八年级数学不等关系
人教版初中数学八年级上册 实验与探究 三角形中边与角之间的不等关系(全国一等奖)

《三角形中边与角之间的不等关系》教学设计一.内容和内容解析1.内容:三角形中边与角之间的不等关系:大边对大角,大角对大边2.内容解析:本节内容是八年级上册数学教科书第十三章《轴对称》这一章章末的“实验与探究”材料。
它是在学生学习了三角形中“等边对等角”和“等角对等边”的性质后提出来的反思:如果三角形的边(角)不相等,那么它们所对的角(边)的大小关系怎样大边所对的角也大吗从“等角对等边”到“大角对大边”,从“等边对等角”到“大边对大角”,至此,教材将三角形中的“相等”与“不等”关系演绎的淋漓尽致。
针对学生的认知水平,课本利用了轴对称的方法来解决问题,借助于轴对称,解决了上述疑问,也获得了添加辅助线证明性质的方法。
在此探索与证明的过程中,体现了转化的思想。
基于以上分析,确定本节课的教学重点,探索并证明三角形中边与角之间的不等关系。
二.目标与目标解析1.目标(1)探索并证明三角形中边与角的不等关系(2)能利用三角形中边与角的不等关系来比较边或角的大小(3)结合上述性子和探索的证明过程,体会轴对称在研究几何问题中的桥梁作用,以及在此过程中作辅助线的方法。
2.目标解析达成目标(1)的标志是学生能借助实验探究发现在一个三角形中边与角之间的不等关系,并能推理论证出来,能正确理解其中的含义,能用数学语言准确表述性质的含义。
达成目标(2)的标志是:学生能解决相关应用问题。
达成目标(3)的标志是:学生获得添加辅助线证明几何题的方法。
三.教学重难点教学重点:三角形中边与角之间的不等关系的探究过程。
教学难点:折纸的无意操作与辅助线的有意添加结合,即如何从实验操作中得到启示,写成几何证明的表达。
教具准备:三角形纸片数张、剪刀、圆规、三角板等。
四.教学过程一、课题引入我们知道,在一个三角形中,如果有两条边相等,那么它们所对的角也相等(等边对等角)。
在一个三角形中,如果两条边不相等,这两条边所对的角是否相等呢二、探究“大边对大角”(一)观察图形,提出猜想观察你手边的不等边三角形纸片,能得到你的猜想吗(在△ABC中,边AC对∠B,边AB对∠C,同学们通过肉眼观察可得到∠C大于∠B,故猜想大边对大角)综上,我们提出猜想:在一个三角形中,如果两条边不等,那么它们所对的角也不等,大边所对的角较大(简写成"大边对大角")(二)小组讨论,验证猜想1量角器测量:通过几何画板演示验证2折纸活动:A B CED A B C 我们在探究“等边对等角”时,采用将三角形对折的方式,发现了“等边对等角”,从而利用三角形的全等证明了这些性质。
北师大版数学八年级下册2.1《不等关系》教案

北师大版数学八年级下册2.1《不等关系》教案一. 教材分析《不等关系》是北师大版数学八年级下册第2.1节的内容,主要介绍不等式的概念和基本性质。
这一节内容是学生学习不等式的重要基础,对于培养学生的逻辑思维和解决问题的能力具有重要意义。
二. 学情分析学生在学习这一节内容前,已经学习了有理数、方程等基础知识,对于数学符号和运算有一定的了解。
但他们对不等式的概念和性质可能还比较陌生,需要通过实例和练习来逐步理解和掌握。
三. 教学目标1.了解不等式的概念和基本性质。
2.学会用不等式表示实际问题中的不等关系。
3.培养学生的逻辑思维和解决问题的能力。
四. 教学重难点1.不等式的概念和基本性质。
2.如何用不等式表示实际问题中的不等关系。
五. 教学方法采用问题驱动法、案例教学法和小组合作法,引导学生通过观察、思考、讨论和操作,自主探索不等式的概念和性质,提高学生的参与度和实践能力。
六. 教学准备1.PPT课件2.教学案例和练习题3.小组讨论材料七. 教学过程1.导入(5分钟)利用PPT课件,展示一些实际问题中的不等关系,如身高、体重、温度等,引导学生思考如何用数学符号表示这些不等关系。
2.呈现(10分钟)介绍不等式的概念和基本性质,通过示例和讲解,让学生理解不等式的含义和运用。
3.操练(10分钟)让学生分组讨论,选取一些实际问题,尝试用不等式表示不等关系,并互相交流分享。
4.巩固(10分钟)针对每组的问题,选取几个进行讲解和分析,引导学生正确理解和运用不等式。
5.拓展(10分钟)让学生尝试解决一些不等式相关的应用题,提高学生解决实际问题的能力。
6.小结(5分钟)对本节课的内容进行总结,强调不等式的概念和性质,提醒学生注意运用时的细节。
7.家庭作业(5分钟)布置一些有关不等式的练习题,让学生巩固所学知识,提高解题能力。
8.板书(课后整理)总结本节课的主要内容和知识点,方便学生复习和回顾。
教学过程每个环节所用的时间如上所示,供您参考。
北师大版数学八年级下册2.1《不等关系》优秀教学案例

3.小组合作:我将学生分成若干小组,鼓励他们在小组讨论中互相学习、互相启发,共同解决问题。这种小组合作的学习方式有助于培养学生的团队协作精神,提高他们的沟通能力和合作能力。
在教学过程中,我以学生的生活经验为切入点,设计了一系列具有针对性和实用性的教学活动。首先,我通过设置一些简单的实际问题,让学生感知不等关系在生活中的应用,激发他们的学习兴趣。然后,我引导学生总结不等关系的定义,并通过举例让学生理解不等关系的本质。接下来,我利用多媒体课件展示了一些具体的不等式,让学生观察、分析并总结不等式的性质,从而加深他们对不等关系概念的理解。
北师大版数学八年级下册2.1《不等关系》优秀教学案例
一、案例背景
本案例背景以北师大版数学八年级下册2.1《不等关系》为依托,旨在探索如何在教学过程中引导学生理解不等关系的本质,培养他们的逻辑思维能力和解决实际问题的能力。本节课的主要内容包括不等关系的定义、不等式的性质以及如何用不等关系表示实际问题中的数量关系。
1.自我评价:引导学生对自己的学习过程进行反思,总结自己在学习不等关系过程中的优点和不足。
2.同伴评价:让学生互相评价,互相借鉴,共同提高。
3.教师评价:教师对学生的学习过程和结果进行客观、公正的评价,给予鼓励和指导,为学生指出明确的发展方向。
四、教学内容与过程
(一)导入新课
1.设计生活实例:我会选择一些与学生生活密切相关的情景,如购物时比较价格、比赛时比较成绩等,让学生感知不等关系在生活中的应用。
三、教学策略
(一)情景创设
1.利用生活实例:在教学导入环节,我会选择一些与学生生活密切相关的实例,如购物时比较价格、比赛时比较成绩等,让学生感知不等关系在生活中的应用,激发他们的学习兴趣。
八年级不等关系知识点总结

八年级不等关系知识点总结关于八年级不等关系的知识点总结
八年级是初中学习中一个重要的环节,也是学生初步接触不等关系的年级。
不等关系能够培养学生善于观察与思考的能力,同时也能够提升学生的逻辑思维和数学技巧。
因此,对于八年级的学生来说,掌握不等关系的知识点是至关重要的。
下面就来总结一下八年级不等关系的重点知识。
一、不等式的基本性质
1.1 传递性质
不等式的传递性是指,若a<b,b<c,则a<c。
1.2 对称性质
不等式的对称性是指,若a<b,则b>a。
1.3 反称性质
不等式的反称性是指,若a<b,则不可能有b<=a。
二、不等式的解法
2.1 联立法
联立法是指,将不等关系联立到一起,通过消元的方法求出不
等式的解。
2.2 分类讨论法
分类讨论法是指,将不等式中的未知数按照大小关系分成几类,分别讨论每一类的解法,最后将结果合并起来。
2.3 取绝对值法
取绝对值法是指,将不等式中的未知数都取绝对值,通过比较
绝对值之间的大小关系来判断不等式的解。
三、不等式的应用
3.1 引理
引理是指,通过不等关系的性质,推导出一些结论,可以用来
简化不等式的求解。
3.2 应用
在生活中,不等关系也有着广泛的应用,如货币兑换、失业率、贷款等方面。
综上所述,不等关系的知识点对于八年级学生来说是至关重要的。
通过深入理解不等关系的基本性质、掌握不等式的解法和应用,可以提升学生的数学思维和问题解决能力。
人教版初中数学八年级上册《三角形中边与角之间的不等关系》

A
C
提示:折叠
小组活动(5分钟): 1.折叠三角形ABC; 2.折痕用虚线描画,交点标上字母; 3.探讨证明过程.
(四)得出结论
1.在一个三角形中,大边对大角,小边对小角;
2.转化的数学思想. (不等的问题转化为相等的问题)
思考:在△ABC中,已知∠C>∠B,那么AB和AC有怎样的大小关系呢? A
问题1.等腰三角形中的两个底角有什么数量关系?
(简称:等边对等角) 等腰三角形的两个底角相等.
问题2.如果在一个三角形中有两个角相等,那么这 个三角形是什么三角形?
如果在一个三角形中有两个角相等,那么这个三角 形是等腰三角形. (简称:等角对等边)
思考:在一个一般的三角形中,不相等的边所对的角之间的大小关系是怎样的呢?
三角形中边与角的 不等关系
第十三章实验与探究
(一)动手实验 1.请同学们拿出课前制作的△ABC; 2.如果AB>AC,那么∠C与∠B有什么大小关系呢? A
B
(二)提出猜想:∠C>∠B
C
证明:在一个三角形中, 大边对大角. (三)证明猜想 已知:在△ABC中,AB>AC, 求证:∠C>∠B. B
B 归纳:
1.在等腰三角形中,等边对等角,等角对等边; 2.在不等边三角形中,大边对大角,大角对大边.
C
这节课同学们有什么收获?
1.在等腰三角形中,等边对等角,等角对等边.
2.在不等边三角形中.整理本节课所学的知识.
2.选择两种自己喜欢的作法证明“大边对大角”.
人教版八年级上册数学:实验与探究 三角形中边与角之间的不等关系(公开课课件)

2. 尺规作图,验证猜想.
C
B
结论:在一个三角形中,如果两个角不等,那么它们所对
的边也不等,大角所对的边 大 (简称“ 大角 对 大边 ).
知识应用:
(1)如图,在△ABC中,如果 BC=20cm,AC=16cm,AB=15cm, 则∠A > ∠B > ∠C.
(2)如图,在△ABC中,如果
C
∠A=80°,∠B=60°,∠C=40°, 则. BC > AC > AB.
能力提升:
已知如图,AB=AC,D在BC上,求证:AD < AB.
A
B
DC
课堂小结:
你在本节课的学习中有哪些收获?
1. 等腰三角形: (1)等边对等角; (2)等角对等边.
2.不等边三角形: (1)大边对大角;(2)大角对大边
思考:
1.如果一个三角形中最大的边所对的角是锐角,这个三角 形是锐角三角形吗?为什么? 2.如果一个三角形中最大的边所对的角是钝角,这个三角 形是钝角三角形吗?为什么? 3.直角三角形中,哪一条边最长?为什么?
探究一:大边对大角
(一)观察图形,提出猜想. 在△ABC中,如果BC=15cm,AC=12cm, AB=10cm,同学们通过肉眼观察可得 C 到∠A > ∠B > ∠C.
猜想: 大边 对 大角 .
A B
(二)验证猜想
1. 用量角器测量,猜想结果是否真确?
2. 叠合法:(发现结论是否正确?)
(1)使∠A与∠B的顶点重合,判定BC所对 角∠A与AC所对角∠B的大小关系?
4.如图,在等腰三角形中,AC = AB ,
A
则 ∠B = ∠C ,(简称:等边 对等角 )
5.如图,在等腰三角形中, ∠C=∠B,
不等关系、不等式的基本性质、不等式的解集(5类热点题型讲练)(解析版) 八年级数学下册

第01讲不等关系、不等式的基本性质、不等式的解集(5类热点题型讲练)1.了解不等式的概念;将自然语言转化为符号语言.2.经历不等式基本性质的探索过程,初步体会不等式与等式的异同.3.掌握不等式的基本性质,并能初步运用不等式的基本性质把比较简单的不等式转化为“x>a”或“x<a”的形式.4.理解不等式的解与解集的意义.知识点01不等式的概念一般地,用“<”、“>”、“≤”或“≥”表示大小关系的式子,叫做不等式.用“≠”表示不等关系的式子也是不等式.特别说明:(1)不等号“<”或“>”表示不等关系,它们具有方向性,不等号的开口所对的数较大.(2)五种不等号的读法及其意义:符号读法意义“≠”读作“不等于”它说明两个量之间的关系是不相等的,但不能确定哪个大,哪个小“<”读作“小于”表示左边的量比右边的量小“>”读作“大于”表示左边的量比右边的量大“≤”读作“小于或等于”即“不大于”,表示左边的量不大于右边的量“≥”读作“大于或等即“不小于”,表示左边的量不小于右边的量于”(3)有些不等式中不含未知数,如3<4,-1>-2;有些不等式中含有未知数,如2x >5中,x 表示未知数,对于含有未知数的不等式,当未知数取某些值时,不等式的左、右两边符合不等号所表示的大小关系,我们说不等式成立,否则,不等式不成立.知识点02不等式的基本性质不等式的基本性质1:不等式两边加(或减)同一个数(或式子),不等号的方向不变.用式子表示:如果a >b ,那么a ±c >b ±c .不等式的基本性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变.用式子表示:如果a >b ,c >0,那么ac >bc (或a b c c >).不等式的基本性质3:不等式两边乘(或除以)同一个负数,不等号的方向改变.用式子表示:如果a >b ,c <0,那么ac <bc (或a b c c<).特别说明:不等式的基本性质的掌握注意以下几点:(1)不等式的基本性质是对不等式变形的重要依据,是学习不等式的基础,它与等式的两条性质既有联系,又有区别,注意总结、比较、体会.(2)运用不等式的性质对不等式进行变形时,要特别注意性质2和性质3的区别,在乘(或除以)同一个数时,必须先弄清这个数是正数还是负数,如果是负数,不等号的方向要改变.知识点03不等式的解与解集1.不等式的解:能使不等式成立的未知数的值,叫做不等式的解.2.不等式的解集:对于一个含有未知数的不等式,它的所有解组成这个不等式的解集.注意:不等式的解是具体的未知数的值,不是一个范围不等式的解集是一个集合,是一个范围.其含义:①解集中的每一个数值都能使不等式成立;②能够使不等式成立的所有数值都在解集中题型01不等式的定义【例题】(2023下·辽宁抚顺·七年级统考期末)下列数学式子:①30-<;②230x y +≥;③1x =;④222x xy y -+;⑤13x +≠;其中是不等式的有()A .5个B .4个C .3个D .2个【答案】C【分析】根据不等式的定义:用不等号连接的式子是不等式,逐个进行判断即可.【详解】解:①30-<,是不等式,符合题意;②230x y +≥,是不等式,符合题意;③1x =,是等式,不符合题意;④222x xy y -+,是多项式,不符合题意;⑤13x +≠,是不等式,符合题意;综上:是不等式的有①②⑤,共3个,故选:C .【点睛】本题主要考查了不等式的定义,解题的关键是掌握用不等号连接的式子是不等式.【变式训练】1.(2023下·全国·八年级假期作业)有下列式子:①30-<;②350+>x ;③26x -;④2x =-;⑤0y ≠;⑥220x +≥.其中不等式的个数是()A .2B .3C .4D .5【答案】C 【解析】略2.(2023下·河北保定·八年级统考阶段练习)下列各式:①8x -;②523x -≤;③3x >;④3210x x -+=,不等式的个数是()A .1B .2C .3D .4【答案】B【分析】运用不等式的定义进行判断.【详解】解:①8x -没有不等号,不是不等式;②523x -≤是不等式;③3x >是不等式;④3210x x -+=是等式;∴不等式的个数是2个,故选:B .【点睛】本题考查不等式的识别,一般地,用不等号表示不相等关系的式子叫做不等式.解答此类题关键是要识别常见不等号:>、<、≤、≥、≠.题型02列不等式【详解】解:根据题意得,326x +≥,故答案为:326x +≥.【点睛】本题主要考查运用字母表示数(或数量关系),不等式的概念,掌握其书写规程,数量关系,不等式的概念的知识是解题的关键.【变式训练】题型03不等式的基本性质【例题】(2023上·湖南永州·八年级校考阶段练习)下列判断不正确的是()A .若a b >,则44a b -<-B .若23a a >,则0a <C .若a b >,则22ac bc >D .若22ac bc >,则a b>【答案】C【分析】本题主要考查不等式的性质,熟练掌握不等式的性质是解题的关键.根据不等式的性质即可得到答案.【详解】解:若a b >,则44a b -<-,故选项A 正确;若23a a >,则0a <,故选项B 正确;若a b >,则22(0)ac bc c >≠,故选项C 不正确;若22ac bc >,则a b >,故选项D 正确.故选C .【变式训练】题型04利用不等式的基本性质解不等式【例题】(2023下·湖南衡阳·七年级校考期中)下列说法中,正确的是()A .不等式28x <-的解集是4x <B .5x =是不等式28x <-的一个解C .不等式28x <-的整数解有无数个D .不等式28x <-的正整数解有4个【答案】C【分析】先求出不等式的解集,再依次判断解的情况.【详解】解:A 、该不等式的解集为4x <-,故错误,不符合题意;B 、∵258⨯>-,故错误,不符合题意;C 、正确,符合题意;D 、因为该不等式的解集为4x <-,所以无正整数解,故错误,不符合题意;故选:C .【点睛】本题考查了不等式的性质和不等式的解集的理解,解题关键是根据解集正确判断解的情况.【变式训练】1.(2023下·八年级课时练习)下列说法错误的是()A .5是不等式26+>x 的解B .2是不等式350x ->的解C .284x -<的解集是6x <D .3x <的解集就是1、2、3【答案】D【分析】根据不等式的性质即可求解.【详解】解:A 选项,5是不等式26+>x 的解,把5x =代入不等式,不等式成立,故正确;B 选项,2是不等式350x ->的解,把2x =代入不等式,不等式成立,故正确;C 选项,284x -<的解集是6x <,解不等式284x -<得6x <,故正确;D 选项,3x <的解集就是1、2、3,3x =不是不等式的解,故错误.故选:D .【点睛】本题主要考查不等式的性质解一元一次不等式,掌握不等式的性质是解题的关键.2.(2023下·七年级课时练习)下列说法错误的是()A .不等式5100x ->的解是3B .3是不等式5100x ->的解C .不等式5100x ->的解集是2x >D .2x >是不等式5100x ->的解集【答案】A【分析】使不等式成立的未知数的值叫做不等式的解,能使不等式成立的未知数的取值范围,叫做不等式的解的集合,简称解集,结合各选项进行判断即可.【详解】解∶A 、3是不等式5100x ->的解,但是不等式5100x ->的解集不是3,故本选项错误,符合题意;B 、3是不等式5100x ->的解,说法正确,故本选项不符合题意;C 、不等式5100x ->的解集是2x >,说法正确,故本选项不符合题意;D 、2x >是不等式5100x ->的解集,说法正确,故本选项不符合题意.故选∶A .【点睛】本题考查了不等式的解及解集,注意区分不等式的解与解集是解题的关键.题型05不等式的解集【例题】(2023下·河南周口·八年级校联考阶段练习)将下列不等式化成“x a >”或“x a <”的形式:(1)541x x >-;(2)27x --<.【答案】(1)1x >-(2)9x >-【分析】(1)利用不等式的性质求解即可;(2)利用不等式的性质求解即可.【详解】(1)解:两边同时减去4x ,,得54414x x x x ->--,即1x >-;(2)解:两边同时加上2,得9x -<,两边同时乘1-,得9x >-.【点睛】本题考查不等式的性质,解答关键是熟知不等式的基本性质:不等式基本性质1:不等式的两边同时加上(或减去)同一个数(或式子),不等号的方向不变;不等式基本性质2:不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式基本性质3:不等式的两边同时乘(或除以)同一个负数,不等号的方向变.【变式训练】一、单选题1.(2023下·山东淄博·七年级统考期末)在下列数学表达式中,不等式的个数是()①30-<;②430x y +>;③3x =;④5x ≠;⑤23x y +>+.A .2个B .3个C .4个D .5个【答案】C【分析】由不等号(>,<,≥,≤,≠)连接的式子叫不等式,据此进行判断.【详解】不等式有:①30-<;②430x y +>;④5x ≠;⑤23x y +>+.所以共有4个故选择:C .【点睛】本题考查来了不等式的定义,熟练掌握不等式的定义是解题的关键.2.(2021下·全国·八年级专题练习)下列说法中,正确的是()A .x =3是不等式2x >1的解B .x =3是不等式2x >1的唯一解C .x =3不是不等式2x >1的解D .x =3是不等式2x >1的解集【答案】A【分析】对A 、B 、C 、D 选项进行一一验证,把已知解代入不等式看不等式两边是否成立.【详解】解:A 、当x =3时,2×3>1,成立,故A 符合题意;B 、当x =3时,2×3>1成立,但不是唯一解,例如x =4也是不等式的解,故B 不符合题意;C 、当x =3时,2×3>1成立,是不等式的解,故C 不符合题意;D 、当x =3时,2×3>1成立,是不等式的解,但不是不等式的解集,其解集为:x >12,故D 不符合题意;故选:A .【点睛】此题着重考查不等式中不等式的解、唯一解、解集概念之间的区别和联系,是一道非常好的基础题.3.(2023下·河北石家庄·七年级统考期末)下列表示的不等关系中,正确的是()A .a 不是负数,表示为0a >B .m 比3至少多1,表示为31m -≥C .x 与1的和是非负数,表示为10x +>D .x 不大于3,表示为3x <【答案】B【分析】由不是负数即为正数或0可判断A ,由至少表示大于或等于可判断B ,由非负数表示正数或0可判断C ,由不大于即小于或等于可判断D ,从而可得答案.【详解】解:a 不是负数,表示为0a ≥,故A 不符合题意;m 比3至少多1,表示为31m -≥,表示正确,故B 符合题意;x 与1的和是非负数,表示为10x +≥,故C 不符合题意;x 不大于3,表示为3x ≤,故D 不符合题意;故选:B .【点睛】本题考查的是根据语句的描述列不等式,理解语句的含义是解本题的关键.4.(2023上·浙江·八年级校考期中)下列不等式的变形正确的是()A .由a b <,得ac bc <B .由ac bc <,得a b <C .由a b <,得22ac bc <D .由22ac bc <,得a b<【答案】D【分析】本题主要考查了不等式的性质,解题的关键是熟练掌握不等式的基本性质,“不等式的性质1:把不等式的两边都加(或减去)同一个整式,不等号的方向不变;不等式的性质2:不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式的性质3:不等式两边都乘(或除以)同一个负数,不等号的方向改变”.【详解】解:A .当0c >时,a b < ,ac bc ∴<,故选项错误,不符合题意;B .当0c >,ac bc < ,a b ∴<,故选项错误,不符合题意;C .当20c >,由a b <,得22ac bc <,故选项错误,不符合题意;D .由22ac bc <,得a b <,故选项正确,符合题意.故选:D .二、填空题三、解答题9.(2023下·全国·七年级假期作业)下列各式哪些是不等式2(2x+1)>25的解?哪些不是?(1)x=1.(2)x=3.(3)x=10.(4)x=12.【答案】(1)不是(2)不是(3)是(4)是【分析】把未知数的值代入计算,比较后,判断即可【详解】(1)把x=1代入不等式2(2x+1)>25,因为:左边=2×(2×1+1)=6<25,所以x=1不是不等式2(2x+1)>25的解.(2)把x=3代入不等式2(2x+1)>25,因为:左边=2×(2×3+1)=14<25,所以x=3不是不等式2(2x+1)>25的解.解:因为a b >,①所以2017>2017a b --,②所以20171>20171a b -+-+.③问:(1)上述解题过程中,从第________步开始出现错误;(2)错误的原因是什么?(3)请写出正确的解题过程.【答案】(1)②;(2)错误地运用了不等式的基本性质3(3)见解析【分析】(1)由不等式的性质可得第②步开始出现错误;(2)由不等式的两边都乘以同一个负数,不等号的方向要改变可得错误原因;(3)正确的运用不等式的性质解题即可得到答案.【详解】(1)解:上述解题过程中,从第②步开始出现错误;(2)错误地运用了不等式的基本性质3,即不等式两边都乘以同一个负数,不等号的方向没有改变;(3)∵a b >,∴20172017a b -<-,∴2017120171a b -+<-+;【点睛】本题考查的是不等式的基本性质的应用,熟记不等式的基本性质是解本题的关键.14.(2023上·黑龙江哈尔滨·八年级哈尔滨市第十七中学校校考开学考试)(1)如果0a b -<,那么a ______b ;如果0a b -=,那么a ______b ;如果0a b ->,那么a ______b .(填“<”、“>”或“=”)(2)试用(1)提供的方法比较2327x x -+与2427x x -+的大小.【答案】(1)<,=,>(2)22327427x x x x -+≤-+【分析】(1)分别将b -移项,即可求解;(2)作差:()()22327427x x x x -+--+,判断结果,即可求解.【详解】解:(1) 0a b -<,∴a b <,0a b -=,∴a b =,0a b ->,∴a b >,故答案:<,=,>;(2)由题意得()()22327427x x x x -+--+22327427x x x x =-+-+-2x =-,20Q,x≥20∴-≤,x()()22∴-+--+≤,3274270x x x x22-+≤-+∴.x x x x327427【点睛】本题考查了作差法比较大小,整式加减,掌握比较方法是解题的关键.。
北师大版数学八年级下册2.1《不等关系3》说课稿

北师大版数学八年级下册2.1《不等关系3》说课稿一. 教材分析北师大版数学八年级下册2.1《不等关系3》这一节内容,是在学生已经掌握了不等式的概念、不等式的性质、不等式的解法等基础知识的基础上进行讲解的。
本节课的主要内容是让学生了解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
在教材中,通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
然后,通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
最后,通过练习题,让学生巩固所学的不等关系知识。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,对于不等式的概念和性质有一定的了解。
但是,学生对于不等关系的理解和应用还比较模糊,需要通过实例和练习来加深理解。
同时,学生对于实际问题中的不等关系还没有直观的认识,需要通过生活中的实例和问题来引导学生理解不等关系。
此外,学生在这一阶段的学习中,需要培养分析问题和解决问题的能力,因此,在教学过程中,需要注重学生的参与和实践。
三. 说教学目标1.知识与技能目标:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系,并能够分析实际问题中的不等关系。
2.过程与方法目标:通过引入实际问题,引导学生用不等号表示问题中的不等关系,从而让学生理解不等关系的概念。
通过分析不同种类的不等关系,让学生掌握不等关系的分类和特点。
3.情感态度与价值观目标:培养学生对数学的兴趣,提高学生分析问题和解决问题的能力。
四. 说教学重难点1.教学重点:让学生理解不等关系的概念,学会用不等号表示不同种类的不等关系。
2.教学难点:让学生理解实际问题中的不等关系,并能够用不等号表示出来。
五. 说教学方法与手段在教学过程中,我将采用讲授法、实例分析法、小组讨论法等教学方法,结合多媒体课件和黑板等教学手段,引导学生理解和掌握不等关系。
六. 说教学过程1.引入新课:通过一个实际问题,引导学生用不等号表示问题中的不等关系,从而引出不等关系的概念。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]总平面图上矩形建(构)筑物,位置应注其三个角点的坐标,如建(构)筑物与坐标轴平行,可注其()坐标。A.北侧两个角点B.南侧两个角点C.东侧两个角点D.对角两个角点 [单选]驾驶厂内机动车,应当依法取得()A、操作上岗证B、驾驶证C、企业内部通行证 [单选]《出口食用动物饲料生产企业登记备案证》的有效期为()年。A.1B.2C.3D.5 [单选,A2型题,A1/A2型题]1979年,国际疼痛协会将疼痛重新定义为()A.是用疼痛来描述的一种不愉快的感觉和情绪B.是由于真正潜在组织损伤而引起的一种不愉快的感觉和情绪C.是指维持较长时间,一般大于3个月,常在损伤愈合后中止D.为最近产生并能持续较短的疼痛,常与明确的损伤和疾 [问答题,案例分析题]女性,26岁。主诉:已婚。发热伴尿痛3天就诊。请针对该案例,说明问诊内容与技巧。 [单选]串联通风必须在进入被串联工作面的风流中装设(),且瓦斯和二氧化碳浓度都不得超过0.5%。A.便携仪B.甲烷断电仪C.风速传感器 [单选]绒毛膜癌病人的处理原则为()A.进行放疗B.同位素治疗C.子宫切除D.以化疗为主E.子宫及附件切除 [单选,A1型题]下列哪项不符合周围性瘫痪()A.肌张力增高B.病理反射阴性C.无明显感觉障碍D.腱反射减弱或消失E.肌萎缩较多见 [单选,A1型题]拔牙后通常牙槽嵴吸收致上牙槽嵴变小而下牙槽嵴变大,有时需要排成反牙合;当无牙颌上下牙槽嵴顶连线与牙合平面交角小于多少度时建议排反牙合()A.70B.80C.90D.75E.95 [单选]传染病流行区的家畜家禽外运,负责其检疫的单位是()A.卫生监督部门B.环境保护部门C.工商管理部门D.畜牧兽医部门E.市容监察部门 [多选]特殊路基类型包括有()。A.沿河路基B.岩溶地区路基C.黄土地区路基D.涎流冰地段路基E.岩溶地区器基 [判断题]不含汞的进出口电池,无需办理《进出口产品备案书》A.正确B.错误 [单选]疑为子宫内膜不规则脱落,取内膜活检的理想时间是()。A.月经第1日B.月经第5日C.月经干净后3日D.月经来潮前12hE.月经来潮12h内 [判断题]气囊控制模块在引爆气囊的同时,也引爆安全带拉紧机构。()A.正确B.错误 [单选]从指数理论与方法上看,指数所研究的主要是()。A.广义的指数B.狭义的指数C.质量指数D.数量指数 [单选]堤防沉降量平面分布图是根据所有观测点在堤防上的()和累计沉降量绘制。A.高度B.纵向位置C.横向位置D.平面位置 [填空题]在Staion的主界面窗口中,包括();()、信息栏、主窗口、报警线、状态栏等栏目。 [单选]抗血清可保存5年左右的温度为()A.-10℃B.-15℃C.-20~-40℃D.-18℃E.-45℃ [单选]关于书刊装订样式的说法,错误的是()。A.平装也称简装,分普通平装和勒口平装两种B.精装的封面质地较硬,包括软精装和半精装C.按照成品的书脊形状,精装还可分为圆脊精装和平脊精装D.勒口平装的勒口宽度一般不少于30毫米,且可增大变为"拉页" [单选,A1型题]创伤评估中的首要任务是()A.评估患者的生命状况B.评估患者的心理稳定性C.评估患者的应激耐受性D.评估患者的创伤经历E.评估患者的创伤反应 [单选,A1型题]形成低带免疫耐受的细胞是()A.B细胞B.T细胞C.T、B细胞D.单核细胞E.NK细胞 [单选]一定体积的容器中,空气压力().A、与空气密度和空气温度乘积成正比B、与空气密度和空气温度乘积成反比C、与空气密度和空气绝对湿度乘积成反比D、与空气密度和空气绝对温度乘积成正比 [单选]检查堤防滑坡,首先要注意查看有无在堤顶或堤坡上出现的()。A.龟纹裂缝B.横向裂缝C.滑坡裂缝D.干缩裂缝 [单选]鞣质具有的理化性质不包括()A、水溶性B、氧化性C、与蛋白质生成沉淀D、与醋酸铅生成沉淀E、与生物碱生成沉淀 [单选]建设工程质量保证金(保修金)是从应付的工程款中预留,用以保证承包人对建设工程出现的缺陷进行维修的资金。该缺陷出现的时间应在()内。A.缺陷责任期B.保修期C.竣工验收期D.工程使用期 [单选,A2型题,A1/A2型题]下列哪一组症状不属于湿温卫气同病证的表现?()A.发热恶寒,无汗头痛B.头痛如裹,身重酸困C.肢体酸楚,口渴心烦D.小溲黄赤,脘痞E.苔腻,脉濡数 [单选]通过遥控器的以下组合操作来操作高清变焦摄像机的对焦()A、shift键↑+滚转指令←→B、shift键↑+俯仰指令↓↑C、shift键↑+航向指令←→D、shift键↑+油门指令↓↑ [多选]在中华人民共和国沿海水域从事扫海、疏浚、爆破、打桩、拔桩、起重、钻探等作业,必须事先向所涉及的海区的区域主管机关申请办理和发布()。A.海上航行警告B.航行通告C.打桩令D.施工许可证E.疏浚令 [填空题]在大约30多亿年前,地球上出现了最早的生物,即原核细胞的(). [单选]下列各项中,不会影响营业利润金额增减的是()。A.资产减值损失B.财务费用C.投资收益D.营业外收入 [填空题]真实压力比大气压高出的数值通常用下列那一项表示()。 [单选]在企业有盈利,需要追加外部投资的情况下,下列有关外部融资需求的表述正确的是()。A.销售增加,必然引起外部融资需求的增加B.销售净利率与外部融资需求成正比关系C.股利支付率与外部融资需求成正比关系D.资产周转率的提高必然引起外部融资额增加 [单选]紧急电话系统根据传输介质可分为()。A.电缆型紧急电话系统和光缆型紧急电话系统B.有线型紧急电话系统和无线型紧急电话系统C.交通专网型紧急电话系统和电信公网型紧急电话系统D.电缆型紧急电话系统和无线型紧急电话系统 [单选]颞叶癫痫首选的抗癫痫药物是()A.苯妥英钠B.卡马西平C.氯硝西泮D.苯巴比妥钠E.泼尼松 [单选]国产离心泵的型号表示法中,100D45×8表示()。A.泵的流量100m3/h,单级扬程45m水柱,8级分段多级离心水泵B.泵的流量为45×8=360m3/h,扬程为l00m的多级式离心水泵C.泵的入口直径为l00mm,总扬程为45m水柱,8段多级离心水泵D.泵的入口直径为l00mm,单级扬程为45m [单选]关于胸锁乳突肌的描述不正确的是()A.位于颈外侧部B.一侧肌收缩使头向同侧倾斜C.一侧肌收缩使面转向同侧D.两侧肌收缩使头后仰E.起自胸骨柄和锁骨内侧端,止于颞骨乳突 [单选]储层定向分布及内部各种属性都在极不均匀地变化,这种变化称为储层的()性。A、均质B、物性C、特性D、非均质 [单选,A2型题,A1/A2型题]滤过除菌常用的滤板孔径是()A.0.22~0.45μmB.0.50~0.75μmC.0.80~0.95μmD.1~5μmE.5~10μm [单选]我国《合同法》规定,当事人可以通过和解或者调解解决合同争议。当事人不愿和解、调解或者和解、调解不成的,可以根据()向仲裁机构申请仲裁。A.仲裁协议B.提交给人民法院的起诉书C.调解书D.和解结论书 [单选]()是世界各国现代银行中最基本、最典型的银行组织形式。A.中央银行B.商业银行C.政策性银行D.非银行金融机构
ቤተ መጻሕፍቲ ባይዱ