2019届中考数学专题复习分式方程专题训练(含答案)

合集下载

2019年中考数学专题《分式方程》复习试卷含答案解析

2019年中考数学专题《分式方程》复习试卷含答案解析

2019年中考数学专题复习卷: 分式方程一、选择题1.方程的解为().A. x=-1B. x=0C. x=D. x=12.解分式方程分以下几步,其中错误的一步是()A. 方程两边分式的最简公分母是(x-1)(x+1)B. 方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6C. 解这个整式方程,得x=1 D. 原方程的解为x=13.方程的解的个数为()A. 0个 B. 1个 C. 2个 D. 3个4.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x万平方米,则下面所列方程中正确的是()A.B.C.D.5.若关于x的分式方程= 的根为正数,则k的取值范围是( )A. k<- 且k≠-1 B. k≠-1C. -<k<1 D. k<-6.若方程=1有增根,则它的增根是()A. 0B. 1C. ﹣1 D. 1和﹣17.已知= - ,其中A,B为常数,则4A-B的值为( )A. 13B. 9C. 7D. 58.为响应“绿色校园”的号召,八年级(5)班全体师生义务植树300棵.原计划每小时植树棵,但由于参加植树的全体师生植树的积极性高涨,实际工作效率提高为原计划的1.2倍,结果提前20分钟完成任务.则下面所列方程中,正确的是()A.B.C.D.9.关于x的分式方程的解为正实数,则实数m的取值范围是()A. m<-6且m≠2B. m>6且m≠2 C. m<6且m≠-2 D. m<6且m≠210.在今年抗震赈灾活动中,小明统计了自己所在学校的甲、乙两班的捐款情况,得到三个信息:(1)甲班捐款2500元,乙班捐款2700元;(2)乙班平均每人捐款数比甲班平均每人捐款数多;(3)甲班比乙班多5人,设甲班有x人,根据以上信息列方程得()A.B.C.D.11.己知关于x的分式方程=1的解是非正数,则a的取值范围是()A. a≤-lB. a≤-2 C. a≤1且a≠-2 D. a≤-1且a≠-212.A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A. ﹣=1 B. ﹣=1C. ﹣=1 D. ﹣=1二、填空题13.方程的解是________14.当x=________时, 与互为相反数.15.若分式方程有增根,则这个增根是________16.已知关于x的方程x+ =a+ 的解是x1=a,x2= ,应用此结论可以得到方程x+ =[x]+ 的非整数解为________([x]表示不大于x的最大整数).17.甲、乙工程队分别承接了160米、200米的管道铺设任务,已知乙比甲每天多铺设5米,甲、乙完成铺设任务的时间相同,问甲每天铺设多少米?设甲每天铺设米,根据题意可列出方程:________.18.若关于x的分式方程=2的解为负数,则k的取值范围为________.19.当________时,解分式方程会出现增根.20.已知a>b>0,且,则________。

2019届中考数学总复习【分式方程及其应用】专题训练卷及答案.doc

2019届中考数学总复习【分式方程及其应用】专题训练卷及答案.doc

中考数学总复习【分式方程及其应用】专题训练卷1 91. 分式方程:的解是()2 2 A. x = 2 B. x=—2 C. x = —§ I ). x=§2. A, B 两地相距160千米,甲车和乙车的平均速度之比为4 : 5,两车同时从A 地出 发到B 地,乙车比甲车早到30分钟,若求甲车的平均速度,设甲车平均速度为4x 千米 /小时,则所列方程是()t 160 160 “ 160 160 1 厂 160 160 1 160 , 160 A. —~ = 30 —"T —T C. —~j —77 D. I -亡=30 4x bx 4x 5x 2 5x 4x 2 4x 5xo x — o I3. 若关于x 的分式方程「■=耳的解为非负数,则Q 的取值范围是()A. a21B. a>lC. aMl 目.aH4D. a>l 目』H4i 94. 将分式方程?=丁去分母后得到的整式方程,正确的是()A. x —2 = 2xB. x'—2x = 2xC. x —2 = xD. x = 2x —4 1 35. 分式方程一■〒的解是() x — 1 x —1A. x= — 1B. x= 1C. x = 2D.无解 9 Y6. 分式方程百=1的解为()A- x=—2 B. x = —3C- x = 2 D. x = 3 7. 若关于x 的方程目+芒=3的解为正数,则m 的取值范围是()8. 在求3x 的倒数的值时,嘉淇同学误将3x 看成了 8x,她求得的值比正确答案小5. 依上述情形,所列关系式成立的是()1 11 1 . 小 1 ° 1 C I A. —=—-5 B.丁+5 C. —=8x-5 I ). —=8x + 53x 8x 3x 8x3x 3x A. a=5 或 2=0 B. a7^0C. aH5 1 3 10•分式方程一二-的解是 • X —2 x -----11. 关于X 的分式方程占—圭=0无解,贝山=—・9 A. m<~ 9 口 丄3 B. m<—MC. m>-|D. m>—才且 m7^— 5 n 9.关于x 的分式方程;=為有解,则字母a 的取值范围是( D. aH5 月.a7^012.端午节那天,“味美早餐店”的粽子打9折出售,小红的妈妈去该店买粽子花了54 元钱,比平时多买了3个,求平时每个粽子卖多少元?设平时每个粽子卖x元,列方程为9 313.方程士=三的解是—・1 914.关于x的方程X2-4X +3= 0与不有一个解相同,则^= 15•解方程:±一3=三. 16•解分式方程:汨=需-化.I x — 217.小明解方程-一——=1的过程如图.请指出他解答过程中的错误,并写出正确的X X 解答过程.解:方程两边同乘x得1 — (x —2)=1 ①去括号得1—X —2=1……②合并同类项得一x—1 = 1……③移项得一x = 2 ......... ④解得x = —2 ⑤・••原方程的解为:x=-2……⑥18.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课木忘记拿了,立即带上课木去追他,在距离学校200米的地方追上了他,己知爸爸的速度是马小虎速度的2倍,求马小虎的速度.19.为加快城市群的建设与发展,在A, B两城市间新建一条城际铁路,建成后,铁路运行里程由现在的120 km缩短至114 km,城际铁路的设计平均时速要比现行的平均时2速快110 km,运行时间仅是现行时间的三,求建成后的城际铁路在A, B两地的运行时间.20.七月初,某市多地遭遇了持续强降雨的恶劣天气,造成部分地区岀现严重洪涝灾害, 某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同.(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区需求乙种物品的件数是甲种物站件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?参考答案:亠 54 . 54 1—-9 BBCAC BBBD 10. x = 3 11. 0 或一4 12. —+3=T -— x 0.9x13. x = 914. 1 15.解:方程两边同乘 X —2,得 1 —3(x —2) =—(x —1),即 1 —3x + 6=—x+1,整理得:一2x = —6,解得:x = 3,检验,当x = 3时,x —2H0,则原方程的解为x = 3・16. 解:原方程即⑵+1;+:”1)两边同时乘以(2x+l) (2x — 1)得:x + l=3(2x —1) — 2(2x+l),x +1 =6x — 3—4x — 2,解得:x = 6.经检验:x = 6是原分式方程的解.・・・原方程的解是x = 617. 解:小明的解法有三处错误,步骤①去分母有误;步骤②去括号有误;步骤⑥少 检验;正确解法为:方程两边乘以x,得:1 -(x-2)=x,去括号得:l-x + 2 = x,移 项得:一x —x = —1—2,合并同类项得:一2x = —3,解得:x=-,经检验x=s 是原分120 2 11419. 解:设城际铁路现行速度是x km/h.由题意得:亠乂二二一^,解这个方程得: x □ x+110120 2 120 2x = 80.经检验:x = 80是原方程的根,且符合题意.则一X-=—X 7=0.6(h).答: x 5 80 5 建成后的城际铁路在A, B 两地的运行时间是0.6 h20. 解:⑴设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x+10)元,根 据题意得甘务=号,解得x = 60.经检验,x = 60是原方程的解.答:甲、乙两种救灾物品每件的价格分别是70元、60元⑵设甲种物品件数为m 件,则乙种物品件数为3ni 件,根据题意得,m+3m=2000,解 得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金: 70 X 500 + 60 X 1500 = 125000 (元).答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元 1800-200 2x10,解得x=80.经检验,x=80是原方程的根.答:马小虎的速度是80 18. 解:设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意得 米/分式方程的解, 3 则方程的解为1800-200x。

2019年全国各地中考数学试题分类汇编(第一期) 专题7 分式与分式方程(含解析)

2019年全国各地中考数学试题分类汇编(第一期) 专题7 分式与分式方程(含解析)

专题7 分式与分式方程一.选择题1. ( 2019甘肃省兰州市) (4分)化简:12112+-++a a a = ( ) A. a -1 . B. a +1 . C.11+-a a . D. 11+a . 【答案】A . 【考点】分式计算. 【考察能力】运算求解能力. 【难度】简单【解析】12112+-++a a a =1212+-+a a =1)1)(1(+-+a a a =a -1 . 故选A.2.(2019甘肃省陇南市)(3分)下面的计算过程中,从哪一步开始出现错误( )A .①B .②C .③D .④【分析】直接利用分式的加减运算法则计算得出答案. 【解答】解:﹣=﹣==.故从第②步开始出现错误. 故选:B .【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.3. (2019甘肃省天水市)(4分)分式方程-=0的解是______.【答案】x=2【解析】解:原式通分得:=0去分母得:x-2(x-1)=0去括号解得,x=2经检验,x=2为原分式方程的解故答案为x=2先通分再去分母,再求解,最后进行检验即可本题主要考查解分式方程,解分式方程主要将方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.4.(2019•浙江宁波•4分)若分式有意义,则x的取值范围是()A.x>2 B.x≠2C.x≠0D.x≠﹣2【分析】分式有意义时,分母x﹣2≠0,由此求得x的取值范围.【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:B.【点评】本题考查了分式有意义的条件.分式有意义的条件是分母不等于零.5. (2019•湖北十堰•3分)十堰即将跨入高铁时代,钢轨铺设任务也将完成.现还有6000米的钢轨需要铺设,为确保年底通车,如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务.设原计划每天铺设钢轨x米,则根据题意所列的方程是()A.﹣=15 B.﹣=15C.﹣=20 D.﹣=20【分析】设原计划每天铺设钢轨x米,根据如果实际施工时每天比原计划多铺设20米,就能提前15天完成任务可列方程.【解答】解:设原计划每天铺设钢轨x米,可得:,故选:A.【点评】本题考查由实际问题抽象出分式方程,关键是设出未知数以时间为等量关系列出方程.6. (2019•湖南衡阳•3分)如果分式在实数范围内有意义,则x的取值范围是()A.x≠﹣1 B.x>﹣1 C.全体实数D.x=﹣1【分析】根据分式有意义的条件即可求出答案.【解答】解:由题意可知:x+1≠0,x≠﹣1,故选:A.【点评】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型.7. (2019•甘肃武威•3分)下面的计算过程中,从哪一步开始出现错误()A.①B.②C.③D.④【分析】直接利用分式的加减运算法则计算得出答案.【解答】解:﹣=﹣==.故从第②步开始出现错误.故选:B.【点评】此题主要考查了分式的加减运算,正确掌握相关运算法则是解题关键.8. (2019•山东省聊城市•3分)如果分式的值为0,那么x的值为()A.﹣1 B.1 C.﹣1或1 D.1或0【考点】分式的值为零【分析】根据分式的值为零的条件可以求出x的值.【解答】解:根据题意,得|x |﹣1=0且x +1≠0, 解得,x =1. 故选:B .【点评】本题考查了分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9. (2019•山东省济宁市 •3分)世界文化遗产“三孔”景区已经完成5G 基站布设,“孔夫子家”自此有了5G 网络.5G 网络峰值速率为4G 网络峰值速率的10倍,在峰值速率下传输500兆数据,5G 网络比4G 网络快45秒,求这两种网络的峰值速率.设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是( ) A .﹣=45 B .﹣=45 C .﹣=45D .﹣=45【考点】由实际问题抽象出分式方程【分析】直接利用5G 网络比4G 网络快45秒得出等式进而得出答案.【解答】解:设4G 网络的峰值速率为每秒传输x 兆数据,依题意,可列方程是:﹣=45.故选:A .【点评】此题主要考查了由实际问题抽象出分式方程,正确得出等式是解题关键. 10. (2019•江苏苏州•3分)小明5元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完),已知每本硬面笔记本比软面笔记本贵3元,且小明和小丽买到相同数量的笔记本,设软面笔记本每本售价为x 元,根据题意可列出的方程为() A .15243x x =+ B .15243x x =- C .15243x x=+ D .15243x x=- 【分析】考察分式方程的应用,简单题型 【解答】找到等量关系为两人买的笔记本数量 15243x x ∴=+ 故选A11. (2019•江苏泰州•3分)若分式有意义,则x 的取值范围是 x ≠ .【分析】根据分母不等于0列式计算即可得解.【解答】解:根据题意得,2x﹣1≠0,解得x≠.故答案为:x≠.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.12. (2019•湖南株洲•3分)关于x的分式方程﹣=0的解为()A.﹣3 B.﹣2 C.2 D.3【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:2x﹣6﹣5x=0,解得:x=﹣2,经检验x=﹣2是分式方程的解,故选:B.【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.13.(2019▪黑龙江哈尔滨▪3分)方程=的解为()A.x=B.x=C.x=D.x=【分析】将分式方程化为,即可求解x=;同时要进行验根即可求解;【解答】解:=,,∴2x=9x﹣3,∴x=;将检验x=是方程的根,∴方程的解为x =; 故选:C .【点评】本题考查解分式方程;熟练掌握分式方程的解法及验根是解题的关键.14.(2019,四川成都,3分)分式方程1215=+--xx x 的解为( ) A.1-=x B.1=x C.2=x D.2-=x【解析】此题考查分式方程的求解.选A15.(2019,山东淄博,4分)解分式方程=﹣2时,去分母变形正确的是( )A .﹣1+x =﹣1﹣2(x ﹣2)B .1﹣x =1﹣2(x ﹣2)C .﹣1+x =1+2(2﹣x )D .1﹣x =﹣1﹣2(x ﹣2)【分析】分式方程去分母转化为整式方程,即可得到结果. 【解答】解:去分母得:1﹣x =﹣1﹣2(x ﹣2), 故选:D .【点评】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.二.填空题1.(2019•浙江衢州•4分)计算: =________。

2019年中考专题复习第九讲分式方程(含详细参考答案)(可编辑修改word版)

2019年中考专题复习第九讲分式方程(含详细参考答案)(可编辑修改word版)

【基础知识回顾】一、分式方程的概念2019 年中考专题复习第九讲分式方程分母中含有的方程叫做分式方程【名师提醒:分母中是否含有未知数是区分分式方程和整式方程的根本依据】二、分式方程的解法:1、解分式方程的基本思路是把分式方程转化为整式方程:即去分母分式方程﹥整式方程转化2、解分式方程的一般步骤:①、②、③、3、增根:在进行分式方程去分母的变形时,有时可能产生使原方程分母为的根称为方程的增根。

因此,解分式方程时必须验根,验根的方法是代入最简公分母,使最简公分母为的根是增根应舍去。

【名师提醒:1、分式方程解法中的验根是一个必备的步骤,不被省略2、分式方程有增根与无解并非用一个概念,无解既包含产生增根这一情况,也包含原方程去分母后的整式方程无解。

如:x -ax -13- x =1 有增根,则a= ,若该方程无解,则a= 。

】三、分式方程的应用:解题步骤同其它方程的应用一样,不同的是列出的方程是分式方程,所以在解分式方程应用题同样必须,既要检验是否为原方程的根,又要检验+是否符合题意。

【名师提醒:分式方程应用题常见类型有行程问题、工作问题、销售问题等, 其中行程问题中又出现逆水、顺水航行这一类型】 【重点考点例析】 考点一:分式方程的解例 1 (2018•株洲)关于 x 的分式方程 2 +x 3=0 x - a 解为 x=4,则常数 a 的值为 ()A .a=1B .a=2【思路分析】根据分式方程的解的定义把 x=4 代入原分式方程得到关于 a 的一次方程,解得 a=-1.【解答】解:把 x=4 代入方程 2+ x 3 x - a=0 ,得2 3= 0 , 4 4 - a解得a=10. 故选:D .【点评】此题考查了分式方程的解,分式方程注意分母不能为 0. 考点二:解分式方程例 2 (2018•广西)解分式方程: x -1 = 2x.x -1 3x - 3【分析】根据解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④ 得出结论依次计算可得.【解答】解:两边都乘以 3(x-1),得:3x-3(x-1)=2x , 解得:x=1.5,检验:x=1.5 时,3(x-1)=1.5≠0, 所以分式方程的解为 x=1.5.【点评】本题主要考查解分式方程,解题的关键是掌握解分式方程的步骤:①去 分母;②求出整式方程的解;③检验;④得出结论. 考点三:由实际问题抽象出分式方程例 3 (2018•嘉兴)甲、乙两个机器人检测零件,甲比乙每小时多检测 20 个,甲检测 300 个比乙检测 200 个所用的时间少 10%,若设甲每小时检测 x 个,则根据题意,可列出方程:.【思路分析】根据“甲检测300 个比乙检测200 个所用的时间少10%”建立方程,即可得出结论.【解答】解:设设甲每小时检测x 个,则乙每小时检测(x-20)个,根据题意得,300=200(1-10%),x x -20故答案为300=200(1-10%).x x -20【点评】此题主要考查了分式方程的应用,正确找出等量关系是解题关键.考点四:分式方程的应用例4 (2018•玉林)ft地自行车越来越受中学生的喜爱.一网店经营的一个型号ft地自行车,今年一月份销售额为30000 元,二月份每辆车售价比一月份每辆车售价降价100 元,若销售的数量与上一月销售的数量相同,则销售额是27000 元.(1)求二月份每辆车售价是多少元?(2)为了促销,三月份每辆车售价比二月份每辆车售价降低了10%销售,网店仍可获利35%,求每辆ft地自行车的进价是多少元?【思路分析】(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元,根据数量=总价÷单价,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设每辆ft地自行车的进价为y 元,根据利润=售价-进价,即可得出关于y 的一元一次方程,解之即可得出结论.【解答】解:(1)设二月份每辆车售价为x 元,则一月份每辆车售价为(x+100)元,根据题意得:30000=27000,x +100 x解得:x=900,经检验,x=900 是原分式方程的解.答:二月份每辆车售价是900 元.(2)设每辆ft地自行车的进价为y 元,根据题意得:900×(1-10%)-y=35%y,解得:y=600.答:每辆ft地自行车的进价是600 元.【点评】本题考查了分式方程的应用以及一元一次方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)找准等量关系,正确列出一元一次方程.【聚焦ft东中考】1.(2018•德州)分式方程x-1 =3的解为()x -1 (x -1) (x + 2)A.x=1 B.x=2C.x=-1 D.无解2.(2018•临沂)新能源汽车环保节能,越来越受到消费者的喜爱.各种品牌相继投放市场.一汽贸公司经销某品牌新能源汽车.去年销售总额为5000 万元,今年1~5 月份,每辆车的销售价格比去年降低1 万元.销售数量与去年一整年的相同.销售总额比去年一整年的少20%,今年1-5 月份每辆车的销售价格是多少万元?设今年1-5 月份每辆车的销售价格为x 万元.根据题意,列方程正确的是()A.5000=5000(1- 20%) x +1 xB.5000=5000 (1+ 20%) x +1 xC.5000=5000(1- 20%) x -1 xD.5000=5000 (1+ 20%) x -1 x3.(2018•潍坊)当m= 时,解分式方程x - 5=m会出现增根.x - 3 3 -x4.(2018•威海)某自动化车间计划生产480 个零件,当生产任务完成一半时,停止生产进行自动化程序软件升级,用时20 分钟,恢复生产后工作效率比原来1提高了,结果完成任务时比原计划提前了40 分钟,求软件升级后每小时生产3多少个零件?5.(2018•东营)小明和小刚相约周末到雪莲大剧院看演出,他们的家分别距离剧院1200m 和2000m,两人分别从家中同时出发,已知小明和小刚的速度比是3:4,结果小明比小刚提前4min 到达剧院.求两人的速度.6.(2018•菏泽)列方程(组)解应用题:为顺利通过国家义务教育均衡发展验收,我市某中学配备了两个多媒体教室,购买了笔记本电脑和台式电脑共120 台,购买笔记本电脑用了7.2 万元,购买台式电脑用了24 万元,已知笔记本电脑单价是台式电脑单价的1.5 倍,那么笔记本电脑和台式电脑的单价各是多少?【备考真题过关】一、选择题1.(2018•张家界)若关于x 的分式方程m - 3=1 x -1A.5 B.4C.3 D.2的解为x=2,则m 的值为()2.(2018•黑龙江)已知关于x 的分式方程m - 2=1x +1的解是负数,则m 的取值范围是()A.m≤3B.m≤3 且m≠2 C.m<3 D.m<3 且m≠23.(2018•荆州)解分式方程1- 3 =4时,去分母可得()x - 2 2 -xA.1-3(x-2)=4 B.1-3(x-2)=-4C .-1-3(2-x )=-4D .1-3(2-x )=44.(2018•成都)分式方程x +1+ 1 = 1 x x - 2的解是( )A .x=1B .x=-1C .x=3D .x=-35. (2018•通辽)学校为创建“书香校园”购买了一批图书.已知购买科普类图书花费 10000 元,购买文学类图书花费 9000 元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵 5 元,且购买科普书的数量比购买文学书的数量少 100 本.求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是 x 元,则可列方程为( ) A . 10000 - 9000 = 100x x - 5 B . 9000 - 10000 = 100x - 5 x C . 10000 - 9000 = 100x - 5 x D . 9000 - 10000 = 100x x - 5二、填空题4x +1 56.(2018•黄石)分式方程 x 2 - -= 1 1 2(x -1)的解为 。

2019苏州市中考专题《分式方程及其应用》复习学案(含答案)

2019苏州市中考专题《分式方程及其应用》复习学案(含答案)

2019年中考数学专题练习8《分式方程及其应用》【知识归纳】1.分式方程:分母中含有的方程叫分式方程.2.解分式方程的一般步骤:(1)去分母,在方程的两边都乘以,约去分母,化成整式方程;(2)解这个整式方程;(3)验根,把整式方程的根代入,看结果是不是零,使最简公分母为零的根是原方程的增根,必须舍去.3. 用换元法解分式方程的一般步骤:①设,并用含辅助未知数的代数式去表示方程中另外的代数式;②解方程,求出辅助未知数的值;③把代入原设中,求出原未知数的值;④检验作答.4.分式方程的应用:分式方程的应用题与一元一次方程应用题类似,不同的是要注意检验:(1)检验所求的解是否是所列;(2)检验所求的解是否 .【基础检测】1.(2019•邵阳)分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=32.(2019•海南)解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解3.(2019•山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.4.(2019•青岛)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=15.(2019•河北)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+56.(2019•泰安)某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A.=B.=C.=D.×30=×207.(2019·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?8.(2019·黑龙江哈尔滨·10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【达标检测】一、选择题1.4.解分式方程2x23x11x++=--时,去分母后变形为A.()()2x23x1++=-B.()2x23x1-+=-C.()()2x231 x-+=-D.()()2x23x1-+=-2.(2019海南3分)解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解3. (2019·黑龙江龙东·3分)关于x 的分式方程=3的解是正数,则字母m 的取值范围是( )A .m >3B .m >﹣3C .m >﹣3D .m <﹣3 4.分式方程23122x x x+=--的解为:( ) A 、1 B 、2 C 、13 D 、0 5. (2019·云南昆明)八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x 千米/小时,则所列方程正确的是( )A .﹣=20B .﹣=20C .﹣=D .﹣=6.(2019·四川内江)甲、乙两人同时分别从A ,B 两地沿同一条公路骑自行车到C 地,已知A ,C 两地间的距离为110千米,B ,C 两地间的距离为100千米,甲骑自行车的平均速度比乙快2千米/时,结果两人同时到达C 地,求两人的平均速度分别为多少.为解决此问题,设乙骑自行车的平均速度为x 千米/时,由题意列出方程,其中正确的是( )A .1102x +=100xB .1100x =1002x +C .1102x -=100xD .1100x =1002x -7.(2019·黑龙江齐齐哈尔·3分)若关于x 的分式方程=2﹣的解为正数,则满足条件的正整数m 的值为( )A .1,2,3B .1,2C .1,3D .2,38. (2019·山东潍坊)若关于x 的方程+=3的解为正数,则m 的取值范围是( )A .m <B .m <且m≠C .m >﹣D .m >﹣且m≠﹣9.关于x 的方程:c c x x 11+=+的解是c x =1,c x 12=,c c x x 11-=-解是c x =1,cx 12-= , 则1111-+=-+c c x x 的解是 ( ) A.c x =1,112-=c x B.11-=c x ,12-=c c x C.c x =1,12-=c c x D.c x =1,12--=c c x 二、填空题10.分式方程2124x x x ---=1的解是 . 11.(2019·山东济宁)已知A ,B 两地相距160km ,一辆汽车从A 地到B 地的速度比原来提高了25%,结果比原来提前0.4h 到达,这辆汽车原来的速度是 km/h .12. (2019·浙江湖州)方程=1的根是x= . 13.若关于x 的方程 m +=4-x 34-x 2-x 无解,则m=________.14.(2019·四川泸州)分式方程﹣=0的根是 x=﹣1 .15.(2019·四川攀枝花)已知关于x 的分式方程+=1的解为负数,则k 的取值范围是 .三、解答题 16.某中学组织学生去福利院慰问,在准备礼品时发现,购买1个甲礼品比购买1个乙礼品多花40元,并且花费600元购买甲礼品和花费360元购买乙礼品的数量相等.(1)求甲、乙两种礼品的单价各为多少元?(2)学校准备购买甲、乙两种礼品共30个送给福利院的老人,要求购买礼品的总费用不超过2000元,那么最多可购买多少个甲礼品?17. (2019·湖北随州)某校学生利用双休时间去距学校10km 的炎帝故里参观,一部分学生骑自行车先走,过了20min 后,其余学生乘汽车沿相同路线出发,结果他们同时到达.已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度和汽车的速度.18.(2019·辽宁丹东)某商场购进甲、乙两种商品,乙商品的单价是甲商品单价的2倍,购买240元甲商品的数量比购买300元乙商品的数量多15件,求两种商品单价各为多少元?19.马小虎的家距离学校1800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.20.(2019·四川宜宾)2019年“母亲节”前夕,宜宾某花店用4000元购进若干束花,很快售完,接着又用4500元购进第二批花,已知第二批所购花的束数是第一批所购花束数的1.5倍,且每束花的进价比第一批的进价少5元,求第一批花每束的进价是多少?参考答案【知识归纳答案】1.分式方程:字母.2.解分式方程的一般步骤:(1)分母的最小公倍数;(2)解这个整式方程;(3)最简公分母.3. 用换元法解分式方程的一般步骤:①设辅助未知数,并用含辅助未知数的代数式去表示方程中另外的代数式;②解所得到的关于辅助未知数的新方程,求出辅助未知数的值;③把辅助未知数的值代入原设中,求出原未知数的值;④检验作答. 4.分式方程的应用:(1)方程的根;(2)符合题意.【基础检测答案】1.(2019•邵阳)分式方程=的解是()A.x=﹣1 B.x=1 C.x=2 D.x=3【分析】观察可得最简公分母是x(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.【解答】解:两边都乘以x(x+1)得:3(x+1)=4x,去括号,得:3x+3=4x,移项、合并,得:x=3,经检验x=3是原分式方程的解,故选:D.【点评】本题考查了分式方程的解法,(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.2.(2019•海南)解分式方程,正确的结果是()A.x=0 B.x=1 C.x=2 D.无解【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:1+x﹣1=0,解得:x=0,故选A【点评】此题考查了解分式方程,利用了转化的思想,解分式方程时注意要检验.3.(2019•山西)甲、乙两个搬运工搬运某种货物,已知乙比甲每小时多搬运600kg,甲搬运5000kg所用时间与乙搬运8000kg所用时间相等,求甲、乙两人每小时分别搬运多少kg货物,设甲每小时搬运xkg货物,则可列方程为()A.B.C.D.【分析】设甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【解答】解:设甲种机器人每小时搬运x千克,则乙种机器人每小时搬运(x+600)千克,由题意得,故选B【点评】本题考查了列分时方程解实际问题的运用,分式方程的解法的运用,解答时根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程是关键.4.(2019•青岛)A,B两地相距180km,新修的高速公路开通后,在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h.若设原来的平均车速为xkm/h,则根据题意可列方程为()A.﹣=1 B.﹣=1C.﹣=1 D.﹣=1【分析】直接利用在A,B两地间行驶的长途客车平均车速提高了50%,而从A地到B地的时间缩短了1h,利用时间差值得出等式即可.【解答】解:设原来的平均车速为xkm/h,则根据题意可列方程为:﹣=1.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,根据题意得出正确等量关系是解题关键.5.(2019•河北)在求3x的倒数的值时,嘉淇同学误将3x看成了8x,她求得的值比正确答案小5.依上述情形,所列关系式成立的是()A.=﹣5 B.=+5 C.=8x﹣5 D.=8x+5【分析】根据题意知:8x的倒数+5=3x的倒数,据此列出方程即可.【解答】解:根据题意,可列方程:=+5,故选:B.【点评】本题考查了由实际问题抽象出分式方程,关键是读懂题意,找到3x的倒数与8x 的倒数间的等量关系,列出方程.6.(2019•泰安)某机加工车间共有26名工人,现要加工2100个A零件,1200个B零件,已知每人每天加工A零件30个或B零件20个,问怎样分工才能确保同时完成两种零件的加工任务(每人只能加工一种零件)?设安排x人加工A零件,由题意列方程得()A.=B.=C.=D.×30=×20【分析】直接利用现要加工2100个A零件,1200个B零件,同时完成两种零件的加工任务,进而得出等式即可.【解答】解:设安排x人加工A零件,由题意列方程得:=.故选:A.【点评】此题主要考查了由实际问题抽象出分式方程,正确表示出加工两种零件所用的时间是解题关键.7.(2019·广西桂林·8分)五月初,我市多地遭遇了持续强降雨的恶劣天气,造成部分地区出现严重洪涝灾害,某爱心组织紧急筹集了部分资金,计划购买甲、乙两种救灾物品共2000件送往灾区,已知每件甲种物品的价格比每件乙种物品的价格贵10元,用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同(1)求甲、乙两种救灾物品每件的价格各是多少元?(2)经调查,灾区对乙种物品件数的需求量是甲种物品件数的3倍,若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金多少元?【考点】分式方程的应用;一元一次方程的应用.【分析】(1)设每件乙种物品的价格是x元,则每件甲种物品的价格是(x+10)元,根据用350元购买甲种物品的件数恰好与用300元购买乙种物品的件数相同列出方程,求解即可;(2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据该爱心组织按照此需求的比例购买这2000件物品列出方程,求解即可.【解答】解:(1)设每件乙种物品的价格是x 元,则每件甲种物品的价格是(x+10)元,根据题意得, x x 30010350=+解得:x=60.经检验,x=60是原方程的解.答:甲、乙两种救灾物品每件的价格各是70元、60元;(2)设甲种物品件数为m 件,则乙种物品件数为3m 件,根据题意得,m+3m=2000,解得m=500,即甲种物品件数为500件,则乙种物品件数为1500件,此时需筹集资金:70×500+60×1500=125000(元). 答:若该爱心组织按照此需求的比例购买这2000件物品,需筹集资金125000元.8.(2019·黑龙江哈尔滨·10分)早晨,小明步行到离家900米的学校去上学,到学校时发现眼镜忘在家中,于是他立即按原路步行回家,拿到眼镜后立即按原路骑自行车返回学校.已知小明步行从学校到家所用的时间比他骑自行车从家到学校所用的时间多10分钟,小明骑自行车速度是步行速度的3倍.(1)求小明步行速度(单位:米/分)是多少;(2)下午放学后,小明骑自行车回到家,然后步行去图书馆,如果小明骑自行车和步行的速度不变,小明步行从家到图书馆的时间不超过骑自行车从学校到家时间的2倍,那么小明家与图书馆之间的路程最多是多少米?【考点】分式方程的应用;一元一次不等式的应用.【分析】(1)设小明步行的速度是x 米/分,根据题意可得等量关系:小明步行回家的时间=骑车返回时间+10分钟,根据等量关系列出方程即可;(2)根据(1)中计算的速度列出不等式解答即可.【解答】解:(1)设小明步行的速度是x 米/分,由题意得:,解得:x=60,经检验:x=60是原分式方程的解,答:小明步行的速度是60米/分;(2)小明家与图书馆之间的路程最多是y 米,根据题意可得:,解得:y≤240,答:小明家与图书馆之间的路程最多是240米.【达标检测】一、选择题1.4.解分式方程2x 23x 11x++=--时,去分母后变形为 A .()()2x 23x 1++=- B .()2x 23x 1-+=-C .()()2x 231 x -+=-D .()()2x 23x 1-+=-【答案】D【解析】原方程化为:2x 23x 1x 1+-=--,去分母时,两边同乘以x -1,得:()()2x 23x 1-+=-。

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)

中考数学复习《分式方程》专项提升训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列关于x 的方程,是分式方程的是( )A.3+x 2-3=2+x 5B.2x -17=x 2C.x π+1=2-x 3D.12+x =1-2x2.分式方程2x -2+3x 2-x=1的解为( ) A.x =1 B.x =2 C.x =13D.x =0 3.若x =3是分式方程a -2x -1x -2=0的解,则a 的值是( ) A.5 B.-5 C.3 D.-34.分式方程x +1x +1x -2=1的解是( ) A.x =1 B.x =-1 C.x =3 D.x =-35.分式方程x x -1-1=3(x -1)(x +2)的解为( ) A.x =1 B.x =2 C.x =-1D.无解6.解分式方程1x -5﹣2=35-x,去分母得( ) A.1﹣2(x ﹣5)=﹣3 B.1﹣2(x ﹣5)=3C.1﹣2x ﹣10=﹣3D.1﹣2x +10=37.如果分式方程113122=x++-x a+无解,那么a 的值为( )A.2B.﹣2C.2或﹣2D.﹣2或48.解分式方程2x +1+3x -1=6x 2-1分以下几步,其中错误的一步是( ) A.方程两边分式的最简公分母是(x -1)(x +1)B.方程两边都乘以(x -1)(x +1),得整式方程2(x -1)+3(x +1)=6C.解这个整式方程,得x=1D.原方程的解为x=19.某生态示范园计划种植一批梨树,原计划总产量30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )A.30x ﹣361.5x =10B.30x ﹣301.5x=10 C.361.5x ﹣30x =10 D.30x +361.5x=10 10.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务. 设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A.60x -60(1+25%)x =30 B.60(1+25%)x -60x=30 C.60×(1+25%)x -60x =30 D.60x -60×(1+25%)x=30 二、填空题11.下列方程:①x -12=16;②x ﹣2x =3;③x (x -1)x =1;④4-x π=π3;⑤3x +x -25=10;⑥1x +2y=7,其中是整式方程的有 ,是分式方程的有 . 12.若关于x 的方程211=--ax a x 的解是x=2,则a= . 13.方程2x +13-x =32的解是 . 14.关于x 的方程2x +a x -1=1的解满足x >0,则a 的取值范围是________. 15.A ,B 两市相距200千米,甲车从A 市到B 市,乙车从B 市到A 市,两车同时出发,已知甲车速度比乙车速度快15千米/小时,且甲车比乙车早半小时到达目的地.若设乙车的速度是x 千米/小时,则根据题意,可列方程____________________.16.对于实数a ,b ,定义一种新运算⊗为:a ⊗b =1a -b 2,这里等式右边是实数运算.例如:1⊗3=11-32=﹣18,则方程x ⊗(﹣2)=2x -4﹣1的解是__________. 三、解答题17.解分式方程:xx-1﹣2x=1;18.解分式方程:2x-3=3x;19.解分式方程:1-xx-2=x2x-4﹣1;20.解分式方程:xx-1-1=3(x-1)(x+2)21.对于分式方程x-3x-2+1=32-x,小明的解法如下:解:方程两边同乘(x﹣2) 得x﹣3+1=﹣3①解得x=﹣1②检验:当x=﹣1时,x﹣2≠0③所以x=﹣1是原分式方程的解.小明的解法有错误吗?若有错误,错在第几步?请你帮他写出正确的解题过程.22.当x为何值时,分式的值比分式的值小2?23.某小区为了排污,需铺设一段全长为720米的排污管道,为减少施工对居民生活的影响,须缩短施工时间,实际施工时每天铺设管道的长度是原计划的1.2倍,结果提前2天完成任务,求原计划每天铺设管道的长度.24.随着中国特色社会主义进入新时代,作为“中国名片”的高速铁路也将踏上自己的新征程,跑出发展新速度,这就意味着今后外出旅行的路程与时间将大大缩短,但也有不少游客根据自己的喜好依然选择乘坐普通列车;已知从A地到某市的高铁行驶路程是400千米,普通列车的行驶路程是高铁行驶路程的1.3倍,请完成以下问题:(1)普通列车的行驶路程为多少千米?(2)若高铁的平均速度(千米/时)是普通列车平均速度(千米/时)的2.5倍,且乘坐高铁所需时间比乘坐普通列车所需时间缩短3小时,求普通列车和高铁的平均速度.25.某中学在商场购买甲、乙两种不同的足球,购买甲种足球共花费2000元,购买乙种足球共花费1400元,购买甲种足球数量是购买乙种足球数量的2倍,且购买一个乙种足球比购买一个甲种足球多花20元(1)求购买一个甲种足球,一个乙种足球各需多少元?(2)这所学校决定再次购买甲、乙两种足球共50个,预算金额不超过3000元.去到商场时恰逢该商场对两种足球的售价进行调整,甲种足球售价比第一次购买时提高了10%,乙种足球售价比第一次购买时降低了10%,如果该学校此次需购买20个乙种足球,请问该学校购买这批足球所用金额是否会超过预算?答案1.D2.A3.A4.A5.D6.A7.D8.D9.A10.C11.答案为:①④⑤,②③⑥.12.答案为:54 .13.答案为:x=1.14.答案为:a<-1 且a≠-2.15.答案为:200x﹣200x+15=12.16.答案为:x=517.解:去分母得x2﹣2x+2=x2﹣x解得x=2检验:当x=2时,x(x﹣1)≠0故x=2是原方程的解;18.解:(1)方程两边乘x(x﹣3),得2x=3(x﹣3).解得x=9.检验:当x=9时,x(x﹣3)≠0.所以,原方程的解为x=9;19.解:去分母,得2(1﹣x)=x﹣(2x﹣4),解得x=﹣2 检验:当x=﹣2时,2(x﹣2)≠0故x=﹣2是原方程的根;20.解:方程两边同乘(x-1) (x+2)得x(x+2)-(x-1) (x+2)=3化简,得 x+2=3解得x=1检验:x=1时(x-1) (x+2)=0,x=1不是分式方程的解所以原分式方程无解.21.解:有错误,错在第①步,正确解法为:方程两边同乘(x﹣2)得x﹣3+x﹣2=﹣3解得x=1经检验x=1是分式方程的解所以原分式方程的解是x=1.22.解:由题意,得﹣=2,解得,x=4经检验,当x=4时,x﹣3=1≠0,即x=4是原方程的解.故当x=4时,分式的值比分式的值小2.23.解:设原计划每天铺设管道x米.由题意,得.解得x=60.经检验,x=60是原方程的解.且符合题意.答:原计划每天铺设管道60米.24.解:(1)普通列车的行驶路程为:400×1.3=520(千米);(2)设普通列车的平均速度为x千米/时,则高铁的平均速度为2.5千米/时则题意得:=﹣3,解得:x=120经检验x=120是原方程的解则高铁的平均速度是120×2.5=300(千米/时)答:普通列车的平均速度是120千米/时,高铁的平均速度是300千米/时.25.解:(1)设购买一个甲种足球需要x元=×2,解得,x=50经检验,x=50是原分式方程的解∴x+20=70即购买一个甲种足球需50元,一个乙种足球需70元;(2)设这所学校再次购买了y个乙种足球70(1﹣10%)y+50(1+10%)(50﹣y)≤3000解得,y≤31.25∴最多可购买31个足球所以该学校购买这批足球所用金额不会超过预算.。

2019广西中考数学复习集训《第7讲:分式方程》含答案

2019广西中考数学复习集训《第7讲:分式方程》含答案

第7讲 分式方程分式方程及解法【易错提示】 (1)去分母时,单独的数字或字母易漏乘以最简公分母,因此要注意每一项都要乘以最简公分母.(2)求得未知数的值后,一定要将所求得的未知数的值代入最简公分母中检验是否是原方程的解.分式方程的应用列分式方程解应用题的步骤跟列一次方程(组)解应用题不一样的是:要检验⑤____次,既要检验求出来的解是否为原方程的根,又要检验是否⑥________.【易错提示】 列分式方程解应用题,求得未知数的值后,一定要将所求得的未知数的值代入最简公分母中检验是否是原方程的解,同时还要考虑未知数的值是否符合题意.分式方程无解有可能是两种情况:一是去分母后的整式方程无解;二是整式方程有解,但整式方程的解使最简公分母为0,分式方程也无解.命题点1 分式方程的解法(2019·南宁)解方程:x x -2-2x 2-4=1. 【思路点拨】 解分式方程的步骤:(1)去分母,化分式方程为整式方程;(2)解整式方程;(3)检验;(4)写出原方程的解.【解答】解分式方程的基本思想是转化,将分式方程转化为整式方程求解,解分式方程一定要检验.1.(2019·来宾)将分式方程1x =1x -2去分母后得到的整式方程,正确的是( ) A .x -2=2xB .x -2=xC .x 2-2x =2xD .x =2x -42.(2019·贵港)分式方程1x -1=3x 2-1的解为( ) A .x =-1B .x =1C .x =2D .无解 3.(2019·河池)方程2x -3=3x的解是________. 4.(2019·北海)解方程:2x =3x +1.5.(2019·贺州)解分式方程:x +14x 2-1=32x +1-44x -2.命题点2 分式方程的应用(2019·梧州)某市修建一条与省会城市相连接的高速铁路,动车走高速铁路线到省会城市路程是500千米,普通列车走原铁路线路程是560千米,已知普通列车与动车的速度比是2∶5,从该城市到省会城市所用时间动车比普通列车少用4.5小时,求普通列车、动车的速度.【思路点拨】 由普通列车与动车的速度比是2∶5,可设普通列车的速度为2x 千米/时,则动车的速度为5x 千米/时,再由两车的时间差为4.5小时可列出方程,求出方程的解即可.【解答】列分式方程解应用题与列一次方程解应用题的方法步骤基本相同,即“审、设、列、解、验、答”,但检验的意义不同,分式方程的检验,一是检验所得未知数的值是否为原方程的解,二是检验方程的解是否符合实际意义.1.(2019·钦州)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天可完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x 天,则可列方程为( )A.1030+8x =1 B .10+8+x =30 C.1030+8(130+1x)=1 D .(1-1030)+x =8 2.(2019·玉林)某次列车平均提速v km/h ,用相同的时间,列车提速前行驶s km ,提速后比提速前多行驶50 km.设提速前列车的平均速度为x km/h ,则列方程是( )A.s x =s +50x +vB.s x +v =s +50xC.s x =s +50x -vD.s x -v =s +50x3.(2019·贺州)马小虎的家距离学校1 800米,一天马小虎从家去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,在距离学校200米的地方追上了他,已知爸爸的速度是马小虎速度的2倍,求马小虎的速度.1.分式方程7x -8=1的解是( ) A .-1 B .1 C .8 D .152.(2019·台州)将分式方程1-2x x -1=3x -1去分母,得到正确的整式方程是( ) A .1-2x =3B .x -1-2x =3C .1+2x =3D .x -1+2x =33.(2019·玉林、防城港)方程1x -1-3x +1=0的解是( ) A .x =2 B .x =1 C .x =12D .x =-2 4.(2019·柳州模拟)关于x 的分式方程2x -2+x +m 2-x=2无解,则m 的值是( ) A .1 B .0 C .2 D .-25.(2019·梧州)今年我市工业试验区投资50 760万元开发了多个项目,今后还将投资106 960万元开发多个新项目,每个新项目平均投资比今年每个项目平均投资多500万元,并且新增项目数量比今年多20个.假设今年每个项目平均投资是x 万元,那么下列方程符合题意的是( )A.106 960x +500-50 760x =20 B.50 760x -106 960x +500=20 C.106 960x +20-50 760x =500 D.50 760x -106 960x +20=500 6.(2019·玉林模拟)2019年12月26日,南宁至广州高速铁路开始运行.从南宁到广州,乘空调快车的行程约为872 km ,高铁开通后,高铁列车的行程约为580 km ,运行时间比空调快车时间减少了8 h .若高铁列车的平均速度是空调快车平均速度的 2.5倍,求高铁列车的平均速度.设空调快车平均速度为x km/h ,则根据题意所列方程正确的是( )A.5802.5 x =872x -8B.5802.5x =872x+8C.580x=8722.5x-8 D.580x=8722.5x+87.(2019·贵港)关于x的分式方程mx+1=-1的解是负数,则m的取值范围是( ) A.m>-1 B.m>-1且m≠0C.m≥-1 D.m≥-1且m≠08.(2019·柳州)方程2x-1=0的解是x=________.9.(2019·河池模拟)已知x=1是分式方程1x-2=2mx的解,则m=________.10.(2019·南宁模拟)分式3-x2-x的值比分式1x-2的值大3,则x=________.11.(2019·凉山)关于x的方程ax+1x-2=-1的解是正数,则a的取值范围是____________.12.(2019·宁德)解方程:1-2x-3=1x-3.13.(2019·娄底)娄底到长沙的距离约为180千米,小刘开着小轿车,小张开着大货车,都从娄底去长沙,小刘比小张晚出发1小时,最后两车同时到达,已知小轿车的速度是大货车的速度的1.5倍.(1)求小轿车和大货车的速度各是多少;(列方程解答)(2)当小刘出发时,小张离长沙还有多远?14.(2019·贵港)某工厂通过科技创新,生产效率不断提高.已知去年月平均生产量为120台机器,今年一月份的生产量比去年月平均生产量增长了m%,二月份的生产量又比一月份生产量多50台机器,而且二月份生产60台机器所需要时间与一月份生产45台机器所需时间相同,三月份的生产量恰好是去年月平均生产量的2倍.问:今年第一季度生产总量是多少台机器?m的值是多少?参考答案考点解读①未知数②整式③最简公分母④不为0 ⑤两⑥符合题意各个击破例1 去分母,得 x(x+2)-2=(x+2)(x-2).化简,得 2x=-2,x =-1.检验:把x =-1代入(x +2)(x -2)=-3≠0.所以原方程的解为x =-1.题组训练1.B2.C3.x =94.方程的两边同乘x(x +1),得 2(x +1)=3x ,解得 x =2.检验:把x =2代入x(x +1)=6≠0,∴原方程的解为x =2.5.两边同时乘以(2x +1)(2x -1),得 x +1=3(2x -1)-2(2x +1).解得 x =6.经检验,x =6是原分式方程的解.∴原分式方程的解是x =6.例2 设普通列车的速度为2x 千米/时,则动车的速度为5x 千米/时,列方程,得 5602x -5005x=4.5. 解得 x =40.经检验,x =40是原方程的解.2x =80,5x =200.答:普通列车的速度是80千米/时,动车的速度是200千米/时.题组训练1.C2.A3.设马小虎的速度为x 米/分,则爸爸的速度是2x 米/分,依题意,得1 800-200x =1 800-2002x+10 解得 x =80.经检验,x =80是原方程的解.答:马小虎的速度是80米/分.整合集训1.D 2.B 3.A 4.B 5.A 6.A 7.B 8.2 9.-12 10.1 11.a >-1且a≠-1212.去分母,得x -3-2=1.解这个方程,得 x =6.检验:当x =6时,x -3≠0,且左边=13=右边. ∴x=6是原方程的解.13.(1)设大货车的速度为x 千米/时,小轿车的速度为1.5x 千米/时,则由题意得180x -1801.5x=1. 解得 x =60.经检验,x =60是方程的解,且符合题意.∴1.5x=90.答:大货车的速度为60千米/时,小轿车的速度为90千米/时.(2)180-60×1=120(千米).答:当小刘出发时,小张离长沙还有120千米.14.设去年月平均生产效率为1,则今年一月份的生产效率为(1+m%),二月份的生产效率为1+m%+512.根据题意得601+m%+512=451+m%, 解得 m%=14. 经检验,m%=14是原方程的解. ∴m=25.∴第一季度的总产量为120×1.25+120×1.25+50+120×2=590(台). 答:今年第一季度生产总量是590台,m 的值是25.2019-2020学年数学中考模拟试卷一、选择题1.下列计算中,不正确的是( )A .222a 2ab b (a b)-+=-B .2510a a a ⋅=C .()a b b a --=-D .32223a b a b 3a ÷=2.如果x 1,x 2是两个不相等的实数,且满足x 12﹣2x 1=1,x 22﹣2x 2=1,那么x 1•x 2等于( )A .2B .﹣2C .1D .﹣13.若一组数据为:2,3,1,3,3.则下列说法错误的是( )A.这组数据的众数是3B.事件“在这组数据中随机抽取1个数,抽到的数是0.“是不可能事件C.这组数据的中位数是3D.这组数据的平均数是34.如图,菱形ABCD 的对角线AC 、BD 相交于点O .若周长为20,BD =8,则AC 的长是( )A.3B.4C.5D.65.用圆心角为120°,半径为6cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )cm cm D.4cm6.下列几何体是由4个正方体搭成的,其中主视图和俯视图相同的是( )A .B .C .D .7.如图,在Rt △ABC 中,∠ACB=90°,斜边AB 的垂直平分线交AB 于点D ,交BC 于点E ,已知AB=5,AC=3,则△ACE 的周长为( )A.5B.6C.7D.88.如图,嘉淇一家驾车从A 地出发,沿着北偏东30°的方向行驶30公里到达B 地游玩,之后打算去距离A 地正东30公里处的C 地,则他们行驶的方向是( )A .南偏东60°B .南偏东30°C .南偏西60°D .南偏西30°9.用A ,B 两个机器人搬运化工原料,A 机器人比B 机器人每小时多搬运30kg ,A 机器人搬运900kg 所用时间与B 机器人搬运600kg 所用时间相等,设A 机器人每小时搬运xkg 化工原料,那么可列方程( ) A.900x =6003x - B.9003x +=600x C.60030x +=900x D.9003x -=600x10.如图,△ABC 是等边三角形,AB =4,D 为AB 的中点,点E ,F 分别在线段AD ,BC 上,且BF =2AE ,连结EF 交中线AD 于点G ,连结BG ,设AE =x (0<x <2),△BEG 的面积为y ,则y 关于x 的函数表达式是( )A .8y =x 2+2x B .24y x =C .2y x =+D .2y =+11.下列语句所描述的事件是随机事件的是( )A.任意画一个五边形,其内角和为360B.经过任意两点画一条直线C.任意画一个菱形,是中心对称图形D.过平面内任意三点画一个圆12.如图,二次函数y=ax 2+bx+c (a≠0)的图象与x 轴交于点A 、B 两点,与y 轴交于点C ,对称轴为直线x=-1,点B 的坐标为(1,0),则下列结论:①AB=4;②b 2-4ac >0;③ab <0;④a 2-ab+ac <0,其中正确的结论有( )个.A.3B.4C.2D.1二、填空题 13.如图,在边长为1的正方形ABCD 的各边上,截取AE =BF =CG =DH =x ,连接AF 、BG 、CH 、DE 构成四边形PQRS .用x 的代数式表示四边形PQRS 的面积S .则S =___.14.如图,圆弧形拱桥的跨径12AB =米,拱高4CD =米,则拱桥的半径为__________米.15.如图,直线a ∥b ,直线l 与a ,b 分别交于A ,B 两点,过点B 作BC ⊥AB 交直线a 于点C ,若∠1=35°,则∠2=_____度.16.若对x 恒成立,则n=______.17.直线a 、b 、c 、d 的位置如图所示,如果∠1=66°,∠2=66°,∠3=70°,那么∠4的度数是_____.18.如图,AB 是圆O 的弦,AB =,点C 是圆O 上的一个动点,且∠ACB =45°,若点M 、N 分别是AB 、BC 的中点,则MN 的最大值是_____.三、解答题19.如图,甲楼AB 高20米,乙楼CD 高10米,两栋楼之间的水平距离BD =30m ,为了测量某电视塔EF 的高度,小明在甲楼楼顶A 处观测电视塔塔顶E ,测得仰角为37°,小明在乙楼楼顶C 处观测电视塔塔顶E ,测得仰角为45°,求该电视塔的高度EF .1.4≈)20.先化简2344111x x x x x -+⎛⎫-+÷ ⎪++⎝⎭,再求值,其中x =2. 21.某化工材料经销公司购进一种化工材料若干千克,价格为每千克40元,物价部门规定其销售单价不高于每千克70元,不低于每千克40元.经市场调查发现,日销量y(千克)是销售单价x(元)的一次函数,且当x =70时,y =80;x =60时,y =100.在销售过程中,每天还要支付其他费用350元.(1)求y 与x 的函数关系式,并写出自变量x 的取值范围;(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式;(3)当销售单价为多少元时,该公司日获利最大?最大利润是多少元?22.在△ABC 中,将边AB 绕点A 顺时针旋转60°得到线段AD ,将边AC 绕点A 逆时针旋转120°得到线段AE ,连接DE.(1)、如图①,当∠BAC=90°时,若△ABC 的面积为5,则△ADE 的面积为________;(2)如图②,CF 、BG 分别是△ABC 和△ADE 的高,若△ABC 为任意三角形,△ABC 与△ADE 的面积是否相等,请说明理由;(3)如图③,连接BD 、CE.若AB=4,四边形CEDB 的面积为则△ABC 的面积为________. 23.(1)解方程:x 2+x =8.(2)解不等式组:53165142x x x x ≤+⎧⎪⎨-<+⎪⎩.24.某中学为了了解学生最喜欢的一种球类运动,以便合理安排活动场地,在全校至少喜欢一种球类(乒乓球、羽毛球、排球、篮球、足球)运动的1800名学生中,随机抽取了若干名学生进行调查(每人只能在这五种球类运动中选择一种),调查结果统计如下:解答下列问题:(1)这次抽样调查的总人数是 ,统计表中a 的值为 . (2)求扇形统计图中排球一项的扇形圆心角度数. (3)试估计全校1800名学生中最喜欢乒乓球运动的人数.25.第一个盒子中有2个白球,1个黄球,第二个盒子中有1个白球,1个黄球,这些球除颜色外都相同,分别从每个盒中随机取出一个球.(1)求取出的两个球中一个是白球,一个是黄球的概率;(2)若第一个盒子中有2个白球,1个黄球,第二个盒子中有1个白球,1个黄球,其他条件不变,则取出的两个球都是黄球的概率为________.【参考答案】*** 一、选择题二、填空题13.2(1)1x x-+.14.6.515.55 16. 17.110°. 18.20 三、解答题 19.EF 约为140m 【解析】 【分析】分别过A 、C 作AM 、CN 垂直于EF ,根据正切的定义求出CN ,得到AM ,根据正切的定义列式计算即可. 【详解】分别过A 、C 作AM 、CN 垂直于EF ,垂足为M 、N ,设EM 为xm ,则EN 为(10+x )m . 在Rt △CEN 中,tan45°=ENCN, ∴CN =10+x , ∴AM =40+x ,在Rt △AEM 中,tan37°=EM AM ,即0.7540xx≈+, 解得,x≈120, 则EF =x+20=140(m ) 答:电视踏高度EF 约为140m . 【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键.20.1 【解析】 【分析】先根据分式混合运算的法则把原式进行化简,再把x 的值代入进行计算即可. 【详解】原式=2(2)(2)11(2)x x x x x -+-+⋅+-=2 2xx +-,当x=21==.【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.21.(1) y=﹣2x+220(40≤x≤70);(2) w=﹣2x2+300x﹣9150;(3) 当销售单价为70元时,该公司日获利最大,为2050元.【解析】【分析】(1)根据y与x成一次函数解析式,设为y=kx+b(k≠0),把x与y的两对值代入求出k与b的值,即可确定出y与x的解析式,并求出x的范围即可;(2)根据利润=单价×销售量,列出w关于x的二次函数解析式即可;(3)利用二次函数的性质求出w的最大值,以及此时x的值即可.【详解】(1)设y=kx+b(k≠0),根据题意得7080 60100k bk b+=⎧⎨+=⎩,解得:k=﹣2,b=220,∴y=﹣2x+220(40≤x≤70);(2)w=(x﹣40)(﹣2x+220)﹣350=﹣2x2+300x﹣9150=﹣2(x﹣75)2+2100;(3)w=﹣2(x﹣75)2+2100,∵40≤x≤70,∴x=70时,w有最大值为w=﹣2×25+2100=2050元,∴当销售单价为70元时,该公司日获利最大,为2050元.【点睛】此题考查了二次函数的应用,待定系数法求一次函数解析式,以及二次函数的性质,熟练掌握二次函数性质是解本题的关键.22.(1)5;(2)相等,理由见解析;(3)【解析】【分析】(1)继而得∠DAE=∠BAC=90°,可证得△ABC≌△ADE,则两三角形面积相等;(2)由∠BAD=60°,∠CAE=120°得∠DAE+∠CAB=180°,根据平角定义可得∠DAE +∠GAE=180°,可得∠FAC=∠GAE,然后证得△ACF≌△AEG,继而得CF=BG,根据等底等高的两个三角形面积相等可求出结论;(3)如图,分别作出△ABD和△AEC的高AH,AF. 求得等边三角形△ABD的面积为AECDE的面积则△ADE和△ABC的面积之和为,再证得△ABC≌△ADE,从而证得△ADE和△ABC的面积都是【详解】(1)根据旋转的性质可得AC=AE ,AB=AD ,∠BAD=60°,∠CAE=120°, ∵∠BAC=90° ∴∠DAE=90° ∴∠BAC=∠DAE ∴△ABC ≌△ADE , ∵△ABC 的面积为5 ∴△ADE 的面积为5. (2)解:相等, 理由如下:由旋转,得AC=AE ,AB=AD ,∠BAD=60°,∠CAE=120°, ∴∠BAD+∠CAE=180°, ∴∠DAE+∠CAB=180°, ∵∠DAE +∠GAE=180°, ∴∠FAC=∠GAE.∵CF 、BG 分别是△ABC 和△ADE 的高, ∴∠AFC=∠AGE =90°, ∴△ACF ≌△AEG , ∴CF=BG ,∴△ABC 与△ADE 的面积相等.(3)如图,分别作出△ABD 和△AEC 的高AH ,AF.∵AC=AE ,∠BAD=60°, ∴△ABD 是等边三角形,∴=∴S △ABD =12BD AH ⨯⨯=同理可得S △AEC∴S △ADE +S △ABC =S 四边形CEDB - S △ABD -S △AEC 又△ABC ≌△ADE ,∴S△ADE【点睛】本题考查几何变换综合题、旋转变换、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.23.(1)x=12-±;(2)﹣1<x≤8.【解析】【分析】(1)利用根的判别式即可解答(2)分别求出不等式的解集,即可解答【详解】(1)整理得:x2+x﹣8=0,∵a=1、b=1、c=﹣8,∴b2﹣4ac=12﹣4×1×(﹣8)=1+32=33>0,则x;(2)解不等式组:53165142x xxx≤+⎧⎪⎨-+⎪⎩①<②,解不等式①得:x≤8,解不等式②得:x>﹣1,∴原不等式组的解集是﹣1<x≤8.【点睛】此题考查解一元二次方程和不等式组的解,解题关键在于掌握运算法则24.(1)150人,39;(2)36°;(3)504人.【解析】【分析】(1)用喜欢篮球的人数除以其所占的百分比即可求得调查的总人数,用调查的总人数乘以羽毛球所占的百分比即可求得a;(2)用调查的总人数减去其他求得b值,求出排球所占百分比即可求得排球一项的扇形圆心角度数;(3)用全校人数乘以喜欢乒乓球的人所占的百分比即可.【详解】解:(1)∵喜欢篮球的有33人,占22%,∴抽样调查的总人数为33÷22%=150(人);∴a=150×26%=39(人);故答案为:150人,39;(2)b=150﹣42﹣39﹣33﹣21=15(人);扇形统计图中排球一项的扇形圆心角度数为:360°×15150=36°;(3)最喜欢乒乓球运动的人数为:1800×42150=504(人).【点睛】本题考查了扇形统计图、用样本估计总体等知识,解题的关键是正确的从统计图中读懂有关信息.25.(1)12(2)16【解析】【分析】(1) 找出1个白球、1个黄球所占结果数,然后根据概率公式求解(2)先计算出所有60种等可能的结果数,再找出2个球都是黄球所占结果数,然后根据概率公式求解; 【详解】(1)记第一个盒子中的球分别为白1、白2、黄1,第二个盒子中的球分别为白3、黄2,由列举可得:(白1白3)、(白2白3)、(黄1白3)、(白1黄2)、(白2黄2)、(黄1黄2),共6种等可能结果,即n=6,记“一个是白球,一个是黄球”为事件A,共3种,即m=3,∴P(A)=12;(2)画树状图为如下,则共有6种等可能的结果数,其中2个球都是黄球占1种所以取出的2个球都是黄球的概率=16.【点睛】此题考查了列表法和画树状图,解题关键在于列出可能出现的结果2019-2020学年数学中考模拟试卷一、选择题1.为迎接体育中考,九年级(9)班八名同学课间练习垫排球,记录成绩(个数)如下:40,38,42,35,45,40,42,42,则这组数据的众数与中位数分别是( ) A .40,41B .42,41C .41,42D .42,402.一个正方形被截掉一个角后,得到一个多边形,这个多边形的内角和是( ) A .360° B .540°C .180°或360°D .540°或360°或180°3.如图,⊙O 是△ABC 的外接圆,∠BAC =50°,点P 在AO 上(点P 不与点A ,O 重合),则∠BPC 的度数可能是( )A.100°B.80°C.40°D.30°4.下列运算正确的是( ) A.222()x y x y +=+B.32361128xy x y ⎛⎫-=- ⎪⎝⎭C.632x x x ÷=2=±5.在数﹣3,﹣(﹣2),01和2之间的数是( )A.﹣3B.﹣(﹣2)C.06.如图,在△ABC 中,D ,E 分别是边AC ,AB 的中点,连接BD .若BD 平分∠ABC ,则下列结论错误的是( )A .BC=2BEB .∠A=∠EDAC .BC=2AD D .BD ⊥AC7.某超市四月份赢利a 万元,计划五、六月份平均每月的增长率为x ,那么该超市第二季度共赢利( ) A .a (1+x )万元B .a (1+x )2万元C .a (1+x )+a (1+x )2万元D .a+a (1+x )+a (1+x )2万元8.如图是某手机店去年5~9月份某品牌手机销售额统计图.根据图中信息,可以判断相邻两个月该品牌手机销售额变化最大的是( )A .5月至6月B .6月至7月C .7月至8月D .8月至9月9最接近的是( ) A.1B.2C.3D.410.关于x 的一元二次方程x 2+kx ﹣3=0有一个根为﹣3,则另一根为( ) A .1B .﹣2C .2D .311.一个圆锥的主视图是边长为6cm 的正三角形,则这个圆锥的侧面积等于( ) A .36 πcm 2B .24πcm 2C .18πcm 2D .12 πcm 212.﹣π的绝对值是( ) A .﹣π B .3.14C .πD .1π二、填空题13.如图,在平面直角坐标系中,等边三角形ABC 的顶点B 、C 的坐标分别为(2,0),(6,0),点N 从A 点出发沿AC 向C 点运动,连接ON 交AB 于点M .当边AB 恰平分线段ON 时,则AN =_____.14.已知方程x 2-mx -3m =0的两根是x 1、x 2,若x 1+x 2=1,则 x 1x 2=_______.15.规定:在平面直角坐标系xOy 中,“把某一图形先沿x 轴翻折,再沿y 轴翻折”为一次变化.如图,已知正方形ABCD ,顶点A (1,3),C (3,1).若正方形ABCD 经过一次上述变化,则点A 变化后的坐标为 ,如此这样,对正方形ABCD 连续做2015次这样的变化,则点D 变化后的坐标为 .16.分解因式:258x x -= ______.17.在背面完全相同四张不透明的卡片,正面分别印有下列函数解析式:21,2,,21y y x y x y x x==-+==+,将它们背面朝上洗均匀后,从中抽取一张卡片,则抽到的函数图像不过第四象限的卡片的概率是__________.18.如图,有一个横截面边缘为抛物线的水泥门洞,门洞内的地面宽度为8m ,两侧蹑地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞的高度为_______m .(精确到0.1m )三、解答题19.入冬以来,我省的雾霾天气频发,空气质量较差,容易引起多种上呼吸道疾病.某电器商场代理销售A ,B 两种型号的家用空气净化器,已知一台A 型空气净化器的进价比一台B 型空气净化器的进价高200元;2台A 型空气净化器的进价与3台B 型空气净化器的进价相同. (1)求A ,B 两种型号的家用空气净化器的进价分别是多少元.(2)若商场购进这两种型号的家用空气净化器共50台,其中A 型家用空气净化器的数量不超过B 型家用空气净化器的数量,且不少于16台,设购进A 型家用空气净化器m 台. ①求m 的取值范围;②已知A 型家用空气净化器的售价为每台800元,销售成本为每台2n 元;B 型家用空气净化器的售价为每台550元,销售成本为每台n 元.若25100n ≤≤,求售完这批家用空气净化器的最大利润w (元)与n (元)的函数关系式.(每台销售利润=售价-进价-销售成本)20.如图,在平行四边形ABCD 中,对角线AC ,BD 交于点O ,经过点O 的直线交AB 于E ,交CD 于F . 求证:OE =OF .21.如图所示,P 是⊙O 外一点,PA 是⊙的切线,A 是切点,B 是⊙O 上一点,且PA =PB ,连接AO 、BO 、AB ,并延长BO 与切线PA 相交于点Q . (1)求证:PB 是⊙O 的切线; (2)求证:AQ•PQ=BQ•OQ; (3)设∠P =α,若tan ɑ=34,AQ =3,求AB 的长.22.为弘扬传统文化,某校举行“校园谜语大赛”,比赛结束后,组织者将所有参赛选手的比赛成绩(得分均为5的倍数)进行整理,并分别绘制成扇形统计图和频数直方图,部分信息如下:(1)本次比赛参赛选手共有人,其中65分有人,80分有人;(2)赛前规定,成绩达到平均分的参赛选手即可获奖.某参赛选手的比赛成绩为75分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.23.2019年3月30日,四川省凉山州木里县境内发生森林火灾,30名左右的扑火英雄牺牲,让人感到痛心,也再次给我们的防火安全意识敲响警钟.为了加强学生的防火安全意识,某校举行了一次“防火安全知识竞赛”(满分100分),赛后从中抽取了部分学生的成绩进行整理,并制作了如下不完整的统计图表:请根据图表提供的信息,解答下列各题:(1)补全频数分布直方图和扇形统计图;(2)分数段80≤x<90对应扇形的圆心角的度数是°,所抽取的学生竞赛成绩的中位数落在区间内;(3)若将每组的组中值(各组两个端点的数的平均数)代表各组每位学生的竞赛成绩,请你估计该校参赛学生的平均成绩.24.已知点A(﹣1,4)在反比例函数y =k x 的图象上,B(﹣4,n)在正比例函数y =12x 的图象上 (1)写出反比例函数y =kx的解析式; (2)求出点B 的坐标.25.先化简,再求值:22325x 2x x 2x 2x 4+⎛⎫+÷ ⎪-+-⎝⎭,其中x 是满足2x 2-≤≤的整数.【参考答案】*** 一、选择题二、填空题 13.2 14.-315.(-1,-3);(-3,-3) 16.(58)x x -17.3418.1 三、解答题19.(1)A 型进价600元/台,B 型进价400元/台.(2)①m 的取值范围为1625m ≤≤且为整数.②87507025507500505083006650100n n w n n n n -≤<⎧⎪=-=⎨⎪-<≤⎩【解析】 【分析】(1)设A 型进价x 元/台,B 型进价y 元/台,由题意得:20023x y x y-=⎧⎨=⎩,解方程组可得;(2)①由题意得:5016m m m ≤-⎧⎨≥⎩,②分段分析可得:87507025507500505083006650100n n w n n n n -≤<⎧⎪=-=⎨⎪-<≤⎩.【详解】解:(1)设A 型进价x 元/台,B 型进价y 元/台,由题意得:20023x y x y-=⎧⎨=⎩,∴600x =,400y =,∴A 型进价600元/台,B 型进价400元/台. (2)①由题意得:5016m mm ≤-⎧⎨≥⎩,∴1625m ≤≤,∴m 的取值范围为1625m ≤≤且为整数.②由题意得:(8006002)(550400)(50)w n m n m =--⋅+---(50)507500n m n =--+.∵25100n ≤≤,1)当2550n ≤<时,500n ->,w 随着m 的增大而增大, ∵1625m ≤≤,∴当25m =时,w 最大,max 875070w n =-. 2)当50n =时,750050w n =-.3)当50100n <≤时,500n -<,w 随着m 的增大而减小, ∴当16m =时,w 最大,max 830066w n =-.综上:87507025507500505083006650100n n w n n n n -≤<⎧⎪=-=⎨⎪-<≤⎩.【点睛】考核知识点:一次函数综合运用.分段分析问题是关键. 20.见解析. 【解析】 【分析】由四边形ABCD 是平行四边形,可得OA =OC ,AB ∥CD ,又由∠AOE =∠COF ,易证得△OAE ≌△OCF ,则可得OE =OF . 【详解】证明:∵四边形ABCD 是平行四边形, ∴OA =OC ,AB ∥CD , ∴∠OAE =∠OCF , ∵在△OAE 和△OCF 中,AOE COF OA OCOAE OCF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△OAE≌△OCF(ASA),∴OE=OF.【点睛】此题考查了平行四边形的性质以及全等三角形的判定与性质.此题难度不大,注意掌握数形结合思想的应用.21.(1)证明见解析(2)证明见解析(3)5【解析】【分析】(1)易证△PAO≌△PBO(SSS),根据全等三角形的性质结合切线的性质,即可得出∠PBO=90°,进而即可证出PB是⊙O的切线;(2)根据同角的补角相等可得出∠AOQ=∠APB,根据等腰三角形及全等三角形的性质可得出∠ABQ=∠OPQ,结合∠AQB=∠OQP即可证出△QAB∽△QOP,根据相似三角形的性质可得出AQ BQOQ PQ=,即AQ•PQ=BQ•OQ;(3)设AB与PO交于点E,则AE⊥PO,通过解直角三角形可求出OA的长度,结合(2)的结论可得出PQ 的长度,利用勾股定理可得出PO的长度,利用面积法即可得出AE的长度,进而即可求出AB的长度.【详解】(1)证明:在△PAO和△PBO中,PA PB AO BO PO PO=⎧⎪=⎨⎪=⎩,∴△PAO≌△PBO(SSS),∴∠PBO=∠PAO.∵PA是⊙的切线,A是切点,∴∠PAO=90°,∴∠PBO=90°,∴PB是⊙O的切线.(2)证明:∵∠APB+∠PAO+∠AOB+PBO=360°,∴∠APB+∠AOB=180°.又∵∠AOQ+∠AOB=180°,∴∠AOQ=∠APB.∵OA=OB,∴∠ABQ=∠BAO=12∠AOQ.∵△PAO≌△PBO,∴∠OPQ=∠OPB=12∠APB,∴∠ABQ=∠OPQ.又∵∠AQB=∠OQP,∴△QAB ∽△QOP , ∴AQ BQOQ PQ=,即AQ•PQ=BQ•OQ. (3)解:设AB 与PO 交于点E ,则AE ⊥PO ,如图所示. ∵∠AOQ =∠APB , ∴tan ∠AOQ =34. 在Rt △OAQ 中,∠OAQ =90°,tan ∠AOQ =34,AQ =3,∴AO =4,OQ =5= ,∴BQ =BO+OQ =9. ∵AQ•PQ=BQ•O Q , ∴PQ =15, ∴PA =PQ ﹣AQ =12,∴PO = .由面积法可知:AE =PA AD PQ ⋅=,∴AB =2AE .【点睛】本题考查了全等三角形的判定与性质、相似三角形的判定与性质、切线的判定与性质、三角形的面积以及解直角三角形,解题的关键是:(1)利用全等三角形的性质找出∠PBO =∠PAO =90°;(2)根据相似三角形的判定定理找出△QAB ∽△QOP ;(3)利用面积法求出AE 的长度. 22.(1)50,7,8;(2)他可以获奖;理由见解析;(3)()23P =一男一女. 【解析】 【分析】(1)用“55~60”这组的人数除以它所占的百分比可得到调查的总人数;再计算出“85~90”这一组人数占总参赛人数的百分比,然后用1分别减去其它三组的百分比得到“65~70”这一组人数占总参赛人数的百分比,分别计算“65-70”和“75-80”这两组的人数,即可求解;(2)求出平均数即可判断他能不能获奖;(3)画树状图展示所有12种等可能的结果数,再找出恰好选中1男1女的结果数,然后根据概率公式求解. 【详解】(1)(2+3)÷10%=50, (8+4)÷50=24%, 1-10%-24%-36%=30%, 50×30%=15(人),∴得65分的人数为:15-8=7(人), 50×36%=18(人),∴得分为80分的人数为:18-10=8(人). (2)()1552603657708751080885890450x =⨯+⨯+⨯+⨯+⨯+⨯+⨯+⨯ 1373574.77550=⨯=<, ∴他可以获奖. (3)法1:列表如下:由列表法可得,所有等可能的结果共有12种,其中一男一女有8种 ∴()82123P ==一男一女. 法2:画树状图如下:由树状图可得,所有等可能的结果共有12种,其中一男一女有8种, ∴()82123P ==一男一女. 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n ,再从中选出符合事件A 或B 的结果数目m ,然后利用概率公式计算事件A 或事件B 的概率.也考查了统计图. 23.(1)详见解析;(2)144,80≤x<90;(3)估计该校参赛学生的平均成绩是83分.【解析】【分析】(1)用A组的人数除以所占的百分比得出抽取的学生总数,再用数据总数减去A、B、C、E四个组的人数可得D组人数,补全频数分布直方图;用D组人数除以数据总数得出D组所占百分比,同理求出E组所占百分比,补全扇形统计图;(2)用360°乘以D组所占百分比即可求出分数段80≤x<90对应扇形的圆心角的度数;根据中位数的定义,将这组数据按照从小到大的顺序排列后,处于中间位置的数据(或中间两数据的平均数)即为中位数;(3)先利用加权平均数的计算公式求出样本平均数,再利用样本估计总体的思想解决问题即可.【详解】解:(1)样本容量是:10÷5%=200,D组人数是:200﹣(10+20+30+60)=80(人),D组所占百分比是:80200×100%=40%,E组所占百分比是:60200×100%=30%.补全频数分布直方图和扇形统计图如图所示:(2)分数段80≤x<90对应扇形的圆心角的度数是:360°×0.40=144°;一共有200个数据,按照从小到大的顺序排列后,第100个与第101个数据都落在D组,所以所抽取的学生竞赛成绩的中位数落在80≤x<90区间内.故答案为144,80≤x<90;(3)(55×10+65×20+75×30+85×80+95×60)÷200=83(分).所以估计该校参赛学生的平均成绩是83分.【点睛】本题考查读频数(率)分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了中位数、平均数以及利用样本估计总体.24.(1)4yx;(2)点B的坐标为:(﹣4,﹣2).【解析】【分析】。

中考数学专题练习分式方程的增根(含解析)

中考数学专题练习分式方程的增根(含解析)

2019中考数学专题练习-分式方程的增根(含解析)一、单选题1.下列关于分式方程增根的说法正确的是()A. 使所有的分母的值都为零的解是增根B. 分式方程的解为零就是增根C. 使分子的值为零的解就是增根D. 使最简公分母的值为零的解是增根2.解关于x的方程产生增根,则常数的值等于()A. -1B. -2C. 1D. 23.关于x的方程﹣=0有增根,则m的值是()A. 2B. -2C. 1D. -14.若关于x的分式方程有增根,则k的值是()A. -1B. -2C. 2D. 15.若关于x的分式方程−m=无解,则m的值为()A. m=3B. m=C. m=1D. m=1或6.解关于x的方程=产生增根,则常数m的值等于()A. -1B. -2C. 1D. 27.如果关于x的方程无解,则m等于()A. 3B. 4C. -3D. 58.分式方程+1=有增根,则m的值为()A. 0和2B. 1C. 2D. 09.解关于x的分式方程时不会产生增根,则m的取值是()A. m≠1B. m≠﹣1C. m≠0D. m≠±110.若解分式方程产生增根,则m的值是()A. 或B. 或2C. 1或2D. 1或11.若关于x的分式方程+ =1有增根,则m的值是()A. m=0或m=3B. m=3C. m=0D. m=﹣112.下列说法中正确的说法有()(1)解分式方程一定会产生增根;(2)方程=0的根为x=2;(3)x+ =1+是分式方程.A. 0个B. 1个C. 2个D. 3个13.若关于x的方程有增根,求a的值()A. 0B. -1C. 1D. -2二、填空题14.若关于x的分式方程= ﹣有增根,则k的值为________15.如果﹣3是分式方程的增根,则a=________.16.关于x的分式方程- =0无解,则m=________.17.关于x的方程+1= 有增根,则m的值为________.18.若分式方程有增根,则这个增根是________19.若关于x方程= +1无解,则a的值为________.20.若方程有增根,则它的增根是________,m=________;三、解答题21.当m为何值时,解方程会产生增根?22.计算:当m为何值时,关于x的方程+ = 会产生增根?答案解析部分一、单选题1.下列关于分式方程增根的说法正确的是()A. 使所有的分母的值都为零的解是增根B. 分式方程的解为零就是增根C. 使分子的值为零的解就是增根D. 使最简公分母的值为零的解是增根【答案】D【考点】分式方程的增根【解析】【解答】解:分式方程的增根是使最简公分母的值为零的解.故答案为:D.【分析】本题考查了分式方程的增根,使最简公分母的值为零的解是增根.2.解关于x的方程产生增根,则常数的值等于()A. -1B. -2C. 1D. 2【答案】B【考点】分式方程的增根【解析】【解答】解:方程两边同乘x-1,得x-3=m,因为方程有增根,所以x=1,把x=1代入x-3=m,所以m=-2;故选B.【分析】因为增根是在分式方程转化为整式方程的过程中产生的,分式方程的增根,不是分式方程的根,而是该分式方程化成的整式方程的根,所以涉及分式方程的增根问题的解题步骤通常为:①去分母,化分式方程为整式方程;②将增根代入整式方程中,求出方程中字母系数的值.3.关于x的方程﹣=0有增根,则m的值是()A. 2B. -2C. 1D. -1【答案】A【考点】分式方程的增根【解析】【解答】解:方程两边都乘(x﹣1),得m﹣1﹣x=0,∵方程有增根,∴最简公分母x﹣1=0,即增根是x=1,把x=1代入整式方程,得m=2.故选A.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,最简公分母x﹣1=0,所以增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.4.若关于x的分式方程有增根,则k的值是()A. -1B. -2C. 2D. 1【答案】D【考点】分式方程的增根【解析】【解答】解:方程两边都乘(x﹣5),得x﹣6+x﹣5=﹣k,∵原方程有增根,∴最简公分母(x﹣5)=0,解得x=5,当x=5时,k=1.故选:D.【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母(x﹣5)=0,得到x=5,然后代入化为整式方程的方程算出k的值.5.若关于x的分式方程−m=无解,则m的值为()A. m=3B. m=C. m=1D. m=1或【答案】D【考点】分式方程的增根【解析】【分析】方程两边都乘以(x-3)得到x-m(x-3)=2m,整理得(1-m)x+m=0,由于关于x的分式方程−m=无解,则x-3=0,解得x=3,然后把x=3代入(1-m)x+m=0可求出m的值.【解答】去分母得x-m(x-3)=2m,整理得(1-m)x+m=0,当1-m=0,即m=1时,(1-m)x+m=0无解,∵关于x的分式方程−m=无解,∴x-3=0,解得x=3,∴(1-m)×3+m=0,∴m=.故选D.【点评】本题考查了分式方程的解先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.6.解关于x的方程=产生增根,则常数m的值等于()A. -1B. -2C. 1D. 2 【答案】B【考点】分式方程的增根【解析】解;方程两边都乘(x-1),得x-3=m,∵方程有增根,∴最简公分母x-1=0,即增根是x=1,把x=1代入整式方程,得m=-2.故选:B.【分析】增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.本题的增根是x=1,把增根代入化为整式方程的方程即可求出未知字母的值.增根问题可按如下步骤进行:①确定增根的值;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.7.如果关于x的方程无解,则m等于()A. 3B. 4C. -3D. 5【答案】A【考点】分式方程的增根【解析】【分析】关于x的方程无解,即分式方程去掉分母化为整式方程,整式方程的解就是方程的增根,即x=5,据此即可求解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式方程
A 级 基础题
1.解分式方程3x -1x -2
=0去分母,两边同乘的最简公分母是( ) A .x (x -2) B .x -2 C .x D .x 2
(x -2) 2.(2018年海南)分式方程x 2-1x +1
=0的解是( ) A .-1 B .1 C .±1 D.无解
3.分式5x 与3x -2
的值相等,则x 的值为( ) 4.(2018年湖南衡阳)衡阳市某生态示范园计划种植一批梨树,原计划总产值30万千克,为了满足市场需求,现决定改良梨树品种,改良后平均每亩产量是原来的1.5倍,总产量比原计划增加了6万千克,种植亩数减少了10亩,则原来平均每亩产量是多少万千克?设原来平均每亩产量为x 万千克,根据题意,列方程为( )
A.30x -361.5x =10
B.30x -301.5x =10
C.361.5x -30x =10
D.30x +361.5x
=10 5.(2017年四川南充)如果
1m -1=1,那么m =__________. 6.(2018年广东广州)方程1x =4x +6
的解是________. 7.(2018年山东潍坊)当m =________时,解分式方程
x -5x -3=m 3-x 会出现增根. 8.若分式方程x -a x +1
=a 无解,则a 的值为________. 9.某次列车平均提速20 km/h ,用相同的时间,列车提速前行驶400 km ,提速后比提速前多行驶100 km ,设提速前列车的平均速度为x km/h ,则可列出方程________________.
10.解方程.
(1)解分式方程:x
x -1+21-x =4; (2)(2018年四川绵阳)解分式方程:
x -1x -2+2=32-x
.
11.(2018年江苏泰州)为了改善生态环境,某乡村计划植树4000棵.由于志愿者的支援,实际工作效率提高了20%,结果比原计划提前3天完成,并且多植树80棵,原计划植树多少天?
B 级 中等题
12.(2017年黑龙江)若关于x 的分式方程2x -a x -2=12
的解为非负数,则a 的取值范围是( ) A .a ≥1 B.a >1 C .a ≥1且a ≠4 D.a >1且a ≠4
13.分式方程1x -5-10x 2-10x +25
=0 的解是________. 14.解分式方程:x +14x 2-1=32x +1
.
15.(2017年广东广州)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60千米,再由乙队完成剩下的
筑路工程,已知乙队筑路总千米数是甲队筑路总千米数的43
倍,甲队比乙队多筑路20天. (1)求乙队筑路的总千米数;
(2)若甲、乙两队平均每天筑路千米数之比为5∶8,求乙队平均每天筑路多少千米.
C 级 拔尖题
16.(2018年江苏泰安)文美书店决定用不多于20 000元购进甲、乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.
(1)甲、乙两种图书的售价分别为每本多少元?
(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完)
参考答案
1.A 2.B 3.D 4.A
5.2 6.x =2 7.2 8.±1 9.400x =400+100x +20 10.解:(1)方程两边同乘(x -1), 得x -2=4(x -1).
整理,得-3x =-2.
解得x =23
. 经检验,x =23
是原分式方程的解. 故原分式方程的解为x =23
. (2)方程两边同乘(x -2),
得x -1+2(x -2)=-3.
整理,得3x -5=-3.
解得x =23
. 经检验,x =23
是原分式方程的解. 11.解:设原计划每天种x 棵树,则实际每天种(1+20%)x 棵.
根据题意,得4000x -4000+801+20%x
=3. 解得x =200.经检验,x =200是原分式方程的解.
则4000200
=20. 答:原计划植树20天.
12.C 13.x =15
14.解:由x +14x 2-1=32x +1,得x +12x +12x -1=32x +1
. 两边同乘(2x +1)(2x -1),
得x +1=3(2x -1).
去括号,得x +1=6x -3.解得x =45
. 经检验,x =45
是原分式方程的解.
∴原分式方程的解是x =45
. 15.解:(1)乙队筑路的总千米数:60×43
=80(千米). (2)设甲队平均每天筑路5x 千米,乙队平均每天筑路8x 千米.
根据题意,得605x -20=808x .解得x =110
. 经检验x =110
是原方程的解且符合题意. 乙队平均每天筑路110×8=45
(千米). 答:乙队平均每天筑路45
千米. 16.解:(1)设乙种图书售价每本x 元,则甲种图书售价为每本1.4x 元,
根据题意,得1400x -16801.4x
=10. 解得x =20.
经检验,x =20是原分式方程的解.
∴甲种图书售价为每本1.4×20=28(元).
答:甲种图书售价每本28元,乙种图书售价每本20元.
(2)设甲种图书进货a 本,总利润W 元,
根据题意,得W =(28-20-3)a +(20-14-2)(1200-a )=a +4800.
∵20a +14×(1200-a )≤20 000,解得a ≤16003
. ∵W 随a 的增大而增大,
∴当a 最大时W 最大.
∴当a =533时,W 最大.
此时,乙种图书进货本数为1200-533=667(本).
答:甲种图书进货533本,乙种图书进货667本时利润最大.。

相关文档
最新文档