八年级下册数学2.1 不等关系》教学设计

合集下载

《 不等关系》示范公开课教学设计【八年级数学下册北师大】

《 不等关系》示范公开课教学设计【八年级数学下册北师大】

《不等关系》教学设计一、教学目标1.感受生活中存在着大量的不等关系,了解不等式的意义。

初步体会不等式是刻画量与量之间关系的一种重要模型。

2.经历由具体实例建立不等式模型的过程。

进一步发展符号意识。

会用不等号表示简单的不等关系。

3.能用实际生活背景和数学背景解释简单不等式的意义二、教学重点及难点重点:1.通过探寻实际问题中的不等式关系,认识不等式.2.根据实际问题建立合理的不等关系.难点:根据实际问题建立合理的不等关系.三、教学用具多媒体课件四、相关资源生活中的一些图片,微课,动画,教学图片五、教学过程【情境导入】师:我们学过等式,知道利用等式可以解决许多生活问题,同时,我们也知道现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题,本章我们就来了解不等式有关的内容.师:既然不等式关系在实际生活中并不少见,大家肯定能举出不少例子.生:可以,比如每天我都比他早到校5分钟.师:很好,还有其他例子吗?(同学们各抒己见).师:我这里也有一些例子,拿出给同学们参考一下.(展示投影片)师:你还记得小孩玩的翘翘板吗?你想过它的工作原理吗?其实,翘翘板就是靠不断改变两端的重量对比来工作的.师:那么,如何用式子来表示不等关系呢?(引出课题)设计意图:通过提问,学生举出了许多不等的例子,不仅能从数字上,还能从现象、感觉上去体会不等关系.通过这一系列活动学生体会不等关系如相等关系一样处处存在,学生在层层深入的思考中,亲身体会到不等关系在生活中的重要性,现在再思考该问题正好激发了学生探究的欲望.培养学生观察生活、乐于探究的品质.【探究新知】1.如下图,用两根长度均为l cm 的绳子,分别围成一个正方形和圆.师:(1)如果要使正方形的面积不大于25cm 2,那么绳长l 应满足怎样的关系式?(2)如果要使圆的面积不小于100cm 2,那么绳长l 应满足怎样的关系式?(3)当l =8时,正方形和圆的面积哪个大?l =12呢?(4)你能得到什么猜想?改变l 的取值再试一试.生:先独立探究,然后小组交流.师:本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,你知道如何表示吗?生:正方形的面积等于边长的平方.圆的面积是πR 2,其中R 是圆的半径.师:另一个是了解“不大于”、“ 不小于”等词的含义吗?又如何表示呢?生:两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于,通常用符号“≤”表示.“不小于”指的是“等于或大于”,通常用符号“≥”表示.师:下面请大家互相讨论,按照题中的要求进行解答.生:(1)因为绳长l 为正方形的周长,所以正方形的边长为4l ,得面积为(4l )2,要使正方形的面积不大于25 cm 2,就是(4l )2≤25. 即162l ≤25. (2)因为圆的周长为l ,所以圆的半径为R =2πl . 要使圆的面积不小于100 cm 2,就是π·(2πl )2≥100 即24πl ≥100. (3)当l =8时,正方形的面积为1682=4(cm 2). 圆的面积为284π≈5.1(cm 2). ∵4<5.1,∴此时圆的面积大.当l =12时,正方形的面积为16122=9(cm 2). 圆的面积为2124π≈11.5(cm 2). 此时还是圆的面积大.(4)我们可以猜想,用长度均为l cm 的两根绳子分别围成一个正方形和圆,无论l 取何值,圆的面积总大于正方形的面积,即24πl >162l . 因为分子都是l 2,相等,分母4π<16,根据分数的大小比较,分子相同的分数,分母大的反而小,因此不论l 取何值,都有24πl >162l . 设计意图:学生对大于、小于等关系容易理解,而对不大于等概念理解有一定难度,但讨论的气氛很热烈,从而感受到生活中没有数学解决不了的困难,激发学生主动解决问题的兴趣.2.做一做:通过测量一棵树的树围(树干的周长)可以计算出它的树龄,通常规定以树干离地面1.5cm 的地方作为测量部位.某树栽种时的树围为6cm,以后树围每年增加约3cm .设经过x 年后这棵树的树围才能超过30 cm ,请你列出x 满足的关系式.师:请大家互相讨论后列出关系式.生:小组间相互讨论、交流,然后选代表回答.生:设这棵树至少生长x 年其树围才能超过30 cm ,根据题意,得:3x +6>30.3.议一议:观察由上述问题得到的关系式,它们有什么共同特点?生:小组间相互讨论、交流,然后选代表回答.生:由162l ≤25,24πl >100,24πl >162l ,3x +6>30得,这些关系式都是用不等号连接的式子.由此可知:一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式(inequality ). 注:用“≠”连接的式子也是不等式.设计意图:通过实际问题的解决,让学生体会现实生活中不等关系的多样性,学生能够用自己的语言总结出不等式的概念,从而培养学生总结归纳的能力.如果学生存在困难,可以让学生将所列出的不等式与等式进行对比,然后类比等式的概念,得出不等式的概念。

2014新版 北师大版八年级数学下册2.1不等关系

2014新版 北师大版八年级数学下册2.1不等关系
第二章 一元一次不等式与 一元一次不等式组
2.1 不等关系
看一看
你还记得小孩玩的翘翘板吗?你想过它的工 作原理吗?其实,翘翘板就是靠不断改变两 端的重量对比来工作的.
不相等 处处可见
由此可见,“不相等”处处可见。 从今天起,我们开始学习一类新的数学知识: 不等式.
学习目标:
1、感受生活中存在着大量的不等关系,了解 不等式的意义,初步体会不等式是研究量与量 之间关系的重要模型之一。
做一做:
铁路部门对旅客随身携带的行李有如下 规定:每件行李的长、宽、高三边之和不得 超过160cm。设行李的长、宽、高分别为 a cm、b cm、c cm, 请你列出行李的长、宽、 高满足的关系式 。
做一做:
通过测量一棵树的树围(树干的周长)可 以计算出它的树龄,通常规定以树干离地面 1.5m的地方作为测量部位。某树栽种时的树围 为6cm,以后树围每年增加约3cm。这棵树至少 生长多少年其树围才能超过30cm?
2、经历由具体实例建立不等式模型的过程, 进一步发展符号感与数学化的能力。
想一想
如下图,用两根长度均为lcm的绳子,分别围成一 个正方形和圆。
1、如果要使正方形的面积不大于25cm2,那么绳长 应满足怎样的关系式?
2、如果要使圆的面积不小于100cm2,那么绳长 l应满足怎样的关系式? 3、当l = 8时,正方形和圆的面积哪个大? l = 12 呢?改变l的值再试一试,由此你能得到什么猜想?
试举出生活中用不等式表示的例子
课堂小结:
这节课-----我发现了生活中…… 我学会了…... 使我感到最困难的是…… 我想进一步研究的问题是……
课后作业
习题2.1 1、 2、 3、 4
随堂小考
1.a是非负数的表达式是( ) A .a>0 B . a≥0 C.a≤0 D .a ≤0 2.a、b两数在数轴上的位置如图所示,下列结论中正确的是( ) A.a>0,b<0 B .a<0,b>0 C.ab>0 D.以上均不对 3.下列不等关系一定正确的是( ) A. a>0 B.-x2<0 C.(x+1)2≥0 D.a2 >0 4.用不等式表示下列关系: (l)a的2倍比a与3的和小; (2)y的一半与5的差是非负数; (3)x的3倍与1的和小于x的2倍与5的差. (4)y的3倍与x的4倍的和是负数 (5)一个数的平方是非负数; (6)某天的气温不高于 25℃.

第二章2.1-2.3不等关系;不等式的基本性质;不等式的解集

第二章2.1-2.3不等关系;不等式的基本性质;不等式的解集

一、考点突破1. 了解不等式的意义,能够根据具体问题中的数量关系理出不等式(组);2. 理解并掌握不等式的基本性质,能够利用不等式的基本性质比较两个数(或式子)的大小;3. 了解一元一次不等式(组)的解的意义,能够利用不等式的基本性质解不等式,且能够在数轴上表示或判定其解集.二、重难点提示重点:不等式的基本性质及应用其解不等式,并在数轴上表示出不等式的解集。

难点:理解方程与不等式之间的区别和联系。

微课程1:不等关系【考点精讲】考点1:不等式的定义:一般地,用不等号连接的式子叫不等式。

考点2:不等号:>,≥,<,≤,≠说明:(1)用“≥”来表示的字眼:“不小于”,“至少”“不低于”……;(2)用“≤”来表示的字眼:“不大于”,“至多”“不超过”……。

考点3:列不等式考点4:不等式和方程的区别:(1)从定义上来看,不等式是表示不等关系的式子;而方程是含有未知数的等式;(2)从符号上来看,不等式是用“>”“<”“≥”或“≤”来表示的;而方程是用“=”来连接两边的式子的;(3)从是否含有未知数上来看,不等式可以含有未知数,也可以不含有未知数;而方程则必须含有未知数。

【典例精析】例题1 用适当的符号表示下列关系:(1)x的13与x的2倍的和是非正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%; (5)小明的体重不比小刚轻。

思路导航:(1)非正数用“≤”表示;(2)、(4)不小于就是大于等于,用“≥”来表示; (3)不高于就是等于或低于,用“≤”表示;(5)不比小刚轻,就是与小刚一样重或者比小刚重,用“≥”表示。

答案:(1)120;3x x +≤-x )元,则84(10)72x x +-≤点评:本题考查列不等式,解题关键是将现实生活中的事件与数学思想联系起来,列出不等关系式。

注意本题的不等关系为:至少含有4200单位的维生素C ,购买甲、乙两种原料的费用不超过72元。

专题2-1 不等关系与不等式性质(知识讲解)-八年级数学下册(北师大版)

专题2-1 不等关系与不等式性质(知识讲解)-八年级数学下册(北师大版)

专题2.1 不等关系与不等式性质(知识讲解)【学习目标】1.理解不等式的意义,能用不等关系符号刻画现实世界中的数量关系.3. 掌握不等式的三条基本性质,并能简单应用.【要点梳理】要点一、不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.特别说明:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x>5中,x表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.要点二、不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a>b,那么a±c>b±c.不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a>b,c>0,那么ac>bc(或a bc c ).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a>b,c<0,那么ac<bc(或a bc c <).特别说明:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.【典型例题】类型一、不等式的概念1.用不等式表示:(1)a与2的和是正数.(2)x与y的差小于3.(3)x,y两数和的平方不小于4.(4)x的一半与y的2倍的和是非负数.【答案】(1)a+2>0 (2)x-y<3 (3)(x+y)2≥4 (4)12x+2y≥0【分析】结合不等式的定义以及题意列不等式即可.(1)因为正数都大于0,所以“a与2的和是正数”可表示为:a+2>0(2)“x与y的差小于3”可表示为:x-y<3(3)因为“不小于3”就是“大于或等于”,所以“x,y两数和的平方不小于4”可表示为:(x+y)2≥4(4)因为“非负数”就是“正数或0”,所以“x的一半与y的2倍的和是非负数”可表示为:12x+2y≥0【点拨】本题考查了列不等式,用符号“<”或“>”表示大小关系的式子,叫做不等式.如5x>,像3x≠这样用符号“≠”表示不等关系的式子也是不等式.注意①常见的符号有“>、<、≠、≥、≤”,分别读作“大于、小于、不等于、大于或等于、小于或等于”.其中“≥”又读作“不小于”,“≤”又读作“不大于”.①在不等式“a b>”或“a b<”中,a叫不等式的左边,b叫不等式的右边.①在列不等式时,一定要注意表示不等式关系的关键词,如:正数、非负数、不大于、至少等.举一反三:【变式1】有两种商品其单价总和超过100元,且甲商品的单价是乙商品单价的2倍少10元,设未知数,并用不等式表示出上述关系;【答案】设乙商品的价格为x元,x+2x-10>100【分析】设乙商品的价格为x元,表示出甲商品的价格,然后根据两商品的单价总和超过100元,列不等式即可.解:设乙商品的价格为x元,则甲商品的价格为(2x-10)元,由题意得,x+2x-10>100.即不等式为:x+2x-10>100.【点拨】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.【变式2】通过测量一棵树的树围(树干的周长)可以计算出它的树龄;通常规定以树干离地面1.5米的地方作为测量的部位,某棵树栽种时的树围为5cm,以后树围每年增加约3cm,这棵树至少生长多少年,其树围才能超过2.4m?根据题意,完成下面填空:(1)题目涉及的两个有关系的量,分别是:_____________________________;(2)设生长年份为x,则树围用x表示为:__________________;(3)用文字叙述生长年份与树围满足的不等关系是:______________________________;(4)用适当的不等号表示(3)中的不等关系:___________________________;【答案】(1)生长年份,树围;(2)5+3x;(3)这棵树生长x年,其树围才能超过2.4m;(4)5+3x>240【分析】(1)由题可知两个有关系的量分别是生长年份和树围;(2)栽种时的树围为5cm,以后树围每年增加约3cm,可知x年后,树围为(5+3x)m;(3)这棵树生长x年,其树围才能超过2.4m;(4)由题意可得5+3x>2.4×100.解:(1)由题可知两个有关系的量分别是生长年份和树围;故答案为生长年份,树围;(2)栽种时的树围为5cm,以后树围每年增加约3cm,可知x年后,树围为(5+3x)cm;故答案为5+3x;(3)用文字叙述生长年份与树围满足的不等关系是:这棵树生长x 年,其树围才能超过2.4m ;故答案为这棵树生长x 年,其树围才能超过2.4m ;(4)用适当的不等号表示(3)中的不等关系为:5+3x>2.4×100,故答案为5+3x>240【点拨】本题考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式.类型二、不等式的性质2.根据不等式的基本性质,把下列不等式化成x >a 或x <a 的形式. (1)15x -<; (2)413x -≥; (3)1142x -+≥; (4)410x -<-.【答案】(1)6x < (2)1≥x (3)6x ≤- (4)52x > 【分析】(1)根据不等式的性质1解答即可;(2)先根据不等式的性质1,再根据不等式的性质2解答; (3)先根据不等式的性质1,再根据不等式的性质3解答; (4)根据不等式的性质3解答即可;(1)解:15x -<,两边加上1得:1151x -+<+, 解得:6x <; (2)解:413x -≥,两边加上1得:41131x -+≥+,即44x , 两边除以4得:1≥x ; (3)解:1142x -+≥,两边减去1得:111412x -+-≥-,即132x -≥,两边除以12-得:6x ≤-;(4)解:410x -<-,两边除以4-得:52x >. 【点拨】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;①不等式两边都乘(或除以)同一个正数,不等号的方向不变;①不等式两边都乘(或除以)同一个负数,不等号的方向改变.举一反三:【变式1】已知x y >,下列不等式一定成立吗?(1)66x y -<-;(2)33x y <;(3)22x y -<-;(4)2121x y +>+. 【答案】(1)不成立;(2)不成立;(3)成立;(4)成立. 【分析】根据不等式的性质,对选项逐个判断即可. 解:(1)①x y >①66x y ->-,不等式两边同时加上或减去一个数,不等号方向不变; 不等式66x y -<-不成立; (2)①x y >①33x y >,不等式两边同时乘以一个大于零的数,不等号方向不变; 不等式33x y <不成立; (3)①x y >①22x y -<-,不等式两边同时乘以一个小于零的数,不等号方向改变; 不等式22x y -<-成立; (4)①x y >①22x y > ①2121x y +>+ 不等式2121x y +>+成立【点拨】此题考查了不等式的性质,熟练掌握不等式的有关性质是解题的关键. 【变式2】说明:(1)由314x -≤,得43x ≥-,是如何变形的?依据是什么?(2)由a b >,得ax bx >的条件是什么?为什么? (3)由a b >,得ax bx ≤的条件是什么?为什么?【答案】(1)不等式两边同时乘以43-,依据是不等式的两边同乘以一个负数,改变不等号的方向;(2)条件是0x >,理由是不等式的两边同乘以一个正数,不改变不等号的方向;(3)条件是0x ≤,当0x <时,理由是当0x <时,不等式的两边同乘以一个负数,改变不等号的方向;当0x =时,左边=右边0=.【分析】(1)根据不等式的性质:不等式的两边同乘以一个负数,改变不等号的方向即可得; (2)根据不等式的性质:不等式的两边同乘以一个正数,不改变不等号的方向即可得; (3)根据不等式的性质:不等式的两边同乘以一个负数,改变不等号的方向、以及等式的性质即可得.解:(1)不等式两边同时乘以43-,依据是不等式的两边同乘以一个负数,改变不等号的方向;(2)条件是0x >,理由是不等式的两边同乘以一个正数,不改变不等号的方向; (3)条件是0x ≤,理由如下:当0x <时,不等式的两边同乘以一个负数,改变不等号的方向;当0x =时, 左边=右边0=.【点拨】本题考查不等式的性质,熟记不等式的性质是解题关键.类型三、不等式性质的应用3.根据等式和不等式的基本性质,我们可以得到比较两数大小的方法:若0a b ->,则a b >;若0a b -=,则a b =;若0a b -<,则a b <.反之也成立.这种比较大小的方法称为“求差法比较大小”.请运用这种方法尝试解决下面的问题:(1)比较22432a b b +-+与2321a b -+的大小; (2)若223a b a b +>+,比较a 、b 的大小. 【答案】(1)222432321a b b a b +-+>-+;(2)a b < 【分析】(1)直接用22432a b b +-+减去2321a b -+得出的结果与0进行比较即可得到答案;(2)直接解不等式即可.解:(1)()222243232130a b b a b b +-+--+=+>,①222432321a b b a b +-+>-+;(2)①223a b a b +>+,①()()2230a b a b a b +-+=-+>, ①a b <.【点拨】本题主要考查了整式的减法运算,解不等式,不等式的性质等等,解题的关键在于能够熟练掌握相关知识进行求解.举一反三:【变式1】阅读材料:形如2213x <+<的不等式,我们就称之为双连不等式,求解双连不等式的方法一,转化为不等式组求解,如221213x x <+⎧⎨+<⎩;方法二,利用不等式的性质直接求解,双连不等式的左、中、右同时减去1,得122x <<,然后同时除以2,得112x <<. 解决下列问题:(1)请你将双连不等式534x -≤-<转化为不等式组. (2)利用不等式的性质解双连不等式2235x ≥-+>-.【答案】(1)5334x x -≤-⎧⎨-<⎩;(2)142x ≤<【分析】(1)根据阅读材料中的方法将双连不等式化为不等式组即可; (2)利用不等式的基本性质求出所求即可.解:(1)534x -≤-<转化为不等式组为5334x x -≤-⎧⎨-<⎩.(2)2235x ≥-+>-,不等式的左、中、右同时减去3, 得128x -≥->-,同时除以2-,得142x ≤<【点拨】此题考查了解一元一次不等式组,以及不等式的定义,弄清阅读材料中的转化方法是解本题的关键.【变式2】在△ABC 中,AB =9,BC =2,AC =x . (1)求x 的取值范围;(2)若△ABC 的周长为偶数,则△ABC 的周长为多少? 【答案】(1)7<x <11;(2)20【分析】(1)根据三角形的三边关系列出不等式求解即可.(2)根据第三边取值范围和三角形周长表达式列式计算即可.解:(1)由题意知,9﹣2<x<9+2,即7<x<11;(2)①7<x<11,①x的值是8或9或10,①①ABC的周长为:当x=8时,9+2+8=19(舍去);当x=9时,9+2+9=20符合题意当x=10时,9+2+10=21(舍去);即该三角形的周长是20.【点拨】本题主要考查了三角形的三边关系,不等式的性质,利用三角形三边关系建立不等式是解题的关键.。

北师大版八年级数学下册教学计划及进度表

北师大版八年级数学下册教学计划及进度表

八年级数学下册教学计划:北师大版。

一、指导思想在教学中努力推进九年义务教育,落实新课改,体现新理念,培养创新精神。

通过数学课的教学,使学生切实学好从事现代化建设和进一步学习现代化科学技术所必需的数学基本知识和基本技能;努力培养学生的运算能力、逻辑思维能力,以及分析问题和解决问题的能力。

二、学情分析八年级是初中学习过程中的关键时期,学生基础的好坏,直接影响到将来是否能升学。

优生不多,思想不够活跃,有少数学生不上进,思维跟不上。

要在本期获得理想成绩,老师和学生都要付出努力,充分发挥学生是学习的主体,教师是教的主体作用,注重方法,培养能力。

三、本学期教学内容分析本学期教学内容共计六章。

第一章《三角形的证明》本章将证明与等腰三角形和直角三角形的性质及判定有关的一些结论,证明线段垂直平分线和角平分线的有关性质,将研究直角三角形全等的判定,进一步体会证明的必要性。

第二章《一元一次不等式和一元一次不等式组》本章通过具体实例建立不等式,探索不等式的基本性质,了解一般不等式的解、解集、解集在数轴上的表示,一元一次不等式的解法及应用;通过具体实例渗透一元一次不等式、一元一次方程和一次函数的内在联系.最后研究一元一次不等式组的解集和应。

第三章《图形的平移与旋转》本章将在小学学习的基础上进一步认识平面图形的平移与旋转,探索平移,旋转的性质,认识并欣赏平移,中心对称在自然界和现实生活中的应用。

第四章《分解因式》本章通过具体实例分析分解因式与整式的乘法之间的关系揭示分解因式的实质,最后学习分解因式的几种基本方法。

第五章《分式与分式方程》本章通过分数的有关性质的回顾建立了分式的概念、性质和运算法则,并在此基础上学习分式的化简求值、解分式方程及列分式方程解应用题,能解决简单的实际应用问题。

第六章《平行四边形》本章将研究平行四边形的性质与判定,以及三角形中位线的性质,还将探索多边形的内角和,外角和的规律;经历操作,实验等几何发现之旅,享受证明之美。

不等关系说课稿

不等关系说课稿

不等关系说课稿一、任务背景不等关系是初中数学中的重要概念之一,它在解决实际问题中起到了重要的作用。

本次说课将以初中八年级数学教材中的不等关系为基础,通过设计合理的教学活动和教具,匡助学生深入理解不等关系的概念与性质,并能运用不等关系解决实际问题。

二、教学目标1. 知识与技能目标:a. 掌握不等关系的定义和性质;b. 能够正确运用不等关系解决实际问题;c. 能够灵便运用不等关系进行数值计算。

2. 过程与方法目标:a. 培养学生的逻辑思维和推理能力;b. 培养学生的合作学习和交流能力;c. 培养学生的问题解决能力和创新意识。

3. 情感态度与价值观目标:a. 培养学生的数学兴趣和学习动力;b. 培养学生的严谨求实的科学态度;c. 培养学生的团队合作和互助精神。

三、教学重点与难点1. 教学重点:a. 不等关系的定义和性质;b. 不等关系的运用。

2. 教学难点:a. 运用不等关系解决实际问题;b. 引导学生从实际问题中抽象出不等关系。

四、教学过程本次教学将采用“导入-探索-拓展-归纳-练习-评价”的教学模式,具体教学过程如下:1. 导入(5分钟)a. 引入不等关系的概念:老师通过提问和举例的方式,引导学生思量不等关系的概念,并与等式进行对照。

b. 引起学生的兴趣:通过提出一个有趣的问题,如“小明和小红谁跑得更快?”来激发学生的思量。

2. 探索(15分钟)a. 学生合作探索:将学生分成小组,每组发放一份实际问题的工作纸,要求学生通过观察、测量和记录,找出不等关系,并进行讨论。

b. 教师引导:教师在学生探索的过程中积极引导,提出问题,匡助学生思量和分析。

3. 拓展(15分钟)a. 教师讲解:在学生探索的基础上,教师进行概念的讲解,介绍不等关系的定义和性质,并通过示例演示不等关系的运用。

b. 学生实践:学生通过教师提供的实际问题,运用不等关系进行计算和解答。

4. 归纳(10分钟)a. 学生合作归纳:学生根据教师的引导,总结不等关系的性质和运用方法,并将归纳结果记录在课堂笔记中。

初中不等关系的简写教案

初中不等关系的简写教案

初中不等关系的简写教案教学目标:1. 让学生了解不等关系的概念和特点。

2. 培养学生解决实际问题的能力,感受数学与生活的联系。

3. 引导学生掌握不等式的基本性质和解决方法。

教学重点:1. 理解不等关系的概念。

2. 掌握不等式的基本性质。

教学难点:1. 不等式的解法。

教学准备:1. 教科书。

2. 课件或黑板。

3. 练习题。

教学过程:一、导入(5分钟)1. 引入不等关系的概念,通过举例说明生活中存在的不等关系,如身高、体重、温度等。

2. 引导学生认识到不等关系是现实生活中的普遍现象,数学可以用来描述和解决这些问题。

二、探究不等关系(15分钟)1. 让学生通过小组合作,探讨不等关系的特点和表达方式。

2. 引导学生发现不等关系可以用不等号(如>、<、≥、≤)来表示。

3. 举例讲解不等式的基本性质,如交换不等号两侧的数的位置,不等号的方向不变。

三、解决实际问题(15分钟)1. 让学生运用不等关系解决实际问题,如判断身高、体重是否符合要求。

2. 引导学生运用不等式表示实际问题中的不等关系,并求解不等式的解集。

四、不等式的解法(15分钟)1. 讲解不等式的解法,如加减法、乘除法、倒数法等。

2. 让学生通过练习题,巩固不等式的解法。

五、总结与评价(5分钟)1. 让学生回顾本节课所学的内容,总结不等关系的概念和特点。

2. 评价学生在解决问题和解决不等式方面的表现。

教学反思:本节课通过引入实际生活中的不等关系,让学生感受数学与生活的联系,激发学生的学习兴趣。

在探究不等关系的过程中,学生通过小组合作,主动发现和总结不等关系的特点和表达方式,培养了学生的抽象思维能力。

在解决实际问题和不等式的解法环节,学生通过练习题,巩固了所学知识,提高了解决问题的能力。

总体来说,本节课达到了预期的教学目标。

新北师大版八年级数学下册第2章教案

新北师大版八年级数学下册第2章教案

第二章一元一次不等式和一元一次不等式组单元教学目标:1、知识与技能:理解不等式(组)的解及解集的含义,会解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会用数轴确定其解集。

2、过程与方法:经历将一些简单的实际问题抽象为不等式的过程,进一步体会模型思想,建立符号意识。

3、情感、态度与价值观:进一步感受数学与生活的紧密联系,体会数学的价值。

单元教学重点:1、能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。

2、解简单的一元一次不等式,并能在数轴上表示一元一次不等式的解集;会解一元一次不等式组,并会用数轴确定其解集。

3、能够根据具体问题中的数量关系列出一元一次不等式或一元一次不等式组,解决简单的实际问题。

单元教学难点:1、求不等式的解集和不等式组的解集,以及正确运用不等式的基本性质。

2、列一元一次不等式组解决实际问题。

单元课时安排:1、不等关系 1课时2、不等式的基本性质 1课时3、不等式的解集 1课时4、一元一次不等式 2课时5、一元一次不等式与一次函数 2课时6、一元一次不等式组 2课时7、一元一次不等式组应用 1课时回顾与思考 1课时§2.1 不等关系知识与技能目标理解不等式的意义;能根据条件列出不等式.过程与方法目标通过列不等式,训练学生的分析判断能力和逻辑推理能力.情感态度与价值观目标通过用不等式解决实际问题,使学生认识数学与人类生活的密切联系以及对人类历史发展的作用,并以此激发学生学习数学的信心和兴趣.教学重点用不等关系解决实际问题.教学难点正确理解题意列出不等式.教法与学法讨论探索法教具准备多媒体课件教学过程一、创设问题情境,引入新课我们学过等式,知道利用等式可以解决许多问题.同时,我们也知道在现实生活中还存在许多不等关系,利用不等关系同样可以解决实际问题.本节课我们就来了解不等关系,以及不等关系的应用.二、新课讲授既然不等关系在现实生活中并不少见,大家肯定接触过不少,能举出例子吗?那么,如何用式子表示不等关系呢?请看例题.(课件)例1:用两根长度均为l cm的绳子,分别围成一个正方形和圆.(1)如果要使正方形的面积不大于25 cm2,那么绳长l应满足怎样的关系式?(2)如果要使圆的面积不小于100 cm2,那么绳长l应满足怎样的关系式?(3)当l=8时,正方形和圆的面积哪个大?l=12呢?(4)你能得到什么猜想?改变l的取值,再试一试.本题中大家首先要弄明白两个问题,一个是正方形和圆的面积计算公式,另一个是了解“不大于”“大于”等词的含意.两数比较有大于、等于、小于三种情况,“不大于”就是等于或小于.下面请大家互相讨论,按照题中的要求进行解答.猜想:用长度均为l cm 的两根绳子分别围成一个正方形和圆,无论l 取何值,圆 的面积总大于正方形的面积,即 42l >162l . 做一做:课件通过测量一棵树的树围(树干的周长)可以计算出它的树龄.通常规定以树干离地面1.5 m 的地方作为测量部位,某树栽种时的树围为5 cm ,以后树围每年增加约为 3 cm.这棵树至少生长多少年其树围才能超过2.4 m ?(只列关系式).[师]请大家互相讨论后列出关系式.议一议:观察由上述问题得到的关系式,它们有什么共同特点?一般地,用符号“<”(或“≤”),“>”(或“≥”)连接的式子叫做不等式.[例]用不等式表示(1)a 是正数;(2)a 是负数;(3)a 与6的和小于5;(4)x 与2的差小于-1;(5)x 的4倍大于7;(6)y 的一半小于3.三、随堂练习当x =2时,不等式x +3>4成立吗?当x =1.5时,成立吗?当x =-1呢?四、课时小结能根据题意列出不等式,特别要注意“不大于”,“不小于”等词语的理解.通过不等关系的式子归纳出不等式的概念.五、课后作业习题2.1 第1、2、3、4题.六、板书设计2.1 不等关系不等式:用来表示不等关系的式子叫不等式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1 不等关系
1.了解不等式的概念;
2.会用不等式表示简单问题的数量关系.(重
点,难点
)
一、情境导入
有一群猴子,一天结伴去摘桃子.分桃子时,
如果每只猴子分3个,那么还剩下59个;如果每
只猴子分5个,那么最后一只猴子分得的桃子不
够5个.你知道有几只猴子,几个桃子吗?
二、合作探究
探究点一:不等式的概念
下列各式中:①-3<0;②4x+3y>0;
③x=3;④x2+xy+y2;⑤x≠5;⑥x+2>y+3.
不等式的个数有( )
A.5个 B.4个
C.3个 D.1个
解析:③是等式;④是代数式,没有不等关
系,所以不是不等式.不等式有①②⑤⑥,共4
个.故选B.
方法总结:本题考查不等式的判别,一般用
不等号表示不等关系的式子是不等式.解答此类
题的关键是要识别常见不等号:>,<,≤,≥,
≠.如果式子中没有这些不等号,就不是不等式.
探究点二:列不等式
【类型一】
用不等式表示数量关系
根据下列数量关系,列出不等式:
(1)x与2的和是负数;
(2)m与1的相反数的和是非负数;
(3)a与-2的差不大于它的3倍;
(4)a,b两数的平方和不小于他们的积的两
倍.
解析:(1)负数即小于0;(2)非负数即大于或
等于0;(3)不大于就是小于或等于;(4)不小于就
是大于或等于.
解:(1)x+2<0;
(2)m-1≥0;
(3)a+2≤3a;
(4)a2+b2≥2ab.
方法总结:在列不等式时要善于将文字与相
应的数学符号相对应,如负数――→
对应
<0等,列出相
应的不等式.
【类型二】
实际问题中的不等式
亮亮准备用自己节省的零花钱买一台
学生平板电脑.他现在已存有55元,计划从现在
起以后每个月节省20元.若此学生平板电脑至少
需要350元,则可以用于计算所需要的月数x的
不等式是( )
A.20x-55≥350 B.20x+55≥350
C.20x-55≤350 D.20x+55≤350
解析:此题中的不等关系:现在已存有55元,
计划从现在起以后每个月节省20元.若此学生平
板电脑至少需要350元.列出不等式20x+55≥350.
故选B.
方法总结:用不等式表示数量关系时,要找准题中表示不等关系的两个量,并用代数式表示;正确理解题中的关键词,如负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过、至少、至多等的含义.
三、板书设计
1.不等式的概念
2.列不等式
(1)找准题目中不等关系的两个量,并且用代数式表示;
(2)正确理解题目中的关键词语的确切含义;
(3)用与题意符合的不等号将表示不等关系
的两个量的代数式连接起来;
(4)要正确理解常见不等式基本语言的含义.
本节课通过实际问题引入不等式,并用不等式表示数量关系.要注意常用的关键词的含义:负数、非负数、正数、大于、不大于、小于、不小于、不足、不超过,这些关键词中如果含有“不”“非”等文字,一般应包括“=”,这也是学生容易出错的地方.。

相关文档
最新文档