中考专题9分式方程及其应用

合集下载

2021年九年级数学中考复习——方程专题:分式方程实际应用(二)

2021年九年级数学中考复习——方程专题:分式方程实际应用(二)

2021年九年级数学中考复习——方程专题:分式方程实际应用(二)1.在数学课上,老师出了这样一道题:甲、乙两地相距1200千米,乘高铁列车从甲地到乙地比乘特快列车少用8小时,已知高铁列车的平均行驶速度是特快列车的3倍,求特快列车从甲地到乙地的时间.2.今年6月25日是我国的传统节日端午节,人们素有吃粽子的习俗.某商场在端午节来临之际用3000元购进A,B两种粽子1100个,购买A种粽子与购买B种粽子的费用相同.已知A种粽子的单价是B种粽子单价的1.2倍.求A,B两种粽子的单价各是多少?3.某市为治理污水,需要铺设一段全长3000米的污水输送管道,为了尽量减少施工对城市交通造成的影响,实际施工时每天的工作量比原计划增加25%,结果提前10天完成了任务,实际每天铺设多长管道?4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前了30天完成了这一任务.(1)用含x的代数式填表(结果不需要化简)工作效率(万平方米/天)工作时间(天)总任务量(万平方米)原计划x60实际60(2)求(1)的表格中的x的值.5.某商场准备购进甲、乙两种商品进行销售,若每个甲商品的进价比每个乙商品的进价少2元,且用80元购进甲商品的数量与用100元购进乙商品的数量相同.(1)求每个甲、乙两种商品的进价分别是多少元?(2)若该商场购进甲商品的数量比乙商品的数量的3倍还少5个,且购进甲、乙两种商品的总数量不超过95个,则商场最多购进乙商品多少个?(3)在(2)的条件下,如果甲、乙两种商品的售价分别是12元/个和15元/个,且将购进的甲、乙两种商品全部售出后,可使销售两种商品的总利润超过380元,那么该商场购进甲、乙两种商品有哪几种方案?6.为了防控新冠病毒肺炎,某校积极进行校园环境消毒,第一次购买甲、乙两种消毒液分别用了240元和540元,每瓶乙种消毒液的价格是每瓶甲种消毒液价格的倍,购买的乙种消毒液比甲种消毒液多20瓶.(1)求甲、乙两种消毒液每瓶多少元?(2)该校准备再次购买这两种消毒液,使再次购买的乙种消毒液瓶数是甲种消毒液瓶数的一半,且再次购买的费用不多于1050元,求甲种消毒液最多能再购买多少瓶?7.甲、乙两地相距60km,A骑自行车从甲地到乙地,出发2小时40分钟后,B骑摩托车也从甲地去乙地.已知B的速度是A的速度的3倍,结果两人同时到达乙地.求A,B两人的速度.8.甲、乙两支工程队修建二级公路,已知甲队每天修路的长度是乙队的2倍,如果两队各自修建公路500m,甲队比乙队少用5天.(1)求甲,乙两支工程队每天各修路多少米?(2)我市计划修建长度为3600m的二级公路,因工程需要,须由甲、乙两支工程队来完成.若甲队每天所需费用为1.2万元,乙队每天所需费用为0.5万元,求在总费用不超过40万元的情况下,至少安排乙队施工多少天?9.大浮杨梅是我市特色水果,古称“吴越佳果”.某水果店第一次用540元购进一批大浮杨梅,由于销售状况良好,该店又用1710元购进一批大浮杨梅,所购数量是第一次购进数量的3倍,但进货价每千克多了1元.(1)第一次所购大浮杨梅的进货价是每千克多少元?(2)该店以每千克30元销售这些大浮杨梅,在销售中,第一次购进的大浮杨梅有10%的损耗,第二次购进的大浮杨梅有15%的损耗.问:该水果店售完这两批杨梅共可获利多少元?10.疫情期间,某商场购进甲,乙两种消毒液,甲种消毒液用了1000元,乙种消毒液用了1200元,已知乙种消毒液每件进价比甲种消毒液每件进价多5元,且购进的甲、乙两种消毒液件数相同.(1)求甲、乙两种消毒液每件的进价;(2)该商场将购进的甲、乙两种消毒液进行销售,甲种消毒液的销售单价为50元,乙种消毒液的销售价为60元.销售过程中发现甲种消毒液销量不好,商场决定:甲种消毒液在销售一定数量后按原销售单价的七折销售;乙种消毒液销售单价保持不变.要使两种消毒液全部售完后获利不少于1900元,问甲种消毒液按原销售单价至少销售多少件?参考答案1.解法1:解:设高铁列车从甲地到乙地的时间为yh,则特快列车从甲地到乙地的时间为(y+8)h,根据题意得,解这个方程得y=4.经检验,y=4是原分式方程的根,则y+8=12.答:特快列车从甲地到乙地的时间为12h.解法2:解:设特快列车的平均速度为x km/h,则高铁列车的平均速度为3x km/h,根据题意得,解这个方程得x=100.经检验,x=100是原分式方程的根,则.答:特快列车从甲地到乙地的时间为12h.2.解:设B种粽子单价为x元/个,则A种粽子单价为1.2x元/个,根据题意,得:+=1100,解得:x=2.5,经检验,x=2.5是原方程的解,且符合题意,∴1.2x=3.答:A种粽子单价为3元/个,B种粽子单价为2.5元/个.3.解:设原计划每天铺设x米,依题意得:﹣=10,解得:x=60米,经检验x=60是原方程式的根,实际每天铺设1.25x=1.25×60=75(米).答:实际每天铺设75米长管道.4.解:(1)设原计划每天绿化x万平方米,则实际每天绿化(1+25%)x万平方米,原计划需要天完成任务,实际天完成任务.故答案为:(1+25%)x;;.(2)依题意,得:﹣=30,解得:x=,经检验,x=是原方程的解,且符合题意.答:(1)的表格中的x的值为.5.解:(1)设每件乙种商品的进价为x元,则每件甲种商品的进价为(x﹣2)元,根据题意,得=,解得:x=10,经检验,x=10是原方程的根,每件甲种商品的进价为:10﹣2=8.答:每件甲种商品的进价为8元,每件乙种商品件的进价为10元.(2)设购进乙种商品y个,则购进甲种商品(3y﹣5)个.由题意得:3y﹣5+y≤95.解得y≤25.答:商场最多购进乙商品25个;(3)由(2)知,(12﹣8)(3y﹣5)+(15﹣10)y>380,解得:y>23.∵y为整数,y≤25,∴y=24或25.∴共有2种方案.方案一:购进甲种商品67个,乙商品件24个;方案二:购进甲种商品70个,乙种商品25个.6.解:(1)设甲种消毒液每瓶x元,乙种消毒液每瓶x元,根据题意得,=﹣20,解得:x=6,经检验:x=6是原方程的解,×6=9,答:甲种消毒液每瓶6元,乙种消毒液每瓶9元;(2)设甲种消毒液再购买m瓶,根据题意得,6m+9×m≤1050,解答:m≤100,答:甲种消毒液最多能再购买100瓶.7.解:设A的速度为xkm/h,则B的速度为3xkm/h,依题意,得:﹣=2,解得:x=15,经检验,x=15是原方程的解,且符合题意,∴3x=45.答:A的速度为15km/h,B的速度为45km/h.8.解:(1)设乙工程队每天修路x米,则甲工程队每天修路2x米,依题意,得:﹣=5,解得:x=50,经检验,x=50是原方程的解,且符合题意,∴2x=100.答:甲工程队每天修路100米,乙工程队每天修路50米.(2)设安排乙工程队施工m天,则安排甲工程队施工=(36﹣0.5m)天,依题意,得:0.5m+1.2(36﹣0.5m)≤40,解得:m≥32.答:至少安排乙工程队施工32天.9.解:(1)设第一次所购大浮杨梅的进货价是每千克x元,由题意得:×3=,解得:x=18,经检验:x=18是原分式方程的解,且符合题意,答:第一次所购大浮杨梅的进货价是每千克18元;(2)540÷18=30,30×3=90,30×(30×90%+90×85%)﹣540﹣1710=855(元),答:该水果店售完这两批杨梅共可获利855元.10.解:(1)设甲种消毒液每件的进价为x元,则乙种消毒液每件的进价为(x+5)元,依题意,得:=,解得:x=25,经检验,x=25是原方程的解,且符合题意,∴x+5=30.答:甲种消毒液每件的进价为25元,乙种消毒液每件的进价为30元.(2)甲种消毒液购进的数量为1000÷25=40(件),则乙种消毒液购进的数量也为40件.设甲种消毒液按原销售单价销售了m件,依题意,得:(50﹣25)m+(50×0.7﹣25)(40﹣m)+(60﹣30)×40≥1900,解得:m≥20.答:甲种消毒液按原销售单价至少销售20件.。

分式方程篇(解析版)--中考数学必考考点总结+题型专训

分式方程篇(解析版)--中考数学必考考点总结+题型专训

知识回顾微专题分式方程--中考数学必考考点总结+题型专训考点一:分式方程之分式方程的解与解分式方程1.分式方程的定义:分母中含有未知数的方程叫做分式方程。

2.分式方程的解:使分式方程成立的未知数的值叫做分式方程的解。

3.解分式方程。

具体步骤:①去分母——分式方程的两边同时乘上分母的最简公分母。

把分式方程化成整式方程。

②解整式方程。

③检验——把解出来的未知数的值带入公分母中检验公分母是否为0。

若公分母不为0,则未知数的值即是原分式方程的解。

若公分母为0,则未知数的值是原分式方程的曾根,原分式方程无解。

1.(2022•营口)分式方程3=x 的解是()A .x =2B .x =﹣6C .x =6D .x =﹣2【分析】方程两边都乘x (x ﹣2)得出3(x ﹣2)=2x ,求出方程的解,再进行检验即可.【解答】解:=,方程两边都乘x (x ﹣2),得3(x ﹣2)=2x ,解得:x =6,检验:当x =6时,x (x ﹣2)≠0,所以x =6是原方程的解,即原方程的解是x =6,故选:C .2.(2022•海南)分式方程12-x ﹣1=0的解是()A .x =1B .x =﹣2C .x =3D .x =﹣3【分析】方程两边同时乘以(x ﹣1),把分式方程化成整式方程,解整式方程检验后,即可得出分式方程的解.【解答】解:去分母得:2﹣(x ﹣1)=0,解得:x =3,当x =3时,x ﹣1≠0,∴x =3是分式方程的根,故选:C .3.(2022•毕节市)小明解分式方程33211+=+x xx ﹣1的过程如下.解:去分母,得3=2x ﹣(3x +3).①去括号,得3=2x ﹣3x +3.②移项、合并同类项,得﹣x =6.③化系数为1,得x =﹣6.④以上步骤中,开始出错的一步是()A .①B .②C .③D .④【分析】按照解分式方程的一般步骤进行检查,即可得出答案.【解答】解:去分母得:3=2x ﹣(3x +3)①,去括号得:3=2x ﹣3x ﹣3②,∴开始出错的一步是②,故选:B .4.(2022•无锡)分式方程xx 132=-的解是()A .x =1B .x =﹣1C .x =3D .x =﹣3【分析】将分式方程转化为整式方程,求出x 的值,检验即可得出答案.【解答】解:=,方程两边都乘x (x ﹣3)得:2x =x ﹣3,解得:x =﹣3,检验:当x =﹣3时,x (x ﹣3)≠0,∴x =﹣3是原方程的解.故选:D .5.(2022•济南)代数式23+x 与代数式12-x 的值相等,则x =.【分析】根据题意列方程,再根据解分式方程的步骤和方法进行计算即可.【解答】解:由题意得,=,去分母得,3(x ﹣1)=2(x +2),去括号得,3x ﹣3=2x +4,移项得,3x ﹣2x =4+3,解得x =7,经检验x =7是原方程的解,所以原方程的解为x =7,故答案为:7.6.(2022•绵阳)方程113-+=-x x x x 的解是.【分析】先在方程两边乘最简公分母(x ﹣3)(x ﹣1)去分母,然后解整式方程即可.【解答】解:=,方程两边同乘(x ﹣3)(x ﹣1),得x (x ﹣1)=(x +1)(x ﹣3),解得x =﹣3,检验:当x =﹣3时,(x ﹣3)(x ﹣1)≠0,∴方程的解为x =﹣3.故答案为:x =﹣3.7.(2022•盐城)分式方程121-+x x =1的解为.【分析】先把分式方程转化为整式方程,再求解即可.【解答】解:方程的两边都乘以(2x ﹣1),得x +1=2x ﹣1,解得x =2.经检验,x =2是原方程的解.故答案为:x =2.8.(2022•内江)对于非零实数a ,b ,规定a ⊕b =a 1﹣b1.若(2x ﹣1)⊕2=1,则x 的值为.【分析】利用新规定对计算的式子变形,解分式方程即可求得结论.【解答】解:由题意得:=1,解得:x =.经检验,x =是原方程的根,∴x =.故答案为:.9.(2022•永州)解分式方程112+-x x =0去分母时,方程两边同乘的最简公分母是.【分析】根据最简公分母的定义即可得出答案.【解答】解:去分母时,方程两边同乘的最简公分母是x (x +1).故答案为:x (x +1).10.(2022•常德)方程()xx x x 25212=-+的解为.【分析】方程两边同乘2x (x ﹣2),得到整式方程,解整式方程求出x 的值,检验后得到答案.【解答】解:方程两边同乘2x (x ﹣2),得4x ﹣8+2=5x ﹣10,解得:x =4,检验:当x =4时,2x (x ﹣2)=16≠0,∴x =4是原方程的解,∴原方程的解为x =4.11.(2022•宁波)定义一种新运算:对于任意的非零实数a ,b ,a ⊗b =a 1+b 1.若(x +1)⊗x =xx 12+,则x 的值为.【分析】根据新定义列出分式方程,解方程即可得出答案.【解答】解:根据题意得:+=,化为整式方程得:x +x +1=(2x +1)(x +1),解得:x =﹣,检验:当x =﹣时,x (x +1)≠0,∴原方程的解为:x =﹣.故答案为:﹣.12.(2022•成都)分式方程xx x -+--4143=1的解为.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【解答】解:去分母得:3﹣x ﹣1=x ﹣4,解得:x =3,经检验x =3是分式方程的解,故答案为:x =3.13.(2022•牡丹江)若关于x 的方程11--x mx =3无解,则m 的值为()A .1B .1或3C .1或2D .2或3【分析】先去分母,再根据条件求m .【解答】解:两边同乘以(x ﹣1)得:mx ﹣1=3x ﹣3,∴(m ﹣3)x =﹣2.当m ﹣3=0时,即m =3时,原方程无解,符合题意.当m ﹣3≠0时,x =,∵方程无解,∴x ﹣1=0,∴x =1,∴m ﹣3=﹣2,∴m =1,综上:当m =1或3时,原方程无解.故选:B .14.(2022•通辽)若关于x 的分式方程:2﹣221--x k =x-21的解为正数,则k 的取值范围为()A .k <2B .k <2且k ≠0C .k >﹣1D .k >﹣1且k ≠0【分析】先解分式方程可得x =2﹣k ,再由题意可得2﹣k >0且2﹣k ≠2,从而求出k 的取值范围.【解答】解:2﹣=,2(x ﹣2)﹣(1﹣2k )=﹣1,2x ﹣4﹣1+2k =﹣1,2x =4﹣2k ,x =2﹣k ,∵方程的解为正数,∴2﹣k >0,∴k <2,∵x ≠2,∴2﹣k ≠2,∴k ≠0,∴k <2且k ≠0,故选:B .15.(2022•黑龙江)已知关于x 的分式方程xx m x ----1312=1的解是正数,则m 的取值范围是()A .m >4B .m <4C .m >4且m ≠5D .m <4且m ≠1【分析】先利用m 表示出x 的值,再由x 为正数求出m 的取值范围即可.【解答】解:方程两边同时乘以x ﹣1得,2x ﹣m +3=x ﹣1,解得x =m ﹣4.∵x 为正数,∴m ﹣4>0,解得m >4,∵x ≠1,∴m ﹣4≠1,即m ≠5,∴m 的取值范围是m >4且m ≠5.故选:C .16.(2022•德阳)如果关于x 的方程12-+x mx =1的解是正数,那么m 的取值范围是()A .m >﹣1B .m >﹣1且m ≠0C .m <﹣1D .m <﹣1且m ≠﹣2【分析】先去分母将分式方程化成整式方程,再求出方程的解x =﹣1﹣m ,利用x >0和x ≠1得出不等式组,解不等式组即可求出m 的范围.【解答】解:两边同时乘(x ﹣1)得,2x +m =x ﹣1,解得:x =﹣1﹣m ,又∵方程的解是正数,且x ≠1,∴,即,解得:,∴m 的取值范围为:m <﹣1且m ≠﹣2.故答案为:D .17.(2022•重庆)关于x 的分式方程x x x a x -++--3133=1的解为正数,且关于y 的不等式组()⎪⎩⎪⎨⎧-+≤+132229a y y y 的解集为y ≥5,则所有满足条件的整数a 的值之和是()A .13B .15C .18D .20【分析】解分式方程得得出x =a ﹣2,结合题意及分式方程的意义求出a >2且a ≠5,解不等式组得出,结合题意得出a <7,进而得出2<a <7且a ≠5,继而得出所有满足条件的整数a 的值之和,即可得出答案.【解答】解:解分式方程得:x =a ﹣2,∵x >0且x ≠3,∴a ﹣2>0且a ﹣2≠3,∴a >2且a ≠5,解不等式组得:,∵不等式组的解集为y ≥5,∴<5,∴a <7,∴2<a <7且a ≠5,∴所有满足条件的整数a 的值之和为3+4+6=13,故选:A .18.(2022•重庆)若关于x 的一元一次不等式组⎪⎩⎪⎨⎧--≥-a x x x <153141的解集为x ≤﹣2,且关于y 的分式方程111+=+-y ay y ﹣2的解是负整数,则所有满足条件的整数a 的值之和是()A .﹣26B .﹣24C .﹣15D .﹣13【分析】解不等式组得出,结合题意得出a >﹣11,解分式方程得出y =,结合题意得出a =﹣8或﹣5,进而得出所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,即可得出答案.【解答】解:解不等式组得:,∵不等式组的解集为x ≤﹣2,∴>﹣2,∴a >﹣11,解分式方程=﹣2得:y=,∵y 是负整数且y ≠﹣1,∴是负整数且≠﹣1,∴a =﹣8或﹣5,∴所有满足条件的整数a 的值之和是﹣8﹣5=﹣13,故选:D .19.(2022•遂宁)若关于x 的方程122+=x mx 无解,则m 的值为()A .0B .4或6C .6D .0或4【分析】解分式方程可得(4﹣m )x =﹣2,根据题意可知,4﹣m =0或2x +1=0,求出m 的值即可.【解答】解:=,2(2x +1)=mx ,4x +2=mx ,(4﹣m )x =﹣2,∵方程无解,∴4﹣m =0或2x +1=0,即4﹣m =0或x =﹣=﹣,∴m =4或m =0,故选:D .20.(2022•黄石)已知关于x 的方程()1111++=++x x ax x x 的解为负数,则a 的取值范围是.【分析】先求整式方程的解,然后再解不等式组即可,需要注意分式方程的分母不为0.【解答】解:去分母得:x +1+x =x +a ,解得:x =a ﹣1,∵分式方程的解为负数,∴a ﹣1<0且a ﹣1≠0且a ﹣1≠﹣1,∴a <1且a ≠0,∴a 的取值范围是a <1且a ≠0,故答案为:a <1且a ≠0.21.(2022•齐齐哈尔)若关于x 的分式方程4222212-+=++-x mx x x 的解大于1,则m 的取值范围是.【解答】解:,给分式方程两边同时乘以最简公分母(x +2)(x ﹣2),得(x +2)+2(x ﹣2)=x +2m ,去括号,得x +2+2x ﹣4=x +2m ,解方程,得x =m +1,检验:当m +1≠2,m +1≠﹣2,即m ≠1且m ≠﹣3时,x =m +1是原分式方程的解,根据题意可得,m +1>1,∴m >0且m ≠1.知识回顾故答案为:m >0且m ≠1.22.(2022•泸州)若方程xx x -=+--23123的解使关于x 的不等式(2﹣a )x ﹣3>0成立,则实数a 的取值范围是.【分析】先解分式方程,再将x 代入不等式中即可求解.【解答】解:+1=,+=,=0,解得:x =1,∵x ﹣2≠0,2﹣x ≠0,∴x =1是分式方程的解,将x =1代入不等式(2﹣a )x ﹣3>0,得:2﹣a ﹣3>0,解得:a <﹣1,∴实数a 的取值范围是a <﹣1,故答案为:a <﹣1.考点二:分式方程之分式方程的应用1.列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。

中考专题复习9 分式方程及应用

中考专题复习9 分式方程及应用

专题08 分式方程及其应用考纲要求:掌握可化为一元一次方程的分式方程(方程中分式不超过2 个)及解法;会列分式方程解应用题。

专题知识回顾1.分式方程的定义:分母中含有未知数的方程叫做分式方程.2.解分式方程的一般方法:解分式方程的思想是将“分式方程”转化为“整式方程”。

(1)去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);(2)按解整式方程的步骤求出未知数的值;(3)验根:将所得的根代入最简公分母,若等于零,就是增根,原分式方程无解;若不等于零,就是原方程的根。

专题典型题考法及解析【例题1】(2019•湖北孝感)方程=的解为.【例题2】(2019黑龙东地区)已知关于x的分式方程213x mx-=-的解是非正数,则m的取值范围是()A.m≤3B.m<3C.m>-3D.m≥-3【例题3】(2019•广东省广州市)甲、乙二人做某种机械零件,已知每小时甲比乙少做8个,甲做120个所用的时间与乙做150个所用的时间相等,设甲每小时做x个零件,下列方程正确的是()A.=B.=C.=D.=【例题4】(2019•四川自贡)解方程:﹣=1.【例题5】(2019•江苏扬州)“绿水青山就是金山银山”,为了进一步优化河道环境,甲乙两工程队承担河道整治任务,甲、乙两个工程队每天共整治河道1500米,甲工程队整治3600米所用的时间与乙工程队整治2400米所用时间相等。

甲工程队每天整治河道多少米?专题典型训练题一、选择题1.(2019▪黑龙江哈尔滨)方程=的解为()A.x=B.x=C.x=D.x=2.(2019山东淄博)解分式方程=﹣2时,去分母变形正确的是()A.﹣1+x=﹣1﹣2(x﹣2)B.1﹣x=1﹣2(x﹣2)C.﹣1+x=1+2(2﹣x)D.1﹣x=﹣1﹣2(x﹣2)3.(2019•广西贵港)若分式的值等于0,则x的值为()A.±1 B.0 C.﹣1 D.14.(2019辽宁本溪)为推进垃圾分类,推动绿色发展,某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.360480140x x=-B.360480140x x=-C.360480140x x+= D.360480140x x-=5. (2019•湖北十堰)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15B.﹣=15C.﹣=20D.﹣=206. (2019•山东省济宁市)世界文化遗产“三孔”景区已经完成5G基站布设,“孔夫子家”自此有了5G网络.5G 网络峰值速率为4G网络峰值速率的10倍,在峰值速率下传输500兆数据,5G网络比4G网络快45秒,求这两种网络的峰值速率.设4G网络的峰值速率为每秒传输x兆数据,依题意,可列方程是()A.﹣=45 B.﹣=45C.﹣=45 D.﹣=45二、填空题7.(2019•甘肃)分式方程=的解为.8.(2019•山东省滨州市)方程+1=的解是.9.(2019▪湖北黄石)分式方程:﹣=1的解为.10.(2019四川巴中)若关于x的分式方程+=2m有增根,则m的值为.三、解答题11.(2019广西梧州)解方程:226122xx x++=--.12.(2019•湖北天门)解分式方程:=.13.(2019吉林长春)为建国70周年献礼,某灯具厂计划加工9000套彩灯,为尽快完成任务,实际每天加工彩灯的数量是原计划的1.2倍,结果提前5天完成任务。

中考专题:分式方程及应用

中考专题:分式方程及应用

中考专题:分式方程及应用中考对于分式方程的主要要求包括分式方程的概念以及解法,会检验分式方程的根,分式方程的应用也是中考考查的重点和热点。

考点剖析1、解分式方程例1:解方程:121-=x x 例2、11322x x x-=---2、分式方程的解例3:已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为_____________.例4:当m = 时,关于x 的分式方程213x m x +=--无解.3、分式方程的应用例5: “5·12”汶川大地震导致某铁路隧道被严重破坏.为抢修其中一段120米的铁路,施工队每天比原计划多修5米,结果提前4天开通了列车.问原计划每天修多少米?某原计划每天修x 米,所列方程正确的是( )A .12012045x x -=+B .12012045x x -=+C .12012045x x -=-D .12012045x x -=- 例6:某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?中考训练1、分式方程112x x =+的解是( )A. x=1 B. x=-1 C. x=2 D. x=-2 2、用换元法解分式方程13101x x x x --+=-时,如果设1x y x -=,将原方程化为关于y 的整式方程,那么这个整式方程是( )A .230y y +-=B .2310y y -+=C .2310y y -+=D .2310y y --=3、解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解4、关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定 5、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( )A .18%)201(400160=++x xB .18%)201(160400160=+-+xx C .18%20160400160=-+x x D .18%)201(160400400=+-+x x 6、方程22123=-+--xx x 的解是=x __________. 7、解方程2223321x x x x --=-时,若设21x y x =-,则方程可化为 . 8、轮船顺水航行40千米所需的时间和逆水航行30千米所需的时间相同.已知水流速度为3千米/时,设轮船在静水中的速度为x 千米/时,可列方程为_________________________________.9、解方程(1)解方程:120112x x x x -+=+- (2)2112323x x x -=-+10、符号“a bc d ”称为二阶行列式,规定它的运算法则为:a bad bc c d =-,请你根据上述规定求出下列等式中x 的值. 2111111xx =--11、汶川大地震发生以后,全国人民众志成城.首长到帐篷厂视察,布置赈灾生产任务,下面是首长与厂长的一段对话:首长:为了支援灾区人民,组织上要求你们完成12000顶帐篷的生产任务.厂长:为了尽快支援灾区人民,我们准备每天的生产量比原来多一半.首长:这样能提前几天完成任务?厂长:请首长放心!保证提前4天完成任务!根据两人对话,问该厂原来每天生产多少顶帐篷?12、甲、乙两同学学习计算机打字,甲打一篇3000字的文章与乙打一篇2400字的文章所用的时间相同.已知甲每分钟比乙每分钟多打12个字,问甲、乙两人每分钟各打多少个字?13、供电局的电力维修工甲、乙两人要到45千米远的A 地进行电力抢修.甲骑摩托车先行,t (t ≥0)小时后乙开抢修车载着所需材料出发.(1)若t = 3 8(小时),抢修车的速度是摩托车的1.5倍,且甲、乙两人同时到达,求摩托车的速度; (2)若摩托车的速度是45千米/小时,抢修车的速度是60千米/小时,且乙不能比甲晚到则t 的最大值是多少?14、跃壮五金商店准备从宁云机械厂购进甲、乙两种零件进行销售.若每个甲种零件的进价比每个乙种零件的进价少2元,且用80元购进甲种零件的数量与用100元购进乙种零件的数量相同.(1)求每个甲种零件、每个乙种零件的进价分别为多少元?(2)若该五金商店本次购进甲种零件的数量比购进乙种零件的数量的3倍还少5个,购进两种零件的总数量不超过95个,该五金商店每个甲种零件的销售价格为12元,每个乙种零件的销售价格为15元,则将本次购进的甲、乙两种零件全部售出后,可使销售两种零件的总利润(利润=售价-进价)超过371元,通过计算求出跃壮五金商店本次从宁云机械厂购进甲、乙两种零件有几种方案?请你设计出来.。

2021年江苏各市(苏州扬州泰州盐城无锡等)中考数学真题分项汇编09 分式方程及应用含详解

2021年江苏各市(苏州扬州泰州盐城无锡等)中考数学真题分项汇编09 分式方程及应用含详解

1.(2021·江苏南通市)解方程2303x x-=-. 2.(2021·江苏泰州市)解方程:22x x -+1=52x -. 3.(2021·江苏南京市)解方程2111x x x +=+-. 4.(2021·江苏宿迁市)方程22142x x x -=--的解是_____________. 5.(2021·江苏连云港市)解方程:214111x x x +-=--.二、分式方程的应用6.(2021·江苏徐州市)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?7.(2021·江苏常州市)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?8.(2021·江苏扬州市)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?9.(2021·江苏无锡市)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4∶3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?1.(2021·江苏南通市)解方程2303x x -=-. 【答案】9x =.【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为1、检验依次进行求解即可.【详解】解: 2303x x-=-, 去分母得:23(3)0x x --=,解得:9x =,经检验,9x =是原方程的解.则原方程的解为:9x =.【点睛】本题主要考查了代数式的化简求值与解分式方程,关键在于熟练的掌握解题的方法与技巧,注意分式方程要检验.2.(2021·江苏泰州市)解方程:22x x -+1=52x -. 【答案】x =-1【分析】先将分式方程化简为整式方程,再求解检验即可.【详解】解:等式两边同时乘以(x -2)得2x +x -2=-5,移项合并同类项得3x =-3,系数化为1得x =-1检验:当x =-1时,x -20≠,∶x =-1是原分式方程的解.【点睛】本题考查了因式分解和解分式方程,解题关键是熟练掌握因式分解的方法及注意解分式方程要检验.3.(2021·江苏南京市)解方程2111x x x +=+-. 【答案】3x =先将方程两边同时乘以()()11x x +-,化为整式方程后解整式方程再检验即可.【详解】 解:2111x x x +=+-, ()()()()21111x x x x x -++-=+,22221x x x x -+-=+,3x =,检验:将3x =代入()()11x x +-中得,()()110x x +-≠,∶3x =是该分式方程的解.【点睛】本题考查了分式方程的解法,解决本题的关键是牢记解分式方程的基本步骤,即要先将分式方程化为整式方程,再利用“去括号、移项、合并同类项、系数化为1”等方式解整式方程,最后不能忘记检验等.4.(2021·江苏宿迁市)方程22142x x x -=--的解是_____________.【答案】112x -+=,212x -= 【分析】 先把两边同时乘以24x -,去分母后整理为230x x +-=,进而即可求得方程的解.【详解】 解:22142x x x -=--, 两边同时乘以24x -,得22(2)4x x x -+=-,整理得:230x x +-=解得:1x =,2x =,经检验,1x =,2x =是原方程的解,故答案为:112x -=,212x -=.本题考查了分式方程和一元二次方程的解法,熟练掌握分式方程和一元二次方程的解法是解决本题的关键. 5.(2021·江苏连云港市)解方程:214111x x x +-=--. 【答案】无解【分析】将分式去分母,然后再解方程即可.【详解】解:去分母得:22141x x整理得22x =,解得1x =,经检验,1x =是分式方程的增根,故此方程无解.【点睛】本题考查的是解分式方程,要注意验根,熟悉相关运算法则是解题的关键.二、分式方程的应用6.(2021·江苏徐州市)某网店开展促销活动,其商品一律按8折销售,促销期间用400元在该网店购得某商品的数量较打折前多出2件.问:该商品打折前每件多少元?【答案】50【分析】该商品打折卖出x 件,找到等量关系即可.【详解】解:该商品打折卖出x 件4008400102x x ⋅=+ 解得x =8经检验:8x =是原方程的解,且符合题意∶商品打折前每件400=508元 答:该商品打折前每件50元.【点睛】此题考查分式方程实际问题中的销售问题,找到等量关系是解题的关键.7.(2021·江苏常州市)为落实节约用水的政策,某旅游景点进行设施改造,将手拧水龙头全部更换成感应水龙头.已知该景点在设施改造后,平均每天用水量是原来的一半,20吨水可以比原来多用5天,该景点在设施改造后平均每天用水多少吨?【答案】该景点在设施改造后平均每天用水2吨.设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨,列出分式方程,即可求解.【详解】解:设该景点在设施改造后平均每天用水x 吨,则原来平均每天用水2x 吨, 由题意得:202052x x-=,解得:x =2, 经检验:x =2是方程的解,且符合题意,答:该景点在设施改造后平均每天用水2吨.【点睛】本题主要考查分式方程的实际应用,找出等量关系,列出方程,是解题的关键.8.(2021·江苏扬州市)为保障新冠病毒疫苗接种需求,某生物科技公司开启“加速”模式,生产效率比原先提高了20%,现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天,问原先每天生产多少万剂疫苗?【答案】40万【分析】设原先每天生产x 万剂疫苗,根据现在生产240万剂疫苗所用的时间比原先生产220万剂疫苗所用的时间少0.5天可得方程,解之即可.【详解】解:设原先每天生产x 万剂疫苗,由题意可得:()2402200.5120%xx +=+, 解得:x =40,经检验:x =40是原方程的解,∶原先每天生产40万剂疫苗.【点睛】此题主要考查了分式方程的应用,列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性.9.(2021·江苏无锡市)为了提高广大职工对消防知识的学习热情,增强职工的消防意识,某单位工会决定组织消防知识竞赛活动,本次活动拟设一、二等奖若干名,并购买相应奖品.现有经费1275元用于购买奖品,且经费全部用完,已知一等奖奖品单价与二等奖奖品单价之比为4∶3.当用600元购买一等奖奖品时,共可购买一、二等奖奖品25件.(1)求一、二等奖奖品的单价;(2)若购买一等奖奖品的数量不少于4件且不超过10件,则共有哪几种购买方式?【答案】(1)一、二等奖奖品的单价分别是60元,45元;(2)共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.【分析】(1)设一、二等奖奖品的单价分别是4x,3x,根据等量关系,列出分式方程,即可求解;(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为8543m-件,根据4≤m≤10,且8543m-为整数,m为整数,即可得到答案.【详解】解:(1)设一、二等奖奖品的单价分别是4x,3x,由题意得:60012756002543x x-+=,解得:x=15,经检验:x=15是方程的解,且符合题意,∶15×4=60(元),15×3=45(元),答:一、二等奖奖品的单价分别是60元,45元;(2)设购买一等奖品的数量为m件,则购买二等奖品的数量为127560854453m m--=件,∶4≤m≤10,且8543m-为整数,m为整数,∶m=4,7,10,答:共有3种购买方案,分别是:一等奖品数4件,二等奖品数23件;一等奖品数7件,二等奖品数19件;一等奖品数10件,二等奖品数15件.【点睛】本题主要考查分式方程和不等式组的实际应用,准确找出数量关系,列出分式方程或不等式,是解题的关键.。

专题09 分式方程(课件)2023年中考数学一轮复习(全国通用)

专题09 分式方程(课件)2023年中考数学一轮复习(全国通用)

C. x 2 5 3
1
D.
x
0
知识点1:分式方程及其解法
典型例题
【分析】根据分式方程的定义:分母里含有字母的方程叫做分式方程进行判断. A、 x 1 不是方程,故本选项错误;
x
B、方程 1 1 的分母中含未知数x,所以它是分式方程.故本选项正确;
x 1 2x 3
C、方程 x 2 5 的分母中不含未知数,所以它不是分式方程.故本选项错误;
(2)设购买篮球y个,则购买排球(20-y)个, 依题意得:110y+80(20-y)≤1800, 解得 y 6 2 ,
3
即y的最大值为6, ∴最多购买6个篮球. 【点评】此题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是: (1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一 次不等式.
实际应用 的实际意义,检验结果是 分式方程的基本思想和列方程解应用题的
否合理.
意识.
思维导图
知识点梳理
知识点1:分式方程及其解法
1.分式方程:分母里含有未知数的方程叫做分式方程. 分式方程的重要特征:①含有分母;②分母中含有未知数;③是方程.
2.解分式方程的一般方法: (1)解分式方程的基本思想: 把分式方程转化为整式方程,解这个整式方程,然后验根,从而确定分式方 程的解.
3
D、方程 1 x 0 的分母中不含未知数,所以它不是分式方程.故本选项错误.
故选B.
【答案】B.
知识点1:分式方程及其解法
典型例题
【例2】(2022•牡丹江)若关于x的方程 mx 1 3无解,则m的值为( ) x 1
A.1
B.1或3
边同乘以(x-1)得:mx-1=3x-3,∴(m-3) x=-2. 当m-3=0时,即m=3时,原方程无解,符合题意. 当m-3≠0时,x 2 ,

2021年九年级数学中考复习——方程专题:分式方程实际应用(二)

2021年九年级数学中考复习——方程专题:分式方程实际应用(二)

2021年九年级数学中考复习——方程专题:分式方程实际应用(二)1.两个小组同时开始登一座450m高的山,第一组的速度是第二组的1.2倍,他们比第二组早15min到达顶峰.两个小组的速度各是多少?如果山高为hm,第一组的攀登速度是第二组的a倍,并比第二组早tmin达到顶峰,则两组的攀登速度各是多少?2.一台收割机的工作效率相当于一个农民工作效率的150倍,用这台机器收割10公顷小麦比100个农民人工收割这些小麦要少用1小时.这台收割机每小时收割多少公顷小麦?3.某服装店用960元购进一批服装,并以每件46元的价格全部售完,由于服装畅销,服装店又用2220元,再次以比第一次进价多5元的价格购进服装,数量是第一次购进服装的2倍,仍以每件46元的价格出售,卖了部分后,为了加快资金周转,服装店将剩余的20件以售价的九折全部出售.问:(1)该服装店第一次购买了此种服装多少件?(2)两次出售服装共盈利多少元?4.宜鲜水果店某种纽荷尔1月份的销售总额为600元,2月份与1月份相比,销量不变,但每斤的售价比1月份减少4元,因此销售总额比1月份减少了40%.(1)求2月份这种纽荷尔每斤的售价;(2)2月价该店计划新进一批这种纽荷尔和沃柑共45斤,已知纽荷尔进货价格是每斤3元;沃柑进货价格是每斤7元,销售价格是每斤20元.要求沃柑进货数量不超过纽荷尔数量的两倍,应如何进货才能使这批水果获得最大利润,并求出最大利润.5.越野自行车是中学生喜爱的交通工具,市场巨大,竞争也激烈.某品牌经销商经营的A 型车去年销售总额为5万元,今年每辆售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)设今年A型车每辆销售价为x元,求x的值.(2)该品牌经销商计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,请问应如何安排两种型号车的进货数量,才能使这批售出后获利最多?A、B两种型号车今年的进货和销售价格表A型车B型车进货价1100元/辆1400元/辆销售价x元/辆2000元/辆6.某汽车销售公司销售某品牌A款汽车,随着汽车的普及,其价格也不断下降,今年12月份比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为100万元,今年销售额只有90万元.(1)今年12月份A款汽车每辆售价多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为7.5万元,B款汽车每辆进价为6万元,公司预计用不多于105万且不少于100万元的资金购进这两款汽车共15辆,有几种进货方案?哪种方案更省钱?7.“一带一路”的战略构想为国内许多企业的发展带来了新的机遇,其中华为企业凭信自身实力在国际上得到快速发展,华为手机也越来越受到国际消费者的喜爱:重庆某手机专卖店经销华为P10和Mate30两款手机,两款手机售价如表:售价型号去年国庆假期售价(元/部)今年元旦假期售价(元/部)华为P3043003800华为Mate3050004500假设两款手机的进价始终保持不变.若今年元旦假期和去年国庆假期卖出的华为P30手机数量相同,且去年国庆假期利润为4.5万元,今年元旦假期利润为2.25万元.(1)求每部华为P30手机进价为多少元?(2)若每台Mate30的进价比P30的进价多400元,专卖店考虑到即将到来的今年1月24号大年初一“春节假期活动”,预计用不少于32万元且不多于32.1万元的资金购进这两款手机共90部,请问有哪几种进货方案?(3)“重外少年,爱心少年”.重外学生积极为偏远地区的孩子募集资金购买保暖冬装,得到该手机专卖店的大力支持,他们决定,每卖出一部P30捐出50元,每卖出一部Mate30捐出80元,在(2)向的前提下,当专卖店销售完这90部手机后,他们最多能为孩子们捐出多少资金?8.A、B两种新型智能仓储机器人都被用来搬运货箱,A型机器人比B型机器人每次多搬运3箱,A型机器人搬运300箱所用次数与B型机器人搬运240箱所用次数相同,两种机器人每次分别搬运多少货箱?9.随着《广州市深化生活垃圾分类处理三年行动计划(2019﹣2021)》的正式印发,广州市全面开启城乡生活垃圾分类全覆盖.为推进垃圾分类行动,某工厂购进甲、乙两种型号智能机器人用来进行垃圾分类,用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元,求甲、乙两种型号机器人每台各多少万元?10.斑马线前“车让人”,不仅体现着一座城市对生命的尊重,也直接反映着城市的文明程度,如图,某路口的斑马线路段A﹣B﹣C横穿双向行驶车道,其中AB=BC=15米,在绿灯亮时,小明共用11秒通过AC.其中通过BC段的速度是通过AB段速度的1.2倍,求小明通过AB段时的速度.参考答案1.解:设第二组的速度为xm/min,则第一组的速度是1.2xm/min,由题意得﹣=15,解得:x=5,经检验:x=5是原分式方程的解,且符合题意,则1.2x=6.答:第一组的攀登速度6m/min,第二组的攀登速度5m/min.设第二组的速度为ym/min,则第一组的速度是aym/min,由题意得﹣=t,解得:y=,经检验:y=是原分式方程的解,且符合题意,则ay=.答:第一组的攀登速度是m/min,第二组的攀登速度m/min.2.解:设一个农民每小时收割小麦x公顷,则一台收割机每小时收割150x公顷,由题意,得+1,解得:x=,经检验,x=是原方程的根.∴收割机每小时收割小麦:=5公顷,答:这台收割机每小时收割5公顷小麦.3.解:(1)设第一次购买了此种服装x件,那么第二次购进2x件,依题意得,解之得x=30,经检验x=30是方程的解,答:第一次购买了此种服装30件;(2)∵第一次购买了此种服装30件,盈利46×30﹣960=420元;∴第二次购买了此种服装60件,46×(60﹣20)+46×0.9×20﹣2220=448元;∴两次出售服装共盈利420+448=868元.4.解:(1)设2月份这种纽荷尔每斤的售价为x元,则1月份这种纽荷尔每斤的售价为(x+4)元,由题意得:=,解得:x=6,答:2月份这种纽荷尔每斤的售价为6元;(2)设纽荷尔进货数量为a斤,总利润为w元,则w=(6﹣3)a+(20﹣7)(45﹣a)=﹣10a+585,由题意得:45﹣a≤2a,解得:a≥15,∵w=﹣10a+585,﹣10<0,∴w随a的增大而减小,∴a=15时,w=﹣10×15+585=435(元),最大则45﹣a=30,即纽荷尔进货15斤,沃柑进货30斤,才能使这批水果获得最大利润,最大利润为435元.5.解:(1)由题意得:=,解得:x=1600,经检验,x=1600是方程的解,∴x=1600;(2)设经销商新进A型车a辆,则B型车为(60﹣a)辆,获利y元.由题意得:y=(1600﹣1100)a+(2000﹣1400)(60﹣a),即y=﹣100a+36000,∵B型车的进货数量不超过A型车数量的2倍,∴60﹣a≤2a,∴a≥20,由y与a的关系式可知,﹣100<0,y的值随a的值增大而减小.∴a=20时,y的值最大,∴60﹣a=60﹣20=40(辆),∴当经销商新进A型车20辆,B型车40辆时,这批车获利最多.6.解:(1)设今年12月份A款汽车每辆售价m万元,则去年同期A款汽车每辆售价(m+1)万元,由题意得:=,解得:m=9,答:今年12月份A款汽车每辆售价9万元;(2)设购进A款汽车x辆,则购进B款汽车(15﹣x)辆,由题意得:100≤7.5x+6(15﹣x)≤105,解得:≤x≤10,∵x的正整数解为:7,8,9,10,∴共有4种进货方案:方案一,购进A款汽车7辆、B款汽车8辆,资金为:7.5×7+6×8=100.5(万元);方案二,购进A款汽车8辆、B款汽车7辆,资金为:7.5×8+6×7=102(万元);方案三,购进A款汽车9辆、B款汽车6辆,资金为:7.5×9+6×6=103.5(万元);方案四,购进A款汽车10辆、B款汽车5辆,资金为:7.5×10+6×5=105(万元);∴购进A款汽车7辆、B款汽车8辆的方案更省钱.7.解:(1)设每部华为P30手机进价为x元,依题意得:=,解得:x=3300,经检验,x=3300是原方程的解,且符合题意.答:每部华为P30手机进价为3300元.(2)每台Mate30手机的进价为3300+400=3700(元).设购进华为P30手机m部,则购进Mate30手机(90﹣m)部,依题意得:,解得:30≤m≤32,又∵m为正整数,∴m可以为30,31,32,∴共有3种进货方案,方案1:购进30部华为P30手机,60部Mate30手机;方案2:购进31部华为P30手机,59部Mate30手机;方案3:购进32部华为P30手机,58部Mate30手机.(3)设捐出的资金为w元,则w=50m+80(90﹣m)=﹣30m+7200,∵﹣30<0,∴w随m的增大而减小,∴当m=30时,w取得最大值,最大值=﹣30×30+7200=6300(元).答:当专卖店销售完这90部手机后,他们最多能为孩子们捐出6300元资金.8.解:设B型机器人每小时搬运x货箱,则A型机器人每小时搬运(x+3)货箱,根据题意得:=,解得:x=12,经检验,x=12是分式方程的解,∴x+3=15.答:B型机器人每小时搬运12货箱,A型机器人每小时搬运15货箱.9.解:设甲型机器人每台x万元,则乙型机器人每台(140﹣x)万元,根据题意得:=,解得:x=60,经检验,x=60是原方程的解,且符合题意,则140﹣x=80,答:甲型机器人每台60万元,乙型机器人每台80万元.10.解:设通过AB段的速度是xm/s,则通过BC段的速度是1.2xm/s,由题意得:,解得:x=2.5,经检验:x=2.5是原方程的解,且符合题意,答:通过AB时的速度是2.5m/s.。

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)

2023年中考数学----《分式方程之分式方程的应用》知识总结与专项练习题(含答案解析)知识总结1. 列分式方程解实际应用题的步骤:①审题——仔细审题,找出题目中的等量关系。

②设未知数——根据问题与等量关系直接或间接设未知数。

③列方程:根据等量关系与未知数列出分式方程。

④解方程——按照解分式方程的步骤解方程。

④答——检验方程的解是否满足实际情况,然后作答。

练习题1、(2022•内蒙古)某班学生去距学校10km 的博物馆参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,设骑车学生的速度为x km /h ,下列方程正确的是( )A .2021010=−x x B .2010210=−x x C .3110210=−x xD .3121010=−x x【分析】根据汽车的速度和骑车学生速度之间的关系,可得出汽车的速度为2xkm /h ,利用时间=路程÷速度,结合汽车比骑车学生少用20min ,即可得出关于x 的分式方程,此题得解.【解答】解:∵骑车学生的速度为xkm /h ,且汽车的速度是骑车学生速度的2倍, ∴汽车的速度为2xkm /h . 依题意得:﹣=,即﹣=.2、(2022•淄博)为扎实推进“五育”并举工作,加强劳动教育,某校投入2万元购进了一批劳动工具.开展课后服务后,学生的劳动实践需求明显增强,需再次采购一批相同的劳动工具,已知采购数量与第一次相同,但采购单价比第一次降低10元,总费用降低了15%.设第二次采购单价为x 元,则下列方程中正确的是( )A .()10%1512000020000−−⨯=x x B .()x x %151200*********−⨯=− C .()10%1512000020000+−⨯=x x D .()xx %151200*********−⨯=+ 【分析】根据题目中的数据和两次购买的数量相同,可以列出相应的分式方程. 【解答】解:由题意可得,,故选:D .3、(2022•阜新)我市某区为30万人接种新冠疫苗,由于市民积极配合这项工作,实际每天接种人数是原计划的1.2倍,结果提前20天完成了这项工作.设原计划每天接种x 万人,根据题意,所列方程正确的是( )A .202.13030=−x xB .2.1203030=−−x x C .20302.130=−xxD .2.1302030=−−xx【分析】由实际接种人数与原计划接种人数间的关系,可得出实际每天接种1.2x 万人,再结合结果提前20天完成了这项工作,即可得出关于x 的分式方程,此题得解. 【解答】解:∵实际每天接种人数是原计划的1.2倍,且原计划每天接种x 万人, ∴实际每天接种1.2x 万人,又∵结果提前20天完成了这项工作, ∴﹣=20.4、(2022•襄阳)《九章算术》中有一道关于古代驿站送信的题目,其白话译文为:一份文件,若用慢马送到900里远的城市,所需时间比规定时间多1天;若改为快马派送,则所需时间比规定时间少3天,已知快马的速度是慢马的2倍,求规定时间,设规定时间为x 天,则可列出正确的方程为( )A .190023900+⨯=+x x B .190023900+⨯=−x xC .390021900+⨯=−x x D .390021900−⨯=+x x 【分析】根据快、慢马送到所需时间与规定时间之间的关系,可得出慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天,再利用速度=路程÷时间,结合快马的速度是慢马的2倍,即可得出关于x 的分式方程,此题得解. 【解答】解:∵规定时间为x 天,∴慢马送到所需时间为(x +1)天,快马送到所需时间为(x ﹣3)天, 又∵快马的速度是慢马的2倍,两地间的路程为900里, ∴=2×.故选:B .5、(2022•朝阳)八年一班学生周末乘车去红色教育基地参观学习,基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达.已知快车的速度是慢车速度的1.5倍,求慢车的速度.设慢车每小时行驶xkm ,根据题意,所列方程正确的是( )A .60305.16060=−x x B .6030605.160=−x x C .305.16060=−xx D .30605.160=−xx 【分析】设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm ,根据基地距学校60km ,一部分学生乘慢车先行,出发30min 后,另一部分学生乘快车前往,结果同时到达,列方程即可.【解答】解:设慢车每小时行驶xkm ,则快车每小时行驶1.5xkm , 根据题意可得:﹣=.故选:A .6、(2022•黔西南州)某农户承包的36亩水田和30亩旱地需要耕作.每天平均耕作旱地的亩数比耕作水田的亩数多4亩.该农户耕作完旱地所用的时间是耕作完水田所用时间的一半,求平均每天耕作水田的亩数.设平均每天耕作水田x 亩,则可以得到的方程为( )A .x x 302436⨯=− B .x x 302436⨯=+ C .430236−⨯=x x D .430236+⨯=x x 【分析】根据该农户耕作完旱地所用的时间是耕作完水田所用时间的一半列出方程即可. 【解答】解:根据题意得:=2×.故选:D .7、(2022•济宁)一辆汽车开往距出发地420km 的目的地,若这辆汽车比原计划每小时多行10km ,则提前1小时到达目的地.设这辆汽车原计划的速度是xkm /h ,根据题意所列方程是( )A .110420420+−=x x B .10420420+=+x x C .110420420++=x xD .10420420−=+x x 【分析】根据提速后及原计划车速间的关系,可得出这辆汽车提速后的速度是(x +10)km /h ,利用时间=路程÷速度,结合提速后可提前1小时到达目的地,即可得出关于x的分式方程,此题得解.【解答】解:∵这辆汽车比原计划每小时多行10km ,且这辆汽车原计划的速度是xkm /h , ∴这辆汽车提速后的速度是(x +10)km /h . 依题意得:=+1,故选:C .8、(2022•辽宁)小明和小强两人在公路上匀速骑行,小强骑行28km 所用时间与小明骑行24km 所用时间相等,已知小强每小时比小明多骑行2km ,小强每小时骑行多少千米?设小强每小时骑行xkm ,所列方程正确的是( ) A .22428+=x x B .xx 24228=+ C .xx 24228=− D .22428−=x x 【分析】根据小强与小明骑行速度间的关系可得出小明每小时骑行(x ﹣2)km ,利用时间=路程÷速度,结合小强骑行28km 所用时间与小明骑行24km 所用时间相等,即可得出关于x 的分式方程,此题得解.【解答】解:∵小强每小时比小明多骑行2km ,小强每小时骑行xkm , ∴小明每小时骑行(x ﹣2)km . 依题意得:=.故选:D .9、(2022•恩施州)一艘轮船在静水中的速度为30km /h ,它沿江顺流航行144km 与逆流航行96km 所用时间相等,江水的流速为多少?设江水流速为v km /h ,则符合题意的方程是( )A .v v −=+309630144 B .v v 9630144=− C .vv +=−309630144 D .vv +=3096144 【分析】根据“顺流航行144km 与逆流航行96km 所用时间相等”列分式方程即可. 【解答】解:根据题意,可得,故选:A .10、(2022•绥化)有一个容积为24m 3的圆柱形的空油罐,用一根细油管向油罐内注油,当注油量达到该油罐容积的一半时,改用一根口径为细油管口径2倍的粗油管向油罐注油,直至注满,注满油的全过程共用30分钟.设细油管的注油速度为每分钟xm 3,由题意列方程,正确的是( )A .3041212=+x x B .2441515=+x x C .2423030=+xxD .3021212=+xx【分析】设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3,利用注油所需时间=注油总量÷注油速度,即可得出关于x 的分式方程,此题得解. 【解答】解:24÷2=12(m 3).设细油管的注油速度为每分钟xm 3,则粗油管的注油速度为每分钟4xm 3, 依题意得:+=30.故选:A .11、(2022•荆州)“爱劳动,劳动美.”甲、乙两同学同时从家里出发,分别到距家6km 和10km 的实践基地参加劳动.若甲、乙的速度比是3:4,结果甲比乙提前20min 到达基地,求甲、乙的速度.设甲的速度为3xkm /h ,则依题意可列方程为( )A .x x 4103136=+ B .x x 4102036=+ C .3141036=−x xD .2041036=−xx【分析】根据甲、乙的速度比是3:4,可以设出甲和乙的速度,然后根据甲比乙提前20min 到达基地,可以列出相应的方程.【解答】解:由题意可知,甲的速度为3xkm /h ,则乙的速度为4xkm /h ,+=,即+=,故选:A.12、(2022•鞍山)某加工厂接到一笔订单,甲、乙车间同时加工,已知乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,甲车间加工4000件比乙车间加工4200件多用3天.设甲车间每天加工x件产品,根据题意可列方程为.【分析】根据两车间工作效率间的关系,可得出乙车间每天加工1.5x件产品,再根据甲车间加工4000件比乙车间加工4200件多用3天,即可得出关于x的分式方程,此题得解.【解答】解:∵甲车间每天加工x件产品,乙车间每天加工的产品数量是甲车间每天加工的产品数量的1.5倍,∴乙车间每天加工1.5x件产品,又∵甲车间加工4000件比乙车间加工4200件多用3天,∴﹣=3.故答案为:﹣=3.13、(2022•青岛)为落实青岛市中小学生“十个一”行动计划,学校举办以“强体质,炼意志”为主题的体育节,小亮报名参加3000米比赛项目,经过一段时间训练后,比赛时小亮的平均速度比训练前提高了25%,少用3分钟跑完全程,设小亮训练前的平均速度为x米/分,那么x满足的分式方程为.【分析】根据等量关系:原来参加3000米比赛时间﹣经过一段时间训练后参加3000米比赛时间=3分钟,依此列出方程即可求解.【解答】解:依题意有:﹣=3.故答案为:﹣=3.14、(2022•黑龙江)某玩具厂生产一种玩具,甲车间计划生产500个,乙车间计划生产400个,甲车间每天比乙车间多生产10个,两车间同时开始生产且同时完成任务.设乙车间每天生产x个,可列方程为.【分析】根据甲车间生产500个玩具所用的时间=乙车间生产400个玩具所用的时间,列出方程即可解答.【解答】解:设乙车间每天生产x个,则甲车间每天生产(x+10)个,由题意得:=,故答案为:=.15、(2022•江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x人,则可列分式方程为.【分析】由实际问题找到合适的等量关系即可抽象出分式方程.【解答】解:设甲每小时采样x人,则乙每小时采样(x﹣10)人,根据题意得:=.故答案为:=.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

举 一 反 三
【点拨】(1)题方程两边同时乘以(x-3)(x-1),约去分母得 x(x-1)=(x-3)(x+1),解得 x=-3. 经检验:x=-3 是原方程的根. ∴分式方程的解为 x=-3. (2)题使分母为零的未知数的值即为增根,增根一定是分式方程转化为整式方程后的这个 整式方程的根. mx+1 ∵ =-1 有增根,∴x-1=0,∴x=1,∴mx+1=-x+1.当 x=1 时,解得 m= x-1 -1.
考点训练 9
分式方程及应用 分式方程及应用 训练时间:60分钟 分值:10 训练时间:60分钟 分值:100分
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
一、选择题(每小题 4 分,共 32 分)
3 1 1.(2010· 重庆)方程 = 的解为( x+2 x+1 4 1 A.x= B.x=- 5 2 C.x=-2 D.无解 )
7 【解析】由题意可得,y+ =8,则 y2-8y+7=0. y
举 一 反 三
【答案】D
160 400-160 + =18 x 1+20%x 160 400 C. + =18 x 20%x 400 400-160 D. + =18 x 20%x B.
160 举 【解析】采用新技术后的工作效率为(1+20%)x,前 160 套所用时间为 ,后来的(400 x 一 反 400-160 160 400-160 三 -160)套,所用时间为 ,可列方程为 + =18. 1+20%x x 1+20%x
)
【解析】等号两边同乘以 2x,去分母后为 2-1+x=2x. 【答案】C
x a 3.(2011 中考预测题)已知方程 =3- 有增根,则 a 的值为( x-5 x-5 A.5 B.-5 C.6 D.4 )
举 一 反 三
【解析】原式去分母后得 x=3(x-5)-a,把增根 x=5 代入得 a=-5.
= B. = x x-20 x-20 x 25 35 25 35 C. = D. = x x+20 x+20 x A.
【解析】由题意知小车的速度为(x+20)千米/时,根据货车行驶 25 千米与小车行驶 35 25 35 千米所用的时间相同,得 = . x x+20
举 一 反 三
【答案】C
考 点 训 练
考 点 训 练
【解答】(1)D (2)C
目录
首页
上一页
下一页Βιβλιοθήκη 末页宇轩图书考 点 知 识 精 讲 中 考 典 例 精 析
2x+1 x (1)(2010· 眉山)解方程: +1= ; x x+1 2x-2 x (2)(2010· 上海)解方程: - -1=0. x x-1
【点拨】本组题考查分式方程的解法,一般步骤为:①去分母,转化为整式方程;②解 整式方程,得根;③验根.这三步缺一不可.
甲工厂每天加工 40 件产品,乙工厂每天加工 60 件产品
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
考点训练 9 分式方程及应用
举 一 反 三
训练时间:60分钟 分
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考点二 与增根有关的问题 1.分式方程的增根必须同时满足两个条件 (1)是由分式方程化成的整式方程的根; (2)使最简公分母为零. 2.增根在含参数的分式方程中的应用 由增根求参数的值.解答思路为:①将原方程化为整式方程;②确定增根;③将增根代 入变形后的整式方程,求出参数的值.
3 1 1 1 【解析】 = ,3(x+1)=x+2,3x+3=x+2,2x=-1,x=- ,经检验 x=- 是 2 2 x+2 x+1 原方程的根.
举 一 反 三
【答案】B
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
1 1-x 2.(2009 中考变式题)以下是方程 - =1 去分母后的结果,其中正确的是( x 2x A.2-1-x=1 B.2-1+x=1 C.2-1+x=2x D.2-1-x=2x
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
x-2 x 1.方程 = 的解是( C ) x-4 x-6 A.x=1 B.x=2 C.x=3
D.x=4
目录
首页
上一页
下一页
末页
宇轩图书
考 6.(2009 中考变式题)某服装厂准备加工 400 套运动装,在加工完 160 套后,采用了新技 点 术,使得工作效率比原计划提高了 20%,结果共用了 18 天完成任务,问计划每天加工服装 知 ) 识 多少套.在这个问题中,设计划每天加工 x 套,则根据题意可得方程为( 160 400 精 A. + =18 讲 x 1+20%x 中 考 典 例 精 析
转化 去分母
举 一 反 三
3.解分式方程的步骤 ①去分母,转化为整式方程;②解整式方程,得根;③验根. 4.增根 在方程变形时,有时可能产生不适合原方程的根,这种根叫做方程的增根.解分式方程 时,有可能产生增根(使方程中有的分母为零的根),因此解分式方程要验根(其方法是代入最 简公分母中,使最简公分母为零的是增根,否则不是).
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
x+1 x (1)(2010· 咸宁)分式方程 = 的解为( ) x-3 x-1 A.x=1 B.x=-1 C.x=3 D.x=-3 mx+1 (2)(2009 中考变式题)若解分式方程 =-1 时产生增根,则 m 的值是( x-1 A.0 B.1 C.-1 D.±1 )
【解答】(1)方程两边同时乘以 x(x+1),约去分母,得 1 x2+x(x+1)=(2x+1)(x+1).解得 x=- . 2 1 经检验,x=- 是原方程的根. 2 1 所以,原方程的解为 x=- . 2 (2)方程两边同时乘以 x(x-1),约去分母,得 x2-(2x-2)(x-1)-x(x-1)=0 1 解得 x= 或 x=2. 2 1 经检验,x= 或 x=2 都是原方程的根. 2 1 所以原方程的解为 x= 或 x=2. 2
【点拨】列分式方程解决实际问题,要特别注意解的合理性,需检验求出的未知数的值 是否是原方程的根以及是否符合题意.
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
【解答】 (1)设乙单独做 x 天完成此项工程, 则甲单独做(x+30)天完成此项工程, 由题意, 1 1 得 20( + )=1. x x+30 整理,得 x2-10x-600=0. 解得 x1=30,x2=-20. 经检验,x1=30,x2=-20 都是分式方程的解,但 x2=-20 不符合题意,舍去. 当 x=30 时,x+30=60. 答:甲、乙两工程队单独完成此项工程各需要 60 天、30 天. a (2)合作(20- )天 3 a (3)由题意,得 1×a+(1+2.5)(20- )≤64. 3 解得 a≥36. 即甲工程队至少单独施工 36 天后,再由甲、乙两工程队合作施工完成剩下的工程,才能 使施工费不超过 64 万元.
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
举 一 反 三
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 知 识 精 讲 中 考 典 例 精 析
(2010· 重庆)某镇道路改造工程,由甲、乙两工程队合作 20 天可完成.甲工程队单 独施工比乙工程队单独施工多用 30 天完成此项工程. (1)求甲、乙两工程队单独完成此项工程各需要多少天? (2)若甲工程队独做 a 天后,再由甲、乙两工程队合作________天(用含 a 的代数式表示) 可完成此项工程; (3)如果甲工程队施工每天需付施工费 1 万元,乙工程队施工每天需付施工费 2.5 万元, 甲工程队至少要单独施工多少天后,再由甲、乙两工程队合作施工完成剩下的工程,才能使 施工费不超过 64 万元?
举 一 反 三
当 x=2 时,4-x2=0,∴x=2
考 点 训 练
目录
首页
上一页
下一页
末页
宇轩图书
考 点 5. (2010· 益阳)货车行驶 25 千米与小车行驶 35 千米所用的时间相同, 已知小车每小时比 知 识 货车多行驶 20 千米,求两车的速度各为多少?设货车的速度为 x 千米/小时,依题意列方程 精 正确的是( ) 讲 25 35 25 35 中 考 典 例 精 析
相关文档
最新文档