高一数学教案:函数4

合集下载

数学教案高中函数

数学教案高中函数

数学教案高中函数
教学目标:
1. 熟练掌握高中函数的定义和基本性质;
2. 能够灵活运用函数的概念解决实际问题;
3. 培养学生的数学思维能力和解决问题的能力。

教学重点:
1. 函数的定义;
2. 函数的图像和性质;
3. 函数的运算。

教学难点:
1. 函数的复合运算;
2. 函数的图像的绘制。

教学准备:
1. 教师准备教学课件和教学用具;
2. 学生准备笔记本和铅笔。

教学过程:
第一步:引入问题
教师通过一个实际问题引入函数的概念,让学生了解函数的定义和意义。

第二步:讲解函数的定义和性质
教师简要介绍函数的定义和性质,包括定义域、值域、自变量和因变量等概念。

第三步:举例说明函数
教师通过一些例题让学生掌握函数的基本性质和运算规则。

第四步:绘制函数的图像
教师示范如何绘制函数的图像,并要求学生根据函数的公式自行绘制函数的图像。

第五步:巩固练习
教师出一些练习题让学生巩固所学的内容,提高解题能力。

第六步:课堂讨论
教师组织学生互相讨论解题方法和答案,促进学生思维的交流。

第七步:作业布置
教师布置相关作业,巩固所学知识。

教学反思:
通过这节课的教学,学生能够熟练掌握函数的基本概念和运算方法,提高数学解题能力和思维能力。

学生在课后应多做练习,巩固所学内容,提高数学学习的效果。

高一数学(函数的概念)教学设计 教案

高一数学(函数的概念)教学设计 教案

1.2.1 函数的概念一、内容与解析函数是中学数学中最重要的基本概念之一.在中学,函数的学习大致可分为三个阶段.第一阶段是在义务教育阶段,学习了函数的描述性概念,接触了正比例函数、反比例函数、一次函数、二次函数等最简单的函数,了解了它们的图象、性质等.本节学习的函数概念与后续将要学习的函数的基本性质、基本初等函数(Ⅰ)和基本初等函数(Ⅱ)是学习函数的第二阶段,这是对函数概念的再认识阶段.第三阶段是在选修系列的导数及其应用的学习,这是函数学习的进一步深化和提高.在学生学习用集合与对应的语言刻画函数之前,学生已经把函数看成变量之间的依赖关系;同时,虽然函数概念比较抽象,但函数现象大量存在于学生周围.因此,课本采用了从实际例子中抽象出用集合与对应的语言定义函数的方式介绍函数概念.二、教学目标及解析1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;通过学习函数的概念,培养学生观察问题、提出问题的探究能力,进一步培养学习数学的兴趣和抽象概括能力;启发学生运用函数模型表述、思考和解决现实世界中蕴涵的规律,逐渐形成善于提出问题的习惯,学会数学表达和交流,发展数学应用意识.2.掌握构成函数的三要素,会求一些简单函数的定义域,体会对应关系在刻画函数概念中的作用,使学生感受到学习函数的必要性和重要性,激发学生学习的积极性.三、问题诊断分析教学重点:理解函数的模型化思想,用集合与对应的语言来刻画函数.教学难点:符号“y=f(x)”的含义,不容易认识到函数概念的整体性,而将函数单一地理解成对应关系,甚至认为函数就是函数值.四、教学支持条件分析在本节课()的教学中,准备使用(),因为使用(),有利于().五、教学过程第一课时导入新课问题:已知函数1,0,Rx Qyx Q∈⎧=⎨∈⎩,请用初中所学函数的定义来解释y与x的函数关系?先让学生回答后,教师指出:这样解释会显得十分勉强,本节将用新的观点来解释,引出课题.推进新课新知探究提出问题1.给出下列三种对应:(幻灯片)(1)一枚炮弹发射后,经过26 s落到地面击中目标.炮弹的射高为845 m,且炮弹距地面的高度为h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2.请回答:①该问题中的自变量与因变量分别是什么?它们的取值范围用集合如何表示?②请得出炮弹飞行1s,5s,10s,20s时距地面的高度③请用集合与对应的语言描述变量之间的依赖关系④用符号语言描述上述的依赖关系时间t的变化范围是数集A={t|0≤t≤26},h的变化范围是数集B={h|0≤h≤845}.则有对应f:t→h=130t-5t2,t∈A,h∈B.(2)近几十年来,大气层的臭氧迅速减少,因而出现了臭氧洞问题.图1-2-1-1中的曲线显示了南极上空臭氧层空洞的面积S(单位:106 km2)随时间t(单位:年)从1979~2001年的变化情况.图1-2-1-1请回答:①该问题中的自变量与因变量分别是什么?它们的取值范围用集合如何表示?②从图中可以看出哪一年臭氧空洞面积最大?哪些年的臭氧空洞的面积大约为1500万平方千米?③请用集合与对应的语言描述变量之间的依赖关系④用符号语言描述上述的依赖关系根据图1-2-1-1中的曲线,可知时间t的变化范围是数集A={t|1979≤t≤2001},空臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26},则有对应:f:t→S,t∈A,S∈B.(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高.下表中的恩格尔系数y 随时间t(年)变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著变化. “八五”计划以来我国城镇居民恩格尔系数变化情况时间 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 恩格尔系数y 53.852.950.149.949.948.646.444.541.939.237.9请回答:①恩格尔系数与时间之间的关系是否和前两个实例中的两个变量之间的关系相似?如何用集合与对应的语言来描述这个关系?②用符号语言描述上述的依赖关系根据上表,可知时间t 的变化范围是数集A={t|1991≤t≤2001},恩格尔系数y 的变化范围是数集B={S|37.9≤S≤53.8}.则有对应: f:t→y,t∈A,y∈B.(2)以上三个实例有什么共同特点?(3)请用集合的观点给出函数的定义. 函数f:A→B 的值域为C,那么集合B=C 吗?初中函数定义:在某一变化过程中,有两个变量x ,y 。

高中数学必修一高一数学第四章(第五课时)正弦函数余弦函数的图象和性质()公开课教案课件课时训练练习教

高中数学必修一高一数学第四章(第五课时)正弦函数余弦函数的图象和性质()公开课教案课件课时训练练习教

课 题:48正弦函数、余弦函数的图象和性质(4)教学目的:1理解正、余弦函数的定义域、值域、最值、周期性、奇偶性的意义; 2会求简单函数的定义域、值域、最小正周期和单调区间; 3掌握三角函数最值问题的一些常见类型和解题方法 教学重点:正、余弦函数的性质教学难点:正、余弦函数性质的理解与应用 授课类型:新授课 课时安排:1课时教 具:多媒体、实物投影仪 教学过程:一、复习引入:1.y=sinx ,x ∈R 和y=cosx ,x ∈R 的图象,分别叫做正弦曲线和余弦曲线.2.用五点法作正弦函数和余弦函数的简图(描点法):正弦函数y=sinx ,x ∈[0,2π]的图象中,五个关键点是:(0,0) (2π,1) (π,0) (23π,-1) (2π,0) 余弦函数y=cosx x ∈[0,2π]的五个点关键是 (0,1) (2π,0) (π,-1) (23π,0) (2π,1) 3.定义域:正弦函数、余弦函数的定义域都是实数集R [或(-∞,+∞)], 分别记作: y =sin x ,x ∈R y =cos x ,x ∈R 4.值域正弦函数、余弦函数的值域都是[-1,1]其中正弦函数y =sin x ,x ∈R①当且仅当x =2π+2k π,k ∈Z 时,取得最大值1 ②当且仅当x =-2π+2k π,k ∈Z 时,取得最小值-1而余弦函数y =cos x ,x ∈R①当且仅当x =2k π,k ∈Z 时,取得最大值1②当且仅当x =(2k +1)π,k ∈Z 时,取得最小值-15.周期性正弦函数、余弦函数都是周期函数,2k π(k ∈Z 且k ≠0)都是它的周期,最小正周期是2π6.奇偶性y =sin x 为奇函数,y =cos x 为偶函数正弦曲线关于原点O 对称,余弦曲线关于y 轴对称 7.单调性正弦函数在每一个闭区间[-2π+2k π,2π+2k π](k ∈Z )上都是增函数,其值从-1增大到1;在每一个闭区间[2π+2k π,23π+2k π](k ∈Z )上都是减函数,其值从1减小到-1余弦函数在每一个闭区间[(2k -1)π,2k π](k ∈Z )上都是增函数,其值从-1增加到1;在每一个闭区间[2k π,(2k +1)π](k ∈Z )上都是减函数,其值从1减小到-1二、讲解范例:例1 求函数y =sin 21x-π的单调增区间 误解:令u=21x-π ∵y =sin u在[2k π-2π,2k π+2π](k ∈Z )上递增 ∴2k π-2π≤21x -π≤2k π+2π解得-4k ≤x ≤-4k +2∴原函数的单调递增区间为[-4k ,-4k +2](k ∈Z ) 分析:上述解答貌似正确,实则错误,错误的原因是,令u=21x-π,忽视了u是x 的减函数,未考虑复合后单调性的变化正解如下:解法一:令u=21x-π,则u 是x 的减函数 又∵y =sin u在[2k π+2π,2k π+23π](k ∈Z )上为减函数,∴原函数在[2k π+2π,2k π+23π](k ∈Z )上递增设2k π+2π≤21x-π≤2k π+23π解得-4k -2≤x ≤-4k (k ∈Z )∴原函数在[-4k -2,-4k ](k ∈Z )上单调递增 解法二:将原函数变形为y =-sin 21-x π 因此只需求sin 21-x π=y 的减区间即可 ∵u=21-x π为增函数 ∴只需求sin u的递减区间 ∴2k π+2π≤21-x π≤2k π+23π解之得:4k +2≤x ≤4k +4(k ∈Z )∴原函数的单调递增区间为[4k +2,4k +4](k ∈Z ) 一、利用三角函数的有界性利用三角函数的有界性如|sin x |≤1,|cos x |≤1来求三角函数的最值例2 a 、b 是不相等的正数求y =x b x a x b x a 2222cos sin sin cos +++的最大值和最小值解:y 是正值,故使y 2达到最大(或最小)的x 值也使y 达到最大(或最小)y 2=a cos 2x +b sin 2x +2x b x a 22sin cos +·x b x a 22cos sin ++a sin 2x +b cos 2x=a +b +x b a ab 2sin )(422-+ ∵a ≠b ,(a -b )2>0,0≤sin 22x ≤1 ∴当sin2x =±1时,即x =22ππ+k (k ∈Z )时,y 有最大值)(2b a +; 当sin x =0时,即x =2πk (k ∈Z )时,y 有最小值a +b二、利用三角函数的增减性 如果f (x )在[α,β]上是增函数,则f (x )在[α,β]上有最大值f (β),最小值f (α);如果f (x )在[α,β]上是减函数,则f (x )在[α,β]上有最大值f (α),最小值f (β)例3 在0≤x ≤2π条件下,求y =cos 2x -sin x cos x -3sin 2x 的最大值和最小值解:利用二倍角余弦公式的变形公式,有y =22cos 1x +-2sin2x -3·22cos 1x-=2(cos2x -sin2x )-1 =22 (cos2x cos 4π-sin2x sin 4π)-1=22cos(2x +4π)-1∵0≤x ≤2π,4π≤2x +4π≤45πcos(2x +4π)在[0,83π)上是减函数 故当x =0时有最大值22当x =83π时有最小值-1cos(2x +4π)在[83π,2π]上是增函数 故当x =83π时,有最小值-1当x =2π时,有最大值-22综上所述,当x =0时,y max =1 当x =83π时,y min =-22-1三、换元法利用变量代换,我们可把三角函数最值问题化成代数函数最值问题求解例4求f (x )=sin 4x +2sin 3x cos x +sin 2x cos 2x +2sin x cos 3x +cos 4x 的最大值和最小值解:f (x )=(sin 2x +cos 2x )2-2sin 2x cos 2x +2sin x cos x (sin 2x +cos 2x )+sin 2x cos 2x =1+2sin x cos x -sin 2x cos 2x令t=21sin2x ∴-21≤t≤21①f (t)=1+2t-t2=-(t-1)2+2 ②在①的范围内求②的最值当t=21,即x =k π+4π(k ∈Z )时,f (x )max =47 当t=-21,即x =k π+43π(k ∈Z )时,f (x )min =-41四、求三角函数最值时应注意的问题三角函数最值问题是三角函数性质的重要内容之一,也是会考、高考必考内容,在求解中欲达到准确、迅速,除熟练掌握三角公式外,还应注意以下几点:1.注意sin x 、cos x 自身的范围例5求函数y =cos 2x -3sin x 的最大值解:y =cos 2x -3sin x =-sin 2x -3sin x +1=-(sin x +23)2+413 ∵-1≤sin x ≤1,∴当sin x =-1时,y max =3说明:解此题易忽视sin x ∈[-1,1]这一范围,认为sin x =-23时,y 有最大值413,造成误解 2.注意条件中角的范围例6已知|x |≤4π,求函数y =cos 2x +sin x 的最小值解:y =-sin 2x +sin x +1=-(sin x -21)2+45∵-4π≤x ≤4π∴-22≤sin x ≤22 ∴当sin x =-22时 y min =-(-22-21)2+45=221-说明:解此题注意了条件|x |≤4π,使本题正确求解,否则认为sin x =-1时y 有最小值,产生误解3.注意题中字母(参数)的讨论例7求函数y =sin 2x +a cos x +85a -23(0≤x ≤2π)的最大值 解:∵y =1-cos 2x +a cos x +85a -23=-(cos x -2a )2+42a +85a -21∴当0≤a ≤2时,cos x =2a ,y max =42a +85a -21当a >2时,cos x =1,y max =813a -23 当a <0时,cos x =0,y max =85a -21说明:解此题注意到参数a 的变化情形,并就其变化讨论求解,否则认为cos x =2a时,y 有最大值会产生误解 4.注意代换后参数的等价性例8已知y =2sin θcos θ+sin θ-cos θ(0≤θ≤π),求y 的最大值、最小值解:设t =sin θ-cos θ=2sin(θ-4π) ∴2sin θcos θ=1-t2∴y =-t2+t+1=-(t-21)2+45 又∵t=2sin(θ-4π),0≤θ≤π∴-4π≤θ-4π≤43π∴-1≤t≤2 当t=21时,y max =45当t=-1时,y min =-1说明:此题在代换中,据θ范围,确定了参数t∈[-1,2],从而正确求解,若忽视这一点,会发生t=21时有最大值而无最小值的结论 三、课堂练习:四、小结 三角函数最值的求解:三角函数最值是中学数学的一个重要内容,加强这一内容的教学有助于学生进一步掌握已经学过的三角知识,沟通三角、代数、几何之间的联系,培养学生的思维能力本课介绍了三角函数最值问题的一些常见类型和解题方法 五、课后作业:六、板书设计(略) 七、课后记:活动目的:教育学生懂得“水”这一宝贵资源对于我们来说是极为珍贵的,每个人都要保护它,做到节约每一滴水,造福子孙万代。

2024高一数学教案(模板6篇)

2024高一数学教案(模板6篇)

2024高一数学教案(模板6篇)2024高一数学教案篇1一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。

因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。

因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教A版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六).本节是第一课时,教学内容为公式(二)、(三)、(四).教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与、、终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四).同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求.为此本节内容在三角函数中占有非常重要的地位.三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容.四、教学目标(1).基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2).能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3).创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4).个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观.五、教学重点和难点1.教学重点理解并掌握诱导公式.2.教学难点正确运用诱导公式,求三角函数值,化简三角函数式.六、教法学法以及预期效果分析“授人以鱼不如授之以鱼”,作为一名老师,我们不仅要传授给学生数学知识,更重要的是传授给学生数学思想方法,如何实现这一目的,要求我们每一位教者苦心钻研、认真探究.下面我从教法、学法、预期效果等三个方面做如下分析.1.教法数学教学是数学思维活动的教学,而不仅仅是数学活动的结果,数学学习的目的不仅仅是为了获得数学知识,更主要作用是为了训练人的思维技能,提高人的思维品质.在本节课的教学过程中,本人以学生为主题,以发现为主线,尽力渗透类比、化归、数形结合等数学思想方法,采用提出问题、启发引导、共同探究、综合应用等教学模式,还给学生“时间”、“空间”,由易到难,由特殊到一般,尽力营造轻松的学习环境,让学生体味学习的快乐和成功的喜悦.2.学法“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,很多课堂教学常常以高起点、大容量、快推进的做法,以便教给学生更多的知识点,却忽略了学生接受知识需要时间消化,进而泯灭了学生学习的兴趣与热情.如何能让学生程度的消化知识,提高学习热情是教者必须思考的问题.在本节课的教学过程中,本人引导学生的学法为思考问题、共同探讨、解决问题简单应用、重现探索过程、练习巩固。

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

高一数学课件4函数的概念

高一数学课件4函数的概念
年份 人数(万人)
招生人数数集B={108.4,157.9,220,268.3,320,335}
请仿照实例1和2,描述我国普通高等学校招生 人数和时间(年)的关系.
问题:
1.一个小球在490米高的位置从静 止开始下落,下落的距离h(m)与时 间t(s)的关系.( y=4.9x2 )
2.
3.
年份 1998
【教学难点】理解函数概念,符号y=f(x)的含义.
【回忆旧知】
1、初中学习的函数概念是什么?
设在一个变化过程中,如果有两个变量x与 y,并且对于x的每一个值,y都有唯一的值与它 对应,那么我们就说y是x的函数,其中x叫自变 量,y叫因变量.
2、请问:我们在初中学过哪些函数?
正比例函数:y kx(k 0)
1999 2000 2001 2002 2003
人数(万人) 108.4
159.7 220 268.3 320 335
在上述的每一个问题中都含有两个变 量,当一个变量的取值确定后,另一个变 量的值随之唯一确定,每一个问题确定了 在上面的三个问题中,是否确定了函数关系?为什么? 一个函数关系.
小结:
从问题的实际意义可知,对于数集A中的任意一个时间 t,按照对应关系y=4.9x2 ,在数集B中都有唯一的高度 h和它对应.
实例2:
某市一天24小时的气温变化图:
根据上图中的曲线可知,时间t的变化范围是数集A (1)4时的气温是多少?全天的最高气温是多少? ={t|0≤t≤24},温度的变化范围是数集B ={θ|0≤θ≤26} (2)你能用集合分别表示时间和温度的变化范围吗? 并且,对于数集A中的每一个时刻t,按照图中的曲线, 在数集B中都有唯一确定的温度θ和它对应.
(1)试说明函数定义中有几个要素? 函数三要素:定义域、对应关系、值域. (2)f(x)一定表示解析式吗?函数符号y= f(x)表示f与x 的乘积吗?f(2)表示什么意思? f(x)表示自变量为x,对应关系为f的函数;f(2) 表示自变量为2时的函数值. (3)函数的值域C={y|y=f(x),x∈A}的含义?定义域和 对应关系能确定一个函数吗? (4)自变量一定得用x表示吗?对应关系呢?

高一数学经典课程教案5篇

高一数学经典课程教案5篇

高一数学经典课程教案5篇高一数学经典课程教案5篇高一新生要根据自己的条件,以及高中阶段学科知识交叉多、综合性强,以及考查的知识和思维触点广的特点,找寻一套行之有效的学习方法。

下面小编给大家带来关于高一数学经典课程教案,方便大家学习。

高一数学经典课程教案1一、教学目标:1.通过高速公路上的实际例子,引起积极的思考和交流,从而认识到生活中处处可以遇到变量间的依赖关系.能够利用初中对函数的认识,了解依赖关系中有的是函数关系,有的则不是函数关系.2.培养广泛联想的能力和热爱数学的态度.二、教学重点:在于让学生领悟生活中处处有变量,变量之间充满了关系教学难点:培养广泛联想的能力和热爱数学的态度三、教学方法:探究交流法四、教学过程(一)、知识探索:阅读课文P25页。

实例分析:书上在高速公路情境下的问题。

在高速公路情景下,你能发现哪些函数关系2.对问题3,储油量v对油面高度h、油面宽度w都存在依赖关系,两种依赖关系都有函数关系吗问题小结:1.生活中变量及变量之间的依赖关系随处可见,并非有依赖关系的两个变量都有函数关系,只有满足对于一个变量的每一个值,另一个变量都有确定的值与之对应,才称它们之间有函数关系。

2.构成函数关系的两个变量,必须是对于自变量的每一个值,因变量都有确定的y值与之对应。

3.确定变量的依赖关系,需分清谁是自变量,谁是因变量,如果一个变量随着另一个变量的变化而变化,那么这个变量是因变量,另一个变量是自变量。

(二)、新课探究——函数概念1.初中关于函数的定义:2.从集合的观点出发,函数定义:给定两个非空数集A和B,如果按照某个对应关系f,对于A中的任何一个数x,在集合B中都存在确定的数f(x)与之对应,那么就把这种对应关系f叫做定义在A上的函数,记作或f:A→B,或y=f(x),x∈A.;此时x叫做自变量,集合A叫做函数的定义域,集合{f(x)︱x∈A}叫作函数的值域。

习惯上我们称y是x的函数。

高一数学函数教案

高一数学函数教案

高一数学函数教案(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、工作计划、演讲致辞、策划方案、合同协议、规章制度、条据文书、诗词鉴赏、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work summaries, work plans, speeches, planning plans, contract agreements, rules and regulations, doctrinal documents, poetry appreciation, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please stay tuned!高一数学函数教案高一数学函数教案(精选3篇)高一数学函数教案篇1第四课时(2.1.2.(2)教学目的:1.掌握求函数值域的基本方法(直接法、换元法、判别式法);掌握二次函数值域(最值)或二次函数在某一给定区间上的值域(最值)的求法.2.培养观察分析、抽象概括能力和归纳总结能力;教学重点:值域的求法教学难点:二次函数在某一给定区间上的值域(最值)的求法教学过程:一、复习引入:函数的三要素是:定义域、值域和定义域到值域的对应法则;定义域和对应法则一经确定,值域就随之确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
25
(双)
1
2
5
11
7
3
1
缺点:画图是难点
则销售量 是否为鞋的尺码 的函数?为什么?
2、作出下列函数的图象
例2:(1) (2)
(3) (4)
(5) (6)
例3:已方程 有四个不Βιβλιοθήκη 等的实根,求实数 的取值范围。
析:数形结合思想的应用
作业
教学反思
及反馈
四川省江油中学教案---厚德重能和谐发展
课题
函数的表示方法(4)(图象法与列表法)
备注
知识点
图象法及列表法的概念
函数的表示方法共有三种,图象法;列表法;解析法;三种方法中尤以解析法与图象法为重,因而对于图象与列表安排1课时,解析法:安排1课时共2课时
能力目标
能用上述知识点解决实际问题
德育目标
培养学生用运动变化和对立统一的观点看问题
量与函数值间关系
又知每生产一件正品盈利 元,每生产一件次品损失 元
2、图象法:用图象表示两
将该厂日盈利M(元)表示成日产量 件的函数。
个变量之间的关系
变式:一家鞋店在一段时间内销售了某种女鞋30双,其中各种
优点:直观形象表示函
尺码的鞋的销售量如下表所示:
数变化情况
(码)
22
22.5
23
23.5
24
24.5
本课重点
图象及列表法的应用
本课难点
图象及列表法的应用
教学方法
精讲精练
板书
教学过程
列表法的应用:
1、列表法与图象法
例1:某个工厂的统计资料显示,产品的次品率P与日产量
列表法:列出表格表示两个
件( 且 )的关系如下表所示:
变量函数关系
1
2
3
4

98
P

1
优点:直接找到某些自变
量所对应的函数值
缺点:不太容易找到自变
相关文档
最新文档