 ∴AC = 22cos CE=93.05.22≈24.2m ………………………………………………………4分 答:彩旗的连接线AC 的长是24.2m.(2) 在Rt△ACE 中,tan 22°=CEAE…………………………………………………………………6分 ∴AE =CE ·tan 22° =22.5×0.4 =9m ……………………………………………………………………8分 ∴AB =AE+BE =9+3=12m ………………………………………………………9分23.解:(1)B (3,b ),C (4,b +1) …………………………………………………2分(2)∵双曲线ky x过点B (3,b )和D (2,b +1) ∴3b =2(b+1)…………………………………………………………… 3分解得b=2,…………………………………………………………………4分∴B点坐标为(3,2),D点坐标(2,3)………………………………5分把B点坐标(3,2)代入kyx=,解得k=6;……………………………6分∴当点A(1,b)在双曲线yx=,得到b =4……………………………7分当点C(4,b+1)在双曲线4yx=,得到b=0…………………………8分∴b的取值范围0≤b≤4 ……………………………………………………9分24.证明(1)∵△ABC∽△DEC,CA=CB,∴CE=CD,∠ACB=∠ECD,……………………………………………1分∴∠ACE=∠BCD在△ACE和△BCD中,CA=CB,CE=CD,∠ACE=∠BCD,∴△ACE ≌△BCD .…………………………………………………………3分∴AE =BD . …………………………………………………………………4分 (2)∵△ACE ≌△BCD . ∴∠AEC =∠BDC∵∠DOC =∠EOB ,∴△COD ∽△BOE . ………………………………………………………6分(3)∵△BOE ∽△COD . ∴EOCOBE CD =………………………………………………………………7分 ∵CD =10,BE =5 ∴EOCO =510即12=EO CO …………………………………………………8分 ∵CE =CD=10∴320103232=⨯==CE CO …………………………………………10分25.解:(1)由图像可知,当28≤x ≤188时,V 是x 的一次函数,设函数解析式为V =kx +b ……………………………1分则⎩⎨⎧=+=+01888028b k b k ……………………………………………………………2分 解得⎪⎩⎪⎨⎧=-=9421b k所以3分(3)当V ≥50时,包含V =80,由函数图象可知,当28<x ≤88时,P 随x 的增大而增大,即当x =88时,P 取得最大值,所以当x =88时,P 取得最大为4400.………………………………………10分26.解:(1)24 ………………………………………2分(2)①连接OA 、OF ,由题意得,∠NAD =30°,∠DAM =30°, 故可得∠OAM =30°,则∠OAF =60°, 又∵OA =OF ,∴△OAF 是等边三角形,∵OA =4,∴AF =OA =4;……………………………5分 ②连接B 'F ,此时∠NAD =60°, ∵AB '=8,∠DAM =30°, ∴AF =AB 'cos∠DAM =34238=⨯; ……………………………………………7分此时DM 与⊙O 的位置关系是相离; 过点O 作OE ⊥DM , ∴OE =OM cos∠MOE ∵AM =331623830cos 0==AD 图18-3∴OE =OMcos∠MOE =43282343316>-=⨯⎪⎪⎭⎫⎝⎛- ………………………9分 ∴DM 与⊙O 的位置关系是相离…………………………………………………10分③90° …………………………………………………………………………12分备用图E备用图。

精品解析:人教版2017-2018学年九年级下《期末检测卷》数学试题(解析版)

精品解析:人教版2017-2018学年九年级下《期末检测卷》数学试题(解析版)

2018届人教版九年级数学下册(江西专版)检测卷期末检测卷一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项)1. 如图,AD∥BE∥CF,直线l1,l2与这三条平行线分别交于点A,B,C和点D,E,F.已知AB=1,BC=3,DE=2,则EF的长为( )A. 4B. .5C. 6D. 8【答案】C【解析】【分析】【详解】解:∵AD∥BE∥CF,根据平行线分线段成比例定理可得AB DEBC EF=,即123EF =,解得EF=6,故选C.2. 已知反比例函数y=kx(k>0)的图象经过点A(1,a)、B(3,b),则a与b的关系正确的是()A. a=bB. a=﹣bC. a<bD. a>b 【答案】D【解析】【分析】对于反比例函数kyx=(k≠0)而言,当k>0时,作为该函数图象的双曲线的两支应该在第一和第三象限内. 由点A与点B的横坐标可知,点A与点B应该在第一象限内,然后根据反比例函数增减性分析问题.【详解】解:∵点A的坐标为(1,a),点B的坐标为(3,b),∴与点A对应的自变量x值为1,与点B对应的自变量x值为3,∵当k>0时,在第一象限内y随x的增大而减小,又∵1<3,即点A 对应的x 值小于点B 对应的x 值,∴点A 对应的y 值大于点B 对应的y 值,即a >b故选D【点睛】本题考查反比例函数的图像性质,利用数形结合思想解题是关键.3. 如图所示的几何体的俯视图是()A. AB. BC. CD. D 【答案】C【解析】A 选项:该几何体顶面的正投影与位于其下方的面的正投影并不全等. 在本选项所给出的俯视图中,长方形内部没有画出表示顶面正投影边缘的实线,故A 选项错误.B 选项:该几何体中部截面的正投影被顶面的正投影遮挡. 本选项所给出的俯视图未用虚线将这部分被遮挡的投影画出,故B 选项错误.C 选项:在本选项所给出的俯视图中,外围的长方形表示了该几何体下部截面的正投影,长方形内部的两条平行实线表示了顶面正投影的边缘,中间的两条虚线表示了被顶面遮挡的该几何体中部截面的正投影. 故C 选项正确.D 选项:该几何体中部截面的正投影被顶面的正投影遮挡. 本选项所给出的俯视图中的这部分投影不是用虚线画出的,不符合相关规定,故D 选项错误.故本题应选C.点睛:本题考查了几何体三视图的相关知识. 在画三视图或者解决与三视图相关的题目时,要想象和分析几何体在投影方向上所呈现的形状,特别要注意多个几何尺度不同的投影面在相应视图中的表示方法以及各个投影面之间的遮挡关系. 另外,被遮挡的投影应该用虚线在相应的视图中画出.4. 在△ABC 中,若tanA =1,sinB =,你认为最确切的判断是( ) A. △ABC 等腰三角形B. △ABC 是等腰直角三角形C. △ABC 是直角三角形D. △ABC 是一般锐角三角形【答案】B【解析】【分析】试题分析:由tanA=1,sinB=2结合特殊角的锐角三角函数值可得∠A 、∠B 的度数,即可判断△ABC 的形状.【详解】∵tanA=1,sinB=2∴∠A=45°,∠B=45°∴△ABC 是等腰直角三角形故选B. 考点:特殊角的锐角三角函数值点评:本题是特殊角的锐角三角函数值的基础应用题,在中考中比较常见,一般以选择题、填空题形式出现,难度一般.5. (2017湖南省岳阳市,第8题,3分)已知点A 在函数11y x=-(x >0)的图象上,点B 在直线y 2=kx +1+k (k 为常数,且k ≥0)上.若A ,B 两点关于原点对称,则称点A ,B 为函数y 1,y 2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为( )A. 有1对或2对B. 只有1对C. 只有2对D. 有2对或3对 【答案】A【解析】设点A 与点B 为函数y 1,y 2图象上的一对“友好点”,则点A 与点B 关于原点对称.设点A 的坐标为(x 0, y 0),则点B 的坐标应为(-x 0, -y 0).由于点A 在函数11y x=-(x >0)的图象上,所以将点A 的坐标代入函数y 1的解析式,得 001y x =-, 故点B 的坐标可以表示为001,x x ⎛⎫- ⎪⎝⎭. 由于点B 在直线y 2=kx +1+k (k 为常数,且k ≥0)上,所以将点B 的坐标代入y 2=kx +1+k ,得0011kx k x =-++,① 因为点A 在函数11y x=-(x >0)的图象上,所以x 0>0, 方程①两侧同时乘以x 0并整理,得()200110kx k x -++=,②因为k ≥0,所以应该按以下两种情况分别对方程②进行求解.(1) 当k =0时,方程②应为:010x -+=,解之,得 01x =.故当k =0时,“友好点”为:点A (1, -1)与点B (-1, 1).(2) 当k >0时,方程②为关于x 0的一元二次方程,利用因式分解法解该一元二次方程,得()()00110kx x --=,∴010kx -=或010x -=, ∴01x k=或01x = 故当k >0时,“友好点”为:点A (1k , -k )与点B (-1k , k ),或点A (1, -1)与点B (-1, 1). 综上所述,当k =0时,两个图象有1对“友好点”,“友好点”是:点A (1, -1)与点B (-1, 1);当k >0且k ≠1时,两个图象有2对“友好点”,它们分别是:点A (1k , -k )与点B (-1k, k ),点A (1, -1)与点B (-1, 1);当k =1时,两个图象实际上只有1对“友好点”,“友好点”是:点A (1, -1)与点B (-1, 1).因此,这两个图象上的“友好点”应有1对或者2对.故本题应选A.点睛:本题是一道利用代数方法求解几何相关问题的综合题目,也是数形结合思想的应用问题. 本题的关键思想可以总结为:利用关于原点对称的点的坐标特征和函数图象与解析式之间的关系将题目中的几何问题转化为关于某一待定坐标值的方程,通过求解方程获得符合要求的点.6. 如图,在△ABC 中,AB =AC ,BC =12,E 为AC 边的中点,线段BE 的垂直平分线交边BC 于点D .设BD =x ,tan ∠ACB =y ,则( )A. x–y2=3B. 2x–y2=9C. 3x–y2=15D. 4x–y2=21【答案】B【解析】【分析】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,根据线段垂直平分线求出DE=BD=x,根据等腰三角形求出BQ=CQ=6,求出CM=DM=3,解直角三角形求出EM=3y,AQ=6y,在Rt△DEM中,根据勾股定理即可得.【详解】过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴EM AQMC CQ=y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=12CQ=3,∴EM=3y,∴DM=12-3-x=9-x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9-x)2,即2x-y2=9,故选B.二、填空题(本大题共6小题,每小题3分,共18分)7. 若反比例函数y=k x 的图象经过点(1,﹣6),则k 的值为 . 【答案】﹣6.【解析】【分析】由待定系数法代入(1,﹣6),即可求得k 的值.【详解】已知反比例函数y=k x的图象经过点(1,﹣6),所以k=1×(﹣6)=﹣6. 故答案为:-6考点:反比例函数图象上点的坐标特征.8. 如图所示的几何体是由一些小正方体组合而成的,若每个小正方体的棱长都是1,则该几何体俯视图的面积是________【答案】5【解析】根据题意画出该几何体的俯视图.因为几何体的三视图采用的是正投影的方法,所以俯视图中的各小正方形的边长应与该几何体中小正方体的棱长相等.因为每个小正方体的棱长都是1,所以俯视图中的各小正方形的边长也均为1.因为俯视图共由5个全等的小正方形组成,所以俯视图的面积为:()2515⨯=.故本题应填写:5.9. 如图,△ABC的两条中线AD和BE相交于点G,过点E作EF∥BC交AD于点F,那么FGAG=________.【答案】1 4【解析】【分析】根据重心的性质得到AG=2DG,BG=2GE,根据平行线分线段成比例定理计算即可.【详解】解:∵△ABC的两条中线AD和BE相交于点G,∴点G是△ABC的重心,∴AG=2DG,BG=2GE,∵EF∥BC,∴FG GD=EG BG=12.故答案为12.【点睛】本题考查的是三角形的重心的概念和性质、平行线分线段成比例定理的应用,三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍.10. 如图所示,为了测量出一垂直水平地面的某高大建筑物AB的高度,一测量人员在该建筑物附近C处,测得建筑物顶端A处的仰角大小为45°,随后沿直线BC向前走了100米后到达D处,在D处测得A处的仰角大小为30°,则建筑物AB的高度约为______米.(注:不计测量人员的身高,结果按四舍五入保留整数,参考数据:2≈1.41,3≈1.73)【答案】137.【解析】【分析】【详解】设AB=x米,在Rt△ABC中,∵∠ACB=45°,∴BC=AB=x米,则BD=BC+CD=x+100(米),在Rt△ABD中,∵∠ADB=30°,∴tan∠ADB=3ABBD=,即3100xx=+,解得:x=50+503≈137,即建筑物AB的高度约为137米.故答案为137.考点:解直角三角形的应用﹣仰角俯角问题.11. 如图,直线y=x+2与反比例函数y=kx的图象在第一象限交于点P.若OP=10,则k的值为________.【答案】3 【解析】【分析】已知直线y=x+2与反比例函数y=kx的图象在第一象限交于点P,设点P的坐标为(m,m+2),根据10,列出关于m的等式,即可求出m,得出点P坐标,且点P在反比例函数图象上,所以点P满足反比例函数解析式,即可求出k值.【详解】∵直线y=x+2与反比例函数y=kx的图象在第一象限交于点P∴设点P的坐标为(m,m+2) ∵1022(2)10m m++=解得m1=1,m2=-3∵点P 在第一象限∴m=1∴点P 的坐标为(1,3)∵点P 在反比例函数y=k x 图象上 ∴31k 解得k=3故答案为:3【点睛】本题考查了一次函数与反比例函数交点问题,交点坐标同时满足一次函数和反比例函数解析式,根据直角坐标系中点坐标的性质,可利用勾股定理求解.12. (2016辽宁省沈阳市)如图,在Rt △ABC 中,∠A =90°,AB =AC ,BC =20,DE 是△ABC 的中位线,点M 是边BC 上一点,BM =3,点N 是线段MC 上的一个动点,连接DN ,ME ,DN 与ME 相交于点O .若△OMN 是直角三角形,则DO 的长是______.【答案】256或5013. 【解析】 由图可知,在△OMN 中,∠OMN 的度数是一个定值,且∠OMN 不为直角. 故当∠ONM =90°或∠MON =90°时,△OMN 是直角三角形. 因此,本题需要按以下两种情况分别求解.(1) 当∠ONM =90°时,则DN ⊥BC .过点E 作EF ⊥BC ,垂足为F .(如图)∵在Rt △ABC 中,∠A =90°,AB =AC , ∴∠C =45°, ∵BC =20,∴在Rt△ABC中,2cos cos45201022AC BC C BC=⋅=⋅︒=⨯=,∵DE是△ABC的中位线,∴111025222CE AC==⨯=,∴在Rt△CFE中,2sin sin455252EF CE C BC=⋅=⋅︒=⨯=,5FC EF==.∵BM=3,BC=20,FC=5,∴MF=BC-BM-FC=20-3-5=12. ∵EF=5,MF=12,∴在Rt△MFE中,5 tan12EFEMFMF∠==,∵DE是△ABC的中位线,BC=20,∴11201022DE BC==⨯=,DE∥BC,∴∠DEM=∠EMF,即∠DEO=∠EMF,∴5 tan tan12DEO EMF∠=∠=,∴在Rt△ODE中,525tan10126 DO DE DEO=⋅∠=⨯=.(2) 当∠MON=90°时,则DN⊥ME.过点E作EF⊥BC,垂足为F.(如图)∵EF=5,MF=12,∴在Rt△MFE中,222212513ME MF EF=++=,∴在Rt△MFE中,5 sin13EFEMFME∠==,∵∠DEO=∠EMF,∴5 sin sin13DEO EMF∠=∠=,∵DE=10,∴在Rt△DOE中,550sin101313 DO DE DEO=⋅∠=⨯=.综上所述,DO的长是256或5013.故本题应填写:256或5013.点睛:在解决本题的过程中,难点在于对直角三角形中直角的分类讨论;关键点是通过等角代换将一个在原直角三角形中不易求得的三角函数值转换到一个容易求解的直角三角形中进行求解. 另外,本题也可以用相似三角形的方法进行求解,不过利用锐角三角函数相对简便.三、(本大题共5小题,每小题6分,共30分)13. 如图,以原点O为位似中心,把△OAB放大后得到△OCD,求△OAB与△OCD的相似比.【答案】23.【解析】试题分析:根据相似三角形相似比的定义可知,要求△OAB与△OCD的相似比就是要求△OAB与△OCD某一组对应边的比. 观察图形可知,根据点B与点D的坐标容易确定OB与OD这组对应边的长度,这组对应边的比即为这组相似三角形的相似比.试题解析:∵点B的坐标是(4, 0),点D的坐标是(6, 0),∴OB=4,OD=6,∴4263 OBOD==,∵△OAB与△OCD关于点O位似,∴△OAB∽△OCD,∵相似三角形的对应边的比是相似三角形的相似比,又∵OB与OD为一组对应边,∴△OAB与△OCD的相似比为2 3 .点睛:本题考查了位似图形与相似图形的相关知识. 应当准确理解位似图形与相似图形的联系和区别,分清位似图形中边的对应关系以及熟练掌握相似三角形相似比的定义. 要注意,位似图形一定是相似图形,但是位似图形是对应顶点连线所在直线相交于一点,对应边互相平行的特殊相似图形.14. 如图,反比例函数y=kx的图象在第二象限内,点A是图象上的任意一点,AM⊥x轴于点M,O是原点.若S△AOM=3,求该反比例函数的解析式,并写出自变量的取值范围.【答案】y=-6x(x<0)【解析】试题分析:要求反比例函数的解析式就是要求比例系数k的值. 观察图形可以发现,△AOM恰好是与比例系数k的几何意义密切相关的一个典型图形,易知S△AOM=12k. 据此,结合已知条件不难求得k的绝对值,再根据反比例函数图象所在的象限,容易判定k的符号,进而获得k的值. 根据题目中给出的图象可知,该函数的图象只在第二象限内,故自变量x的取值范围也就确定了.试题解析:根据题目中△AOM的特征以及反比例函数中比例系数k的几何意义可知,S△AOM=12 k.∵S△AOM=3,∴13 2k=,∴6k=.由图可知,该反比例函数的图象在第二象限内,根据反比例函数的图象与性质可知k<0,故k=-6,即该反比例函数解析式为6y x =-. 由于图中函数的图象只有第二象限内的一支,所以自变量x 的取值范围为x <0. 因此,该函数的解析式及自变量取值范围应为:6y x =-(x <0). 点睛:本题考查了反比例函数中比例系数k 的几何意义. 过双曲线上任意一点作x 轴,y 轴的垂线,其与坐标轴围成的矩形的面积为k ;若将该点与原点连接,则连线将上述矩形分割而成的两个三角形的面积均为12k . 熟练掌握和运用这一几何意义可以简化解题过程,同时这一几何意义也是反比例函数中面积相关问题的基础.15. 按要求完成下列各小题:(1)计算:tan 230°+3tan60°-sin 245°;(2)请你画出如图所示的几何体的三视图.【答案】(1)176;(2)详见解析. 【解析】试题分析: (1) 将相应特殊角的三角函数值代入该算式并进行相应的运算即可.(2) 从正面,左面和上面观察该几何体,下部长方体的正投影均为长方形(各边长度随视图不同而不同);上部由小立方体组成的结构的正投影在三个方向上得到的视图中均由三个全等的正方形组成,只不过正方形相互之间的排列关系以及它们与下部长方体的正投影的相对位置有所不同.试题解析:(1) 22tan 30360sin 45︒+︒-︒=22 3233⎛⎫⎛⎫+⨯-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭=113 32 +-=17 6.(2) 该几何体的三视图如下图所示.点睛:本题考查了特殊角三角函数值的应用以及几何体三视图的画法. 特殊角三角函数值不仅是解决锐角三角函数相关问题的重要工具,更是很多实际应用问题的解题线索,需要重点记忆. 绘制几何体的三视图重点在于结合对几何体特征的分析从三个方向想象几何体的具体形状,需要加强简单立体图形几何特征的分析能力和空间想象能力.16. 如图,已知AC=4,求AB和BC的长.【答案】AB=2+3 BC=2【解析】试题分析:根据三角形内角和不难求得∠B=45°. 由于∠A和∠B的角度值均为特殊角度值,所以可以利用AB边上的高(设该高为CD)将△ABC分成两个含有特殊角的直角三角形进行求解. 利用已知条件可以求解Rt△ADC,从而求得线段AD与CD的长. 由于线段CD为这两个直角三角形的公共边,并且已经求得∠B的值,所以Rt△CDB也是可解的. 解这个直角三角形,可以求得线段BC与BD的长,进而容易求得线段AB的长.试题解析:如图,过点C 作CD ⊥AB ,垂足为D .∵∠A =30°,AC =4, ∴在Rt △ADC 中, 1sin sin 30422CD AC A AC =⋅=⋅︒=⨯=, 3cos cos304232AD AC A AC =⋅=⋅︒=⨯=, ∵∠ACB =105°,∠A =30°, ∴在△ABC 中,∠B =180°-∠A -∠ACB =180°-30°-105°=45°, ∵CD =2,∴在Rt △CDB 中,22sin sin 45CD CD BC B ===︒, 2tan tan 45CD CD BD B ===︒, ∴AB =AD +BD =232+.综上所述,AB =223+,BC =22.点睛:本题考查了解直角三角形的相关知识. 有两个内角为特殊角度的三角形是解直角三角形及其应用中的典型图形. 解决这类问题时,一般是过非特殊角度的内角的顶点作三角形的高,将这个三角形分割成为两个具有公共边的直角三角形,解这两个直角三角形即可求得原三角形的全部边长和内角的度数.17. 操场上有三根测杆AB ,MN 和XY ,MN =XY ,其中测杆AB 在太阳光下某一时刻的影子为BC(如图中粗线).(1)画出测杆MN在同一时刻的影子NP(用粗线表示),并简述画法;(2)若在同一时刻测杆XY的影子的顶端恰好落在点B处,画出测杆XY所在的位置(用实线表示),并简述画法.【答案】详见解析.【解析】【分析】(1) 连接AC,则线段AC所在直线表示太阳的光线. 因为平行投影的投射线是平行的,所以只要从测杆MN 顶部的点M处作太阳光线AC的平行线,该线与地面的交点以及测杆底部的点N之间的连线即为MN的影子.(2) 根据平行投影的原理,过点B作太阳光线AC的平行线可以得到经过测杆XY顶点X的太阳光线.因为MN=XY,所以过点M作地面的平行线,该线与经过测杆XY顶点X的太阳光线的交点即为测杆XY的顶点X,求得点X后容易得到测杆XY的位置.【详解】(1) 画法:连接AC,过点M作MP∥AC交直线NC于点P,则NP为MN的影子. 具体图形如下.(2) 画法:连接AC,过点B作射线BE∥AC,过点M作射线MF∥NC,MF交BE于点X,过点X作XY⊥NC 交NC于点Y,则XY即为所求. 具体图形如下.【点睛】:本题考查了平行投影的相关知识. 平行投影的投射线是平行的,这是平行投影最重要的特征,也是解决平行投影相关问题的关键. 通过已知的影子和相应的物体画出平行投影的投射线,再利用投射线的平行关系获得其他物体的影子,是平行投影问题的重要解题思路.四、(本大题共3小题,每小题8分,共24分)18. 如图所示为一几何体的三视图.(1)写出这个几何体的名称:____________;(2)在虚线框中画出它的一种表面展开图;(3)若主视图中长方形较长一边的长为5cm ,俯视图中三角形的边长为2cm ,则这个几何体的侧面积是________cm 2.【答案】详见解析.【解析】试题分析:(1) 观察题目中给出的三视图可以发现,该几何体上下底面是全等的等边三角形,侧面为全等的矩形. 根据这些几何特征可以判定该几何体为正三棱柱.(2) 正三棱柱的上下底面为两个全等的等边三角形,侧面为三个全等的矩形. 在表面展开图中,中间部分应该是表示侧面的三个并行排列的矩形,这些矩形较短的边长应该为底面的边长,较长的边长应该为正三棱柱的高;在位于中间的矩形的上方和下方各有一个表示上下底面的等边三角形.(3) 结合题目中给出的条件观察第(2)小题中得到的表面展开图可知,由已知条件可以求得展开图中部的三个矩形的面积. 根据正三棱柱的几何特征可知,其侧面积可以由这三个矩形的面积之和求得.试题解析:(1) 根据题目中给出的三视图的特征可知,该几何体为正三棱柱. 故本小题应填写:正三棱柱.(2) 根据正三棱柱的几何特征,画出如下的表面展开图.(3) 本小题应填写:30. 求解过程如下.利用第(2)小题得到的正三棱柱表面展开图(如图),计算几何体的侧面积.由题意可知,AF =BG =DM =EN =5cm ,BC =BD =CD =2cm.根据正三棱柱的几何特征可知:四边形ABGF ,四边形BDMG ,四边形DENM 为全等的矩形.∵矩形BDMG 的面积为:2510BD BG ⋅=⨯=(cm 2),∴矩形ABGF 与矩形DENM 的面积均为10cm 2.根据正三棱柱的几何特征可知,正三棱柱的侧面积等于四边形AENF的面积,即上述三个矩形面积之和,⨯=(cm2).故该正三棱柱的侧面积应为:31030点睛:本题综合考查了简单立体图形的几何特征以及几何体三视图的相关知识. 利用三视图判断几何体的形状以及计算几何体侧面积需要熟练掌握简单立体图形的几何特征;利用几何体画出其表面展开图不仅需要熟悉几何体的特征还需要根据这些特征进行一定程度的空间想象.19. 王浩同学用木板制作一个带有卡槽的三角形手机架,如图1所示.已知AC=20cm,BC=18cm,(提∠ACB=50°,王浩的手机长度为17cm,宽为8cm,王浩同学能否将手机放入卡槽AB内?请说明你的理由.示:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2)【答案】.能.【解析】试题分析:由题意可知,手机能不能放入卡槽AB内可以通过线段AB的长与手机的长17cm的比较来判断. 因此,本题就转化为如何求解线段AB的长. 分析已知条件可知,通过作△ABC的边BC上的高AD,可以利用已知条件中∠ACB的度数与边AC的长求解Rt△ADC,进而通过勾股定理得到线段AB的长.试题解析:王浩同学能将手机放入卡槽AB内. 理由如下.如图,过点A作AD⊥BC,垂足为D.∵∠ACB=50°,AC=20cm,∴在Rt△ADC中,sin sin50200.816AD AC ACB AC =⋅∠=⋅︒≈⨯=(cm),cos cos50200.612CD AC ACB AC =⋅∠=⋅︒≈⨯=(cm),∵BC =18cm ,∴BD =BC -CD ≈18-12=6(cm),∴在Rt △ADB 中,2222166292273AB AD DB =+≈+==(cm). ∵273292=,17289=, 又∵292289>,∴AB >17,即卡槽AB 的长度大于手机的长,∴王浩同学能将手机放入卡槽AB 内.点睛:本题考查了解直角三角形的相关知识. 利用解直角三角形求解线段长度问题的关键是寻找或构造合适的直角三角形. 符合条件的直角三角形不仅自身是可解的,而且还要能够通过公共边之类的关系与要求的线段相联系. 一般情况下,相关三角形的某一条边上的高往往是解题的突破口.20. 如图,已知四边形ABCD 内接于⊙O ,A 是BDC 的中点,AE ⊥AC 于A ,与⊙O 及CB 的延长线交于点F ,E ,且BF AD =.(1)求证:△ADC ∽△EBA ;(2)如果AB =8,CD =5,求tan ∠CAD 的值.【答案】(1)详见解析;(2)58. 【解析】【分析】(1)欲证△ADC ∽△EBA ,只要证明两个角对应相等就可以.可以转化为证明且BF AD =就可以;(2)A是BDC的中点,的中点,则AC=AB=8,根据△CAD∽△ABE得到∠CAD=∠AEC,求得AE,根据正切三角函数的定义就可以求出结论.【详解】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵BF AD=,∴∠DCA=∠BAE,∴△ADC∽△EBA;(2)解:∵A是BDC的中点,∴AB AC=,∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,DC ACAB AE=,即588AE=,∴AE=645,∴tan∠CAD=tan∠AEC=ACAE=8645=58.考点:相似三角形的判定与性质;圆周角定理.五、(本大题共2小题,每小题9分,共18分)21. 如图,一座钢结构桥梁的框架是△ABC,水平横梁BC长18米,中柱AD高6米,其中D是BC的中点,且AD⊥BC.(1)求sinB的值;(2)现需要加装支架DE、EF,其中点E在AB上,BE=2AE,且EF⊥BC,垂足为点F,求支架DE的长.【答案】(1)sinB=21313;(2)DE=5.【解析】【分析】(1)在Rt△ABD中,利用勾股定理求出AB,再根据sinB=ADAB计算即可;(2)由EF∥AD,BE=2AE,可得23EF BF BEAD BD BA===,求出EF、DF即可利用勾股定理解决问题;【详解】(1)在Rt△ABD中,∵BD=DC=9,AD=6,∴AB=222296BD AD++=313,∴sinB=6=313ADAB=21313.(2)∵EF∥AD,BE=2AE,∴23EF BF BEAD BD BA===,∴2693EF BF==,∴EF=4,BF=6,∴DF=3,在Rt△DEF中,DE=2222=43EF DF++=5.考点:1.解直角三角形的应用;2.平行线分线段成比例定理.22. 如图,已知四边形OABC是菱形,OC在x轴上,B(18,6),反比例函数y=kx(k≠0)的图象经过点A,与OB交于点E.(1)求出k的值;(2)求OE∶EB的值.【答案】(1)48;(2)2. 【解析】解:(1)过点B作BF⊥x轴于点F, 由题意可得BF=6,OF=18∵四边形OABC是菱形,∴OC=BC在Rt△OBC中,62+(18-BC)2=BC2解得BC=10所以点A(8,6)将点A(8,6)代入kyx,解得k=48,(2)设E(48,aa),过点E作EG⊥x轴于点G,根据题意可知OG=a,EG=48 a由作图可知EG∥BF∴△OGE∽△BOF∴,解得a=12,∴∴六、(本大题共12分)23. 如图①,点P为∠MON的平分线上一点,以P点为顶点的角的两边分别与射线OM,ON交于A,B两点,如果∠APB绕点P旋转时始终满足OA·OB=OP2,我们就把∠APB叫作∠MON的智慧角.(1)如图②,已知∠MON=90°,点P为∠MON的平分线上一点,以点P为顶点的角的两边分别与射线OM,ON交于A,B两点,且∠APB=135°,求证:∠APB是∠MON的智慧角;(2)如图①,已知∠MON=α(0°<α<90°),OP=2,若∠APB是∠MON的智慧角,连接AB,用含α的式子分别表示∠APB的度数和△AOB的面积.【答案】(1)详见解析;(2)∠APB=180°-12α,S△AOB=2sinα..【解析】试题分析:(1) 在△OAP中利用三角形内角和可以求得∠OAP+∠APO为135°,再根据已知条件容易得到∠OAP=∠OPB. 由“两组内角对应相等”不难证明△AOP∽△POB. 利用相似三角形的性质可以证明OA·OB=OP2. 由于上述证明过程中所用到的几何关系不随旋转而改变,所以可以证明本小题的结论.(2) 利用已知条件不难通过“两组对应边的比相等且夹角相等”证明△AOP∽△POB. 通过∠OAP=∠OPB可以将∠APB转化为△OAP的两个内角之和,从而利用三角形内角和获得∠APB与α的关系. 至于△AOB的面积,可以作出OB边上的高,利用锐角三角函数将这条高的长度用含有OA和α的式子表示出来. 通过三角形面积公式和OA·OB=OP2的关系可以得到△AOB的面积与α的关系.试题解析:(1) 证明:∵∠MON=90°,点P为∠MON平分线上的一点,∴11904522AOP BOP MON∠=∠=∠=⨯︒=︒,∵在△OAP中,∠AOP+∠OAP+∠APO=180°,∴∠OAP+∠APO=180°-∠AOP=180°-45°=135°. ∵∠APB=135°,∴∠APO+∠OPB=135°,∴∠OAP=∠OPB,∵∠OAP=∠OPB,∠AOP=∠POB=45°,∴△AOP∽△POB,∴OA OP OP OB=,∴OP2=OA·OB,∴∠APB是∠MON的智慧角.(2) 下面求解∠APB的度数.∵∠APB 是∠MON 的智慧角,∴OA ·OB =OP 2, ∴OA OP OP OB =, ∵点P 为∠MON 平分线上的一点,∠MON =α (0°<α<90°), ∴12AOP POB α∠=∠=. ∵OA OP OP OB=,∠AOP =∠POB , ∴△AOP ∽△POB ,∴∠OAP =∠OPB , ∵在△OAP 中,∠AOP +∠OAP +∠APO =180°, ∴∠OAP +∠APO =180°-∠AOP =11802α︒-, ∵∠APB =∠OPB +∠APO =∠OAP +∠APO ,∴11802APB α∠=︒-.下面求解△AOB 的面积.如图,过点A 作AH ⊥OB ,垂足为H . (以下用符号S △AOB 代指△AOB 的面积)∵∠MON =α (0°<α<90°),即∠AOH =α, ∴在Rt △OHA 中,sin sin AH OA AOH OA α=⋅∠=⋅,∴11sin 22AOB S OB AH OB OA α=⋅=⋅⋅, ∵∠APB 是∠MON 的智慧角,∴OA ·OB =OP 2, ∴211sin sin 22AOB S OB OA OP αα=⋅⋅=⋅, ∵OP =2, ∴21sin 2sin 2AOBS OP αα=⋅=,即△AOB 的面积为2sin α. 点睛:本题综合考查了相似三角形的判定和性质以及锐角三角函数的相关知识. 正确理解题意,充分利用所谓“智慧角”所包含的条件是解决该题的重要前提;避免对条件中“旋转”之类字眼的过分解读也是在解决本题的过程中需要特别注意的. 另外,利用“两组对应边的比相等且夹角相等”判定三角形相似的方法容易被忽略,从而造成不必要的困难.。

2017-2018学年第一学期九年级数学期末试题参考答案

2017-2018学年第一学期九年级数学期末试题参考答案

2017—2018学年第一学期期末学业水平检测九年级数学试题参考答案各位老师:提前祝假期快乐,阅卷时请注意:评分标准仅做参考,只要学生作答正确,均可得分。

对于解答题目,答案错误原则上得分不超过分值的一半,有些题目有多种方法,只要做对,13. -3 14.-2 15. 516.2:3 17.24 18.(2,1) 19.解:(1)将x=1代入方程得:9-3a+a-1=0, 解得:a=4……………………………………………………………1分所以方程为:03x 4x 2=++,解得:3-x 1-x 21==,,所以方程的另一根为x=-3。

……………………………………3分(用根与系数的关系来解也可以)(2)证明:⊿=a 2-4×(a -1)= (a -2)2,∵(a -2)2≥0,⊿≥0. ∴不论a 取何实数,该方程都有两个不相等的实数根.………………8分20.解∶(1)21;………………………………………………2分 (2)乙家庭没有孩子,准备生两个孩子所有可能出现得结果有(男,男),(男,女),(女,男),(女,女),一共有4种结果,它们出现得可能性相同,所有结果种,满足“至少有一个是女孩”的结果有三种,所以至少有一个孩子是女孩的概率是43.………………7分 21.由题意得, 在直角ADC ∆中,∠APQ=45°,CD=60米,∴tan45°=ADCD ,即 ………2分 在直角BDC ∆中, ∠BPQ=60°,∴tan60°=CD BD ,即60BD =3, ∴BD=360………4分∴AB=BD-AD=60360-(米)。

答:海丰塔AB 的高为60360-米. ………8分22.(1)证明:连结OD .∵EF AC ⊥∴90DFA ∠=︒,∵AB AC =,∴1C ∠=∠……………………2分∵OB OD =,∴12∠=∠,∴2C ∠=∠ ,∴OD ∥AC …………3分∴90EDO DFA ∠=∠=︒,即OD EF ⊥.∴EF 是⊙O 的切线.…………………………5分(其他方法参照本题标准)(2)解: 连结AD .∵AB 是直径,∴AD BC ⊥.又AB AC =,∴CD=BD=5,在Rt CFD ∆中,DF=4, ∴CF=3…………………………………………6分在Rt CFD ∆中,DF AC ⊥∴CFD ∆∽ADC △ ………………………7分 ∴DC CF DA DF =,即534=DA ,∴320=DA ………………………9 根据勾股定理得:∴2222)320(5+=+=BD AD AB =325……………………10分 23. (1)∵ 四边形AMPN 是矩形,∴PN ∥AB ,PN =AM ,∴△DNP ∽△DAB . ∴ABNP DA DN =. ……………………………………………………2分 ∵AB =160,AD =100,AN =x ,AM =y ,∴160100100y x =-. ∴16058+-=x y . ………………………………………………4分 (2)设花坛AMPN 的面积为S ,则()40005058)16058(2+--=+-==x x x xy S …6分 ∵058<-,∴当50=x 时,S 有最大值, 4000=最大值S . ∴当AM =80,AN =50时,花坛AMPN 的最大面积为4000m 2 ………………8分24. 解:(1)∵直线y =ax +1与x 轴交于点A(-2,0),∴-2a +1=0,解得a =12,∴直线的解析式为y =12x +1,……2分 由PC ⊥x 轴,且PC =2,∴y =2=12x +1,解得x =2, ∴点P 的坐标为(2,2),………………………………3分∵点P 在反比例函数y =k x的图象上,∴k =2×2=4, ∴反比例函数解析式为y =4x.…………………………4分 (2)∵直线y =12x +1与y 轴交于点B ,∴点B 的坐标为(0,1),∴AO =2,OB = 1. ) 12如解图,过点Q 作QH ⊥x 轴于点H ,连接CQ ,则∠QHC =∠AOB =90°.∵点Q 在反比例函数y =4x 的图象上,∴设点Q 的坐标为(t ,4t),t >2, 则QH =4t,CH =t -2,……………………6分 若以点Q 、C 、H 为顶点的三角形S △AOB 相似时,则有两种可能,(ⅰ)当△QCH ∽△BAO 时,AO CH =OB QH ,即QH CH =OB AO =12,∴2×4t=t -2,解得t 1=4,t 2=-2(舍去), 则点Q 的坐标为(4,1);……………………………………7分(ⅱ)当△QCH ∽△ABO 时,AO QH =OB CH ,即QH CH =AO OB =2,∴4t=2(t -2),解得t 1=3+1,t 2=1-3(舍去),则点Q 的坐标为(3+1,23-2).……………………………………8分 综上所述,Q 点的坐标为(4,1)或(1+3,23-2).………………9分25.解:(1)设抛物线解析式为y=a (x+4)(x ﹣2),将B (0,﹣4)代入得:﹣4=﹣8a ,即a=,则抛物线解析式为y=(x+4)(x ﹣2)=x 2+x ﹣4;……………………4分(2)过M 作MN ⊥x 轴,将x=m 代入抛物线得:y=m 2+m ﹣4,即M (m , m 2+m ﹣4),∴MN=|m 2+m ﹣4|=﹣m 2﹣m+4,ON=﹣m ,………………………………6分∵A (﹣4,0),B (0,﹣4),∴OA=OB=4,∴△AMB 的面积为S=S △AMN +S 梯形MNOB ﹣S △AOB=×(4+m )×(﹣m 2﹣m+4)+×(﹣m )×(﹣m 2﹣m+4+4)﹣×4×4=2(﹣m 2﹣m+4)﹣2m ﹣8=﹣m 2﹣4m=﹣(m+2)2+4,当m=﹣2时,S 取得最大值,最大值为4.…………………………10分。

(精选4套)2017—2018学年度上学期期末考试九年级数学试题

(精选4套)2017—2018学年度上学期期末考试九年级数学试题

16题图2017—2018学年度上学期期末考试九年级数学试题一、选择题(每小题4分,共40分)1.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()A .B .C .D .2.一元二次方程0182=--x x 配方后可变形为( )A. 17)4(2=+xB. 15)4(2=+xC. 17)4(2=-xD. 15)4(2=-x3.商场举行摸奖促销活动,对于“抽到一等奖的概率为0.1”,下列说法正确的是( ) A .抽10次必有一次抽到一等奖,B .抽一次不可能抽到一等奖 C .抽10次也可能没有抽到一等奖D .抽了9次如果没有抽到一等奖,那么再抽一次肯定抽到一等奖 4.设1x ,2x 是方程2530x x +-=的两个根,则2212x x+的值是()A .19B .25C .31D .305.如图,正方形OABC 绕着点O 逆时针旋转40°得到正方形ODEF ,连接AF ,则∠OFA 的度数是( ) A .15° B .20° C .25° D .30°6.如图,在4×4的正方形网格中,每个小正方形的边长为1,若将△AOC 绕点O 顺时针旋转90°得到△BOD ,则AB ︵的长为( )A .πB .6πC .3πD .1.5π7.如图,平面直角坐标系xOy 中,半径为2的⊙P 的圆心P 的坐标为(-3,0),将⊙P 沿x 轴正方向平移,使⊙P 与y 轴相切,则平移的距离为( )A .1B .1或5C .3D.5(第5题图) (第6题图) (第7题图) (第8题图)8.如图,将含60°角的直角三角板ABC 绕顶点A 顺时针旋转45°度后得到△AB′C′,点B 经过的路径为弧BB′,若∠BAC=60°,AC=1,则图中阴影部分的面积是( )D9.若A (),B (),C ()是二次函数的图象上的三点,则的大小关系是A .B .C .D .10.已知二次函数y =ax 2+bx+c (a≠0)的图象如图所示,对称轴是直线x =-1,下列结论:①abc <0;②2a +b =0;③a -b +c >0;④4a -2b +c <0,其中正确的是( )A .①②B . 只有①C .③④D . ①④(第10题图) (第14题图)(第15题图)二、填空题(每小题4分,共32分)11.某校准备组织师生观看北京奥运会球类比赛,在不同时间段里有3场比赛,其中2场是乒乓球赛,1场是羽毛球赛,从中任意选看2场,则选看的2场恰好都是乒乓球比赛的概率是 . 12.一个扇形的弧长是20πcm ,面积是240πcm 2,则扇形的圆心角是 .13.已知整数k <5,若△ABC 的边长均满足关于x 的方程280x -+=,则△ABC 的周长是 . 14.如图,二次函数c bx ax y ++=21(a ≠0)与一次函数m kx y +=2(k ≠0)的图象相交于点A (-2,4),B (8,2),则能使y 1>y 2成立的x 的取值范围是 .15.如图,在Rt △ABC 中,∠ACB =90°,AC =5cm ,BC =12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为 cm .16.如图,在边长为4的正方形ABCD 中,先以点A 为圆心,AD 的长为半径画弧,再以AB 边的中点为圆心,AB 长的一半为半径画弧,则两弧之间的阴影部分面积是 .17.如图,在平面直角坐标系中,抛物线y =221x 经过平移得到抛物线y =x x 2212-,其对称轴与两段抛物线所围成的阴影部分的面积为第17题图18.在如图所示的平面直角坐标系中,△OA 1B 1是边长为2的等边三角形,作△B 2A 2B 1与△OA 1B 1关于点B 1成中心对称,再作△B 2A 3B 3与△B 2A 2B 1关于点B 2成中心对称,…,如此作下去,则△B 2014A 2015B 2015的顶点A 2015的坐标是 .三、解答题(共7小题,78分) 19.(本题满分10分)解下列方程:(1)03)3(=-+-x x x ; (2)0142=+-x x .20.(本题满分8分)如图,在平面直角坐标系中,A (0,1),B (-3,5),C (-3,1).(1)在图中画出△ABC 以A 为旋转中心,沿顺时针方向旋转90° 后的图形△AB 1C 1,并写出B 1、C 1两点的坐标; (2)在图中画出与△ABC 关于原点对称的图形△A 2B 2C 2, 并写出B 2、C 2两点的坐标.21.(本题满分10分)已知甲同学手中藏有三张分别标有数字21,41,1的卡片,乙同学手中藏有三张分别标有数字1,3,2的卡片,卡片的外形相同,现从甲、乙两人手中各任取一张卡片,并将它们的数字分别记为a 、b .⑴请你用树形图或列表法列出所有可能的结果;⑵现制订这样一个游戏规则,若所选出的a 、b 能使ax 2+bx +1=0有两个不相等的实数根,则称甲胜;否则乙胜,请问这样的游戏规则公平吗?请你用概率知识解释.22.(本题满分12分)已知:函数y =ax 2-(3a +1)x +2a +1(a 为常数). (1)若该函数图象与坐标轴只有两个交点,求a 的值;(2)若该函数图象是开口向上的抛物线,与x 轴相交于点A (x 1,0),B (x 2,0)两点,与y 轴相交于点C ,且x 2-x 1=2.求抛物线的解析式23.(本题满分12分)为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y (件)与销售单价x (元)满足一次函数关系:y =-10x +1200.(1)求出利润S (元)与销售单价x (元)之间的关系式(利润=销售额-成本); (2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?24.(本题满分12分) 在直角三角形ABC 中,∠C=90°,点O 为AB 上的一点,以点O 为圆心,OA 为半径 的圆弧与BC 相切于点D ,交AC 于点E ,连接AD .证:25.(本题满分14分)如图,抛物线22y ax ax c =-+(a ≠0)与y 轴相交于点C (0,4),与x 轴相交于A 、B两点,点A 的坐标为(4,0). (1)求此抛物线的解析式;(2)抛物线在x 轴上方的部分有一动点Q ,当△QAB 的面积等于12时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2017—2018学年度上学期期末考试21.(本题满分8分)22.(本题满分10分)23.(本题满分10分)2017—2018学年度第一学期期末模拟考试卷九年级数学特别提醒:1、考试时间120分钟,满分150分.2、用黑色签字笔在答题卡...上答题,在试卷上答题无效。

20172018第一学期期末测试九年级数学试题及答案

20172018第一学期期末测试九年级数学试题及答案

2017—2018学年第一学期期末学业水平测试九年级数学试题:温馨提示分钟。

考试结束后,只分。

考试用时100本试卷分第Ⅰ卷和第Ⅱ卷两部分,共5页。

满分为1201. 上交答题卡。

毫米黑色签字笔将自己的学校、班级、姓名、准考证号、考场、座号填写答卷前,考生务必用0.52. 铅笔填涂相应位置。

在答题卡规定的位置上,并用2B把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦2B铅笔3.第Ⅰ卷每小题选出答案后,用干净后,再选涂其他答案标号。

答案不能答在试题卷上。

毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能第Ⅱ卷必须用0.54. 写在试题卷上;不准使用涂改液、胶带纸、修正带。

不按以上要求作答的答案无效。

第Ⅰ卷(选择题)分,在每小题给出的四个选项中,只有一项是正确的,请把正确的小题,共36一、选择题:本大题共12. 3分,选错、不选或选出的答案超过一个均记零分选项选出来.每小题选对得22m的值是x+5x+m-3m+2=0的一个根是0,则1.若关于x的一元二次方程(m-1) 2 D.无解.2 C.1或A.1 B206?x?4?x 2.若把方程的左边配成完全平方的形式,则正确的变形是222253)?9??3)(x(((x?3)?5x?3)?13x? B. C.. A. D张完全相同的卡片上分别画上线段、等边三角形、平行四边形、直角梯形、正方形、圆,在看不见在63.张,这张卡片上的图形既是中心对称图形又是轴对称图形的概率是图形的情况下随机摸出12111 A. D C.. B.623322?3)?2(x?y个单位后,所得图象的函数表达式个单位,再向下平移2二次函数4.6图象向左平移是2212???2x6x?yxy?2?12x A. B.2218?6x?y??12x?y2?x182?x C. D .三通管的立体图如图所示,则这个几何体的主视图是5.B. A.D. C.下列命题中,假命题的是6. 等弧所对的圆周角相等 A.两条弧的长度相等,它们是等弧 B.位似图形一定有位似中心 C.所有的等边三角形都相似 D. 两点恰好B、C的菱形ABCD绕点A旋转,当7.如图,边长为2A的长度等于AEF落在扇形的弧EF上时,弧BC DEF????23 D. A. B. C.B3324C 1=∠2,那么添加下列任何一个条件:8.如图,若果∠(第7题图)BCABABAC =),)=,(21 (DEADAEAD AED ,(,4)∠C=∠(3)∠B=∠DADE的个数为其中能判定△ABC∽△题图)8(第 A.1 B.2 C.3D.4AB=8是△ABC的边BC上一点,,AD=4,9.如图,点D 的面积为30,那么△ACD的面积为∠∠DAC=B.如果△ABD15 .5 A. B.7.5 C10 D.(第9题图)k的值10.k的图象没有交点,=y=与一次函数若反比例函数yx-3则x可以是-3.-2DB.-1C. A.121?6x?2x?y?xx,上,且<<都在抛物线11.若点、0)y)(Bx,A(x,y212211yy的大小关系为则与21yyyyyy A. C.< D. B.≠>不能判定 2 211126?yy?x?bA(m,n),利用图象的对称性可知它们的另一与一次函数的图象交于点12.若反比例函数x个交点是)n?n)(?m,(((n,m)?n,?m)?m, C. B. A. D.第Ⅱ卷(非选择题)6小题,共24分,只要求填写最后结果,每小题填对得4分.二、填空题:本大题共. 的圆中,垂直平分半径的弦长为13.半径等于823x?y?x?2二次函数的图象如图所示,14. . 0 当y<时,自变量x的取值范围是 15.如图,在同一平面内,将△逆时针绕点AABC 14题图)(第 AB,∥°到△旋转40AED的位置,恰好使得DC.则∠CAB的大小为 . = °°cos30-sin30°tan45计算:16. tan60°2?y的图象上,若,17.点都在,)),(xy,(x)y,(xy321321x yyyx?0?x?x 的大小关系(用“<,,则”连接),321312题图)(第15是 .∠AMN?30,B为弧AN的中点, P上,在⊙,点的直径,是⊙如图,18. MNOOM=2AO是直径MN 上一动点,则PA+PB的最小值为 .三、解答题:本大题共6个小题,满分60分.解答时请写出必要的演推过程.19.(每小题5分,本大题满分10分)20?x?93x?12. (1)用配方法解方程:204?x?9x?3. )用公式法解方程:(2 8分)20.(本大题满分据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情ABD处有一探测仪,的上方,在一条笔直公路境中的速度不得超过B点匀速如平面几何图,,第一次探测到一辆轿车从CD得点,测驶,测得秒后到达向点行,结果精确到)求B,C的距离.(1)通过计算,判断此轿车是否超速.(2 (本大题满分12分) 21.24??2x?8xy?已知二次函数,完成下列各题:2+ky=a(x+h)形式,并写出它的顶点坐标、(1)将函数关系式用配方法化为对称轴. ABC的面积.轴交于)若它的图象与xA、B两点,顶点为C,求△(2 分)22.(本大题满分10 ,的直线互相垂直,垂足为D ADCAB如图,为⊙O的直径,为⊙O上一点,和过C点.DAB且AC 平分∠ 1()求证:DC为⊙的切线;O 3O2()若⊙的半径为,CDAD=4,求的长.10分)23.(本大题满分kmx?y??y xA、CBxy(-1 如图,已知直线,与双曲线)分别交于点轴分别交于点(与,轴、<012x D、).,2)1(a 1)分别求出直线及双曲线的解析式;(y?y x.2)利用图象直接写出,当在什么范围内取值时,(21y?ymx?y?. 时的部分用黑色笔描粗一些3)请把直线上(211y k y?x?m?y12x B C D x OA题图)(第2324.(本大题满分10分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销售量,决定降价销售,根据市场调查,单价每降低1元,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓是单价为40元.如果批发商希望通过销售这批T恤获利9000元,那么第二个月的单价应是多少元?学年第一学期期末学业水平测试2017—2018九年级数学试题参考答案分)个小题,每小题3分,满分36一、选择题(本大题1212 11 7 8 9 10 题号 1 2345 6CDD答案 CBBB A BCAD4分,满分24分)二、填空题(本大题共6个小题,每小题38 3; 15.70°;;14.-1<x13.<2y?y?; 18. 17.;16.1312个小题,共60分)三、解答题(本大题6分,满分10分)19.(每小题520?x?4x?3解:(1)两边同除以3分. ,得……………………………123?4?x?x.移项,得2222?3?x?4x?2?…………………………2配方,得分,21?(x?2) 3. ……………………………分1x?2??,…………………………4分∵ 5分,x=1. ………………………………∴原方程的解为x=321cba………………………………2 ()∵ 1=3,,=-9分=4.a c b,3×4=33>0 ……………………2分=∴⊿)22-4 =(-9-4×∴方程有两个不相等的实数根……………………………4分333333333?x??x??.…………………,即 5分, =21262626(本大题满分8分) 20.解:,在中,,,即,在中,,即,,m20 6分;则的距离为…………………………………,根据题意得:分则此轿车没有超速.…………………………………8 分)21.(本大题满分122+8x-4y=-2x1)解:(21分 =-2(x-4x)-4 ……………………………=-2(x-4x+4-4)-4 ……………………………32 4分2分=-2(x-2)+4. …………………………… 6分),对称轴为直线x=2. ………………所以,抛物线的顶点坐标为(2,422分,,(x-2)=2 ………………………7令(2)y=0得-2(x-2)+4=022??2?22=…………………………=9x-2=分,x,所以x. 所以21222?2?,0),分B(……x 所以与轴的交点坐标为A10(0). ,122?22?24分= ∴S. ×[()] ×…………………)4=-(12ABC△2分)(本大题满分1022.OC(1)证明:连接OCA, OAC=∠∵OA=OC,∴∠OAC, DAC=∠∵AC平分∠DAB,∴∠AD, ∥∠DAC=OCA,∴OC∴∠,∵AD⊥,CDCD,⊥∴OC 5分…………………与⊙O相切于点C;∴直线CD °.,则∠2)解:连接BCACB=90(∠ACB=90°,,∠∵∠DAC=∠OACADC= ,∽△∴△ADCACB2 AC∴,∴=ADAB?,,AD=4,∴AB=6O∵⊙的半径为3,62,∴AC=22∴CD= ……………………………………10分23.(本大题满分10分)y?x?my?x?3C .-1,2)坐标代入……2分,所以,得1解:()把点m=3(1k2y??y?C)坐标代入2(,所以-1把点,.……………3分 2,得k= —2xx2??y D)把点(24(a,1)坐标代入………………………分,所以a=—2.xy?y1???2?x.…………………………利用图象可知,当时,7分21(3)略. ……………………10分24.(本大题满分10分)x元,根据题意,得解:设第二个月的降价应是80×200+(80-x)(200+10x)+40[800-200-(200+10x)] -50×800=9000………………5分x-20x+100=0,2整理,得解这个方程得x=x=10,………………8分21当x=10时,80-x=70>50,符合题意.分1070答:第二个月的单价应是元. ………………注意:评分标准仅做参考,只要学生作答正确,均可得分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017-2018学年第二学期初三年级质量检测
数学(2018年2月)
本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,第I 卷为1-12题,共36分,第Ⅱ卷为13-23题,共64分。

全卷共计100分。

考试时间为90分钟。

第I 卷(本卷共计36分)
一、单项选择题(本部分共12小题,每小题3分,共36分)
1.方程3x 2-8x-10=0的二次项系数和一次项系数分别为( )
A.3和8
B.3和10
C.3和-10
D.3和-8
2.如图所示的工件,其俯视图是( )
3.若点A(a,b)在双曲线y=x 3上,则代数式ab-4的值为 A.-12 B.-7 C.-1 D.1
4.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色外其他完全相同.小明通过多次摸球试验后发现其中摸到红色球、黑色球的频率分别稳定在0.15和0.45,则口袋中白色球的个数可能是( )
A.28
B.24
C.16
D.6
5.如图,四边形ABCD 是平行四边形,下列说法不正确的是( )
第5题 第6题 第7题
A.当AC=BD 时,四边形ABCD 是矩形
B.当AB=BC 时,四边形ABCD 是菱形
C.当AC ⊥BD 时,四边形ABCD 是菱形
D.当∠DAB=90°时,四边形ABCD 是正方形
6.如图,△ABC 是△ABC 以点O 为位似中心经过位似变换得到的,若△A ′B ′C ′的面积与△ABC 的面积比是4:9,则0B ′:OB 为( )
A.2:3
B.3:2
C.4:5
D.4:9
7.如图,在平行四边形ABCD 中,EF ∥AB,DE:EA=2:3,EF=4,则CD 的长为( )
A.6
B.8
C.10
D.12
8.某小区2014年屋顶绿化面积为2000平方米,计划2016年屋顶绿化面积要达到2880平方米,若设屋顶绿化面积的年平均增长率为x,则依题意所列方程正确的是( )
A.2000(1+x)2=2880
B.200(1-x)2=2880
C.2000(1+2x)=2880
D.2000x 2=2880
9.二次函数y=x 2-3x+2的图像不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
10.如图,从点A 看一山坡上的电线杆PQ,观测点P 的仰角是45°,向前走6m 到达B 点,测得
顶端点P 和杆底端点Q 的仰角分别是60°和30°,则该电线杆PQ 的高度( )
A.326+
B.36+
C.310-
D.38+
11.如图,抛物线的顶点为P(-2,2),与y 轴交于点A(0,3).若平移该抛物线使其顶点P 沿直线移动到点P ′(2,-2),点A 的对应点为A ′,则抛物线上PA 段扫过的区域(阴影部分)的面积为( )
第11题 第12题
A.10
B.12
C.24
D.16
12.如图,正方形ABCD 中,O 为BD 中点,以BC 为边向正方方形内作等边△BCE,连接并延长AE 交CD 于F,连接BD 分别交CE 、AF 于G 、H,下列结论:①∠CEH=45°;②GF ∥DE ;③2OH+DH=BD ;
④BG=2DG ;⑤2
13+=
BGC BEC S S △△:。

其中正确的结论是( ) A.①②⑤ B.①②④ C.①② D.②③④
第Ⅱ卷非选择题
二、填空题(本题共4小题,每小题3分,共12分)
13.若25b a =,则b
b -a 的值是_________。

14.如图,在△ABC 中,∠C=90°,BC=6,D,E 分别在AB,AC 上,将△ABC 沿DE 折叠,使点A 落在点A ′处,若A ′为CE 的中点,则折痕DE 的长为_________.
15.菱形ABCD 的一条对角线长为6,边AB 的长是方程x 2-7x+12=0的一个根,则菱形ABCD 的
周长为__________。

16.如图,已知∠MON=30°,B 为OM 上一点,BA ⊥ON 于A,四边形ABCD 为正方形,P 为射线BM 上一动点,连结CP,将CP 绕点C 顺时针方向旋转90°得CE,连结BE,若AB=4,则BE 的最小值为____________.
三、解答题(本题共7小题,其中第17题6分,第18题6分,第19题6分,第20题8分,第21题8分,第22题9分,第23题9分,共52分)
17.(1)解方程:3x(x-2)=2(2-x) (2)计算:()()20
3--2-360cos 2-4-+︒
18.初一(1)班针对“你最喜爱的课外活动项目”对全班学生进行调查(每名学生分别选一个活动项目),并根据调查结果列出统计表,绘制成扇形统计图。

根据以上信息解决下列问题: (1)m=_________;
(2)扇形统计图中机器人项目所对应扇形的圆心角度数为_________;
(3)从选航模项目的4名学生中随机选取2名学生参加学校航模兴趣小组训练,请用列举法(画树状图或列表)求所选取的2名学生中恰好有1名男生、1名女生的概率。

19.如图,正比例函数y 1=-3x 的图象与反比例函数x
k y 2=
的图象交于A 、B 两点,点C 在x 轴负半轴上,AC=AO,△ACO 的面积为12.
(1)求k 的值;
(2)当21y y >时,求自变量x 的取值范围。

20.我省某工艺厂为全运会设计了一款成本为每件20元的工艺品,投放市场试销后发现每天的销售量y(件)是售价x(元/件)的一次函数。

当售价为22元/件时,每天销售量为780件:当售价为25元/件时,每天销售量为750件。

(1)求y与x的函数关系式;
(2)如果该工艺品售价最高不超过每件30元,那么售价定为每件多少元时,工艺厂销售该工艺品每天获得的利润最大?最大利润是多少元?
21.如图,将矩形ABCD的四边BA、CB、DC、AD分别延长至E、F、G、H,使得AE=CG,BF=DH,连结EF、FG、GH、HE
(1)求证:四边形EFGH为平行四边形;
(2)若矩形ABCD是边长为1的正方形,且∠FEB=45°,tan∠AEH=2,求AE的长。

22.△ABC中,AB=AC=1,∠BAC=45°,将△ABC绕点A按顺时针旋转α(0°<α<135°)得到△AEF,连接BE、CF,它们交于D点,
(1)求证:BE=CF;
(2)当 =120°,求∠FCB的度数;
(3)当四边形ACDE是菱形时,求BD的长。

23.如图,抛物线y=-x2-2x+3的图象与x轴交A、B两点,与y轴交于点C,点D为抛物线的点。

(1)求点A、B、C的坐标;
(2)点M为线段AB上一点(点M不与点A、B重合),过M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过P作PQ∥AB交抛物线于点Q,过Q作QN⊥x轴于N,当矩形PMNQ的周长最大时,求△AEM的面积;
(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ,过抛物线上一点F作y轴的平行线,
2DQ,求点F的坐标。

与直线AC交于点G(点G在点F的上方)。

若FG=2。

相关文档
最新文档