八年级数学下册函数

合集下载

八年级下册数学函数知识点总结

八年级下册数学函数知识点总结

八年级下册数学函数知识点总结一、函数的概念。

1. 变量与常量。

- 在一个变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量。

例如,汽车以60km/h的速度匀速行驶,行驶时间t和行驶路程s是变量,速度60km/h就是常量。

2. 函数的定义。

- 一般地,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数。

例如,y = 2x+1,对于x的每一个值,都能通过这个式子计算出唯一的y值。

- 函数的表示方法有三种:解析式法(如y = 3x - 2)、列表法(列出x和y的对应值表格)、图象法(画出y关于x的图象)。

二、一次函数。

1. 一次函数的概念。

- 形如y=kx + b(k,b是常数,k≠0)的函数,叫做一次函数。

当b = 0时,y=kx(k为常数,k≠0),y = kx是正比例函数,它是特殊的一次函数。

2. 一次函数的图象和性质。

- 图象:一次函数y = kx + b(k≠0)的图象是一条直线。

当b = 0时,y=kx的图象是经过原点(0,0)的直线。

例如,y = 2x的图象是过原点的直线,y=2x + 1的图象是y = 2x向上平移1个单位得到的直线。

- 性质。

- 当k>0时,y随x的增大而增大。

例如在y = 3x+2中,k = 3>0,y随x的增大而增大。

- 当k<0时,y随x的增大而减小。

例如在y=-2x + 3中,k=-2<0,y随x的增大而减小。

3. 一次函数图象的平移。

- 对于一次函数y = kx + b,向上(下)平移m个单位长度得到y=kx + b± m;向左(右)平移n个单位长度得到y = k(x± n)+b。

例如,y = 2x+1向上平移3个单位得到y = 2x+4,向左平移2个单位得到y = 2(x + 2)+1=2x + 5。

4. 求一次函数的解析式。

【初二课件】人教版八年级数学下册第十九章一次函数函数课件

【初二课件】人教版八年级数学下册第十九章一次函数函数课件

x 1
2
即当x= 1 时,y=0.
2
二 确定自变量的取值范围
问题:请用含自变量的式子表示下列问题中的函 数关系:
(1)汽车以60 km/h 的速度匀速行驶,行驶的时 间为 t(单位:h),行驶的路程为 s(单位:km);
(2)多边形的边数为 n,内角和的度数为 y.
问题(1)中,t 取-2 有实际意义吗? 问题(2)中,n 取2 有意义吗?
练一练
填表并回答问题:
x
1
y=+2x 2和-2
4
9
16
8和-8 18和-18 32和-32
(1)对于x的每一个值,y都有唯一的值与之对应吗? 答: 不是 .
(2)y是x的函数吗?为什么? 关键词:两个变量,
答:不是,因为y的值不是唯一的.
给一个x,得一个y. 易错点:顺序不要反.
典例精析
例1 下列关于变量x ,y 的关系式:y =2x+3; y =x2+3;y =2|x|;④ y x ;⑤y2-3x=10, 其中表示y 是x 的函数关系的是 .
(1)y 3x 1
(2)y 1 x2
x取全体实数
x 2x0-2
使函数解析式有意 义的自变量的全体.
(3)y x 5
x 5x05
(4) y x 2 x 1
x 2且x 1
x 1 0
x20
即 xx
1 2
... -2 -1 0
当堂练习
1.下列说法中,不正确的是( C ) A.函数不是数,而是一种关系 B.多边形的内角和是边数的函数 C.一天中时间是温度的函数 D.一天中温度是时间的函数
2.下列各表达式不是表示y是x的函数的是( C )

八年级数学下册《一次函数》知识点归纳

八年级数学下册《一次函数》知识点归纳

八年级数学下册《一次函数》知识点归纳知识点1 一次函数和正比例函数的概念若两个变量x,y间的关系式可以表示成y=kx+b(k,b 为常数,kne;0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.知识点2 函数的图象由于两点确定一条直线,一般选取两个特殊点:直线与y轴的交点,直线与x轴的交点。

.不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.知识点3一次函数y=kx+b(k,b为常数,kne;0)的性质(1)k的正负决定直线的倾斜方向;①kgt;0时,y的值随x值的增大而增大;②k﹤O时,y的值随x值的增大而减小.(2)|k|大小决定直线的倾斜程度,即|k|越大①当bgt;0时,直线与y轴交于正半轴上;②当blt;0时,直线与y轴交于负半轴上;③当b=0时,直线经过原点,是正比例函数.(4)由于k,b的符号不同,直线所经过的象限也不同;①如图所示,当kgt;0,bgt;0时,直线经过第一、二、三象限(直线不经过第四象限);②如图所示,当kgt;0,b③如图所示,当k﹤O,bgt;0时,直线经过第一、二、四象限(直线不经过第三象限);④如图所示,当k﹤O,b﹤O时,直线经过第二、三、四象限(直线不经过第一象限).(5)由于|k|决定直线与x轴相交的锐角的大小,k相同,说明这两个锐角的大小相等,且它们是同位角,因此,它们是平行的.另外,从平移的角度也可以分析,例如:直线y=x+1可以看作是正比例函数y=x向上平移一个单位得到的.知识点4 正比例函数y=kx(kne;0)的性质(1)正比例函数y=kx的图象必经过原点;(2)当kgt;0时,图象经过第一、三象限,y随x的增大而增大;(3)当klt;0时,图象经过第二、四象限,y随x的增大而减小.知识点5 点P(x0,y0)与直线y=kx+b的图象的关系(1)如果点P(x0,y0)在直线y=kx+b的图象上,那么x0,y0的值必满足解析式y=kx+b;(2)如果x0,y0是满足函数解析式的一对对应值,那么以x0,y0为坐标的点P(1,2)必在函数的图象上.例如:点P(1,2)满足直线y=x+1,即x=1时,y=2,则点P(1,2)在直线y=x+l的图象上;点Pprime;(2,1)不满足解析式y=x+1,因为当x=2时,y=3,所以点Pprime;(2,1)不在直线y=x+l的图象上.知识点6 确定正比例函数及一次函数表达式的条件(1)由于正比例函数y=kx(kne;0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.(2)由于一次函数y=kx+b(kne;0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.知识点7 待定系数法先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.知识点8 用待定系数法确定一次函数表达式一般步骤(1)设函数表达式为y=kx+b;(2)将已知点的坐标代入函数表达式,解方程(组);(3)求出k与b的值,得到函数表达式.思想方法小结 (1)函数方法.(2)数形结合法.知识规律小结 (1)常数k,b对直线y=kx+b(kne;0)位置的影响.①当bgt;0时,直线与y轴的正半轴相交;当b=0时,直线经过原点;当b﹤0时,直线与y轴的负半轴相交.②当k,b异号时,直线与x轴正半轴相交;当b=0时,直线经过原点;当k,b同号时,直线与x轴负半轴相交.③当kgt;O,bgt;O时,图象经过第一、二、三象限;当kgt;0,b=0时,图象经过第一、三象限;为大家推荐的一次函数知识点归纳,大家仔细阅读了吗?更多知识点总结尽在。

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点

八年级下册数学一次函数知识点一次函数是中学数学中的重要内容之一,它在解决实际问题中有着广泛的应用。

在这篇文章中,我们将逐步介绍八年级下册数学中一次函数的基本概念、性质和解题方法。

一、一次函数的基本概念一次函数又称为线性函数,是指函数的表达式中只包含一次项和零次项,不含其他次数的项。

一次函数的一般形式可以表示为 y = kx + b,其中 k 和 b 是常数,且 k 不等于零。

在一次函数中,x 是自变量,y 是因变量。

k 表示函数的斜率,决定了函数图像的倾斜程度;b 表示函数的截距,决定了函数图像与 y 轴的交点位置。

二、一次函数的性质1.斜率 k 的含义和性质斜率 k 反映了函数图像的倾斜程度。

当 k 大于零时,函数图像逐渐上升;当 k小于零时,函数图像逐渐下降;当 k 等于零时,函数图像是水平的。

2.截距 b 的含义和性质截距 b 决定了函数图像与 y 轴的交点位置。

当 b 大于零时,函数图像与 y 轴的交点在 y 轴上方;当 b 小于零时,函数图像与 y 轴的交点在 y 轴下方;当 b 等于零时,函数图像与 y 轴的交点在原点上。

3.函数图像的性质一次函数的图像是一条直线,它可以通过斜率 k 和截距 b 来确定。

当斜率 k 不等于零时,函数图像是一条斜线;当斜率 k 等于零时,函数图像是一条水平线;当截距 b 不等于零时,函数图像与 y 轴有交点;当截距 b 等于零时,函数图像通过原点。

三、一次函数的解题方法1.求函数图像与坐标轴的交点要确定一次函数图像与 x 轴的交点,只需将函数表达式中的 y 置为零,解方程得到 x 的值。

同样地,要确定一次函数图像与 y 轴的交点,只需将函数表达式中的x 置为零,解方程得到 y 的值。

2.求函数图像的斜率函数图像的斜率可以通过任意选取两个点,计算它们的坐标变化量,然后利用斜率的定义公式Δy/Δx 来求得。

3.求函数的表达式已知函数图像通过两个点A(x₁, y₁) 和B(x₂, y₂) 时,可以利用斜率公式k = (y₂ - y₁) / (x₂ - x₁) 来求得斜率 k。

人教版数学八年级下册函数课件

人教版数学八年级下册函数课件
时间t/s 0 10 20 30 油温w/℃ 10 25 40 55
请你按下面的问题进行思考: (1)在这个测量过程中,锅中油的温度w 是 加热时间t 的函数吗?
做一做
例2 小明想用最大刻度为100℃的温度计测量食用 油的沸点温度(远高于100℃),显然不能直接测量, 于是他想到了另一种方法,把常温10℃的食用油放在锅 内用煤气灶均匀地加热,开始加热后,每隔10 s 测量一 次油温,共测量了4次,测得的数据如下:
的自变量取值范围. 油的沸点温度(远高于100℃),显然不能直接测量,
(3)求这种食用油沸点的温度. 函数是零次幂、负整数次幂时,底数≠0 在实际问题中,函数的自变量取值范围除了要考虑是整式、分式、二次根式、零次幂、负整数次幂以外,还要考虑函数的实际意义。 次油温,共测量了4次,测得的数据如下:
复习:什么叫函数?
x5
函数是整式时,自变量取一切实数。
函数是二次根式时,被开方数≥0.
函数是分式时,分母≠0.
函数是零次幂、负整数次幂时,底数≠0
1.下列函数中,自变量x的取值范围
是x≥2的是( B )
A. y 3 2x
B.
y x2 x
C. y 4 x2
D.
y
x x2
(2)函数 y1 x3 3x
x
4x
中自变量x的取值范围是
(2)列表法
如图是北京某天的气温变化图,你 能根据图象说出某一时刻的气温吗?
(3)围
在实际问题中,函数的自变量 取值范围除了要考虑是整式、分式、 二次根式、零次幂、负整数次幂以 外,还要考虑函数的实际意义。
练一练
问题2 你能用含自变量的式子表示下列函数,并 说出自变量的取值范围吗?
时间t/s 0 10 20 30 油温w/℃ 10 25 40 55

人教版八年级数学(下)课件:19_1_2 函数的图象(第2课时)

人教版八年级数学(下)课件:19_1_2 函数的图象(第2课时)
人教版 数学 八年级 下册
19.1 函数 19.1.2 函数的图象
(第2课时)
导入新知 在计算器上按照下面的程序进行操作:
输入x(任意一个数)
按键
× 2 + 5=
填表:
显示y(计算结果)
x 1 3 -4 y 7 11 -3
0 101 5 207
显示的数y是输入的数x的函数吗?为什么? 如果是,写出它的解析式. 是, y = 2x+5.
27千克
探究新知
考点 2 利用函数表达式解答实际问题 如图,要做一个面积为12 m2的小花坛,该花坛的一边长为 x m, 周长为 y m.
(1)变量 y 是变量 x 的函数吗?如果是,写出自变量的取值 范围;
(2)能求出这个问题的函数解析式吗?
解:(1)y 是 x 的函数,自变量 x 的取
值范围是x>0.
答:是, y=8+2(x-3) =2x+2
用函数解析 式来表示.
这里是怎样表 示所付费用y与 所走路程x的 函数关系的?
探究新知 问题3 如图是某地某一天的气温变化图.
这里是怎样表示气温T与 时间t之间的函数关系的?
(1)指出其中的两个变量是 气温T , 时间t .
用平面直 角坐标系 中的一个 图象来表 示的.
探究新知
其函数的图象如下:
y/m
5
5
4
B
3
3A 2
1
O
O
1
2
3
4
5
6
7
5
8
t/h
探究新知
(3)据估计这种上涨规律还会持续2 h,预测再过2 h水位高度
将达到多少m.
解:如果水位的变化规律不变,按上述函数预测,再持续2小

八年级数学下册教学课件《一次函数的图象与性质》

八年级数学下册教学课件《一次函数的图象与性质》

解得 k = 4 . 所以 y = 4 x + 1. 令 y = 0,

4
x
+
3
1=
0,解得
3
x=
3

3
因此点
B
的坐标为(
3
4
,0)
4
题型三 一次函数的图象和性质与几何的综合 如图,函数 y = kx + 1 的图象经过点 A(3,-3), 且与 x 轴相交于点 B,O 为坐标原点,连接 OA. (1)求点 B 的坐标;(2)求△OAB 的面积.
x O1
当 b < 0 时,向下平移 .
小结
一次函数图象的画法: 根据两点确定一条直线,为计算简单,一般 选择点(0,b)和点(1,k+b).
例 3 画出函数 y = 2x -1 与 y = -0.5x + 1 的图象.
y
列表
描点
y = 2x - 1
画线
y = -0.5x + 1 1
x
01
y = 2x-1 -1 1
解:(1)由题意,得 2m + 4 < 0,3-n 是任意实数, 所以 m < -2,n 是任意实数.
(2)由题意,得 2m + 4 > 0,3-n > 0, 所以 m > -2,n < 3.
题型二 平面直角坐标系中的双图象共存问题 关于 x 的一次函数 y = mx + n 与 y = mnx(mn ≠ 0)在 同一平面直角坐标系中的大致图象可能是( C )
每小题中三个函数的图象有什么关系.
(1)y = x -1, y = x,
y
y=x+1

八年级数学下册 第章 函数及其图象 . 一次函数 一次函数的图像与坐标轴的交点

八年级数学下册 第章 函数及其图象 . 一次函数 一次函数的图像与坐标轴的交点
数的图象. [点拨] 注意数形结合,并利用方程的思想来理解,不要死记
硬背.
第十一页,共十七页。
17.3.2 2 第 课时(kèshí) 一次函数的图象与坐标轴的交点
知识点二 实际(shíjì)问题中一次函数的图象
一次函数的图象可能是一条直线、一条线段,还可能是一条射 线、一条折线或一些离散的点,这全部取决于自变量的 ___取_值__范_围__(f_àn_wé_i),因此在解题时应具体问题具体分析.
第十七页,共十七页。
第17 函数 及其图象 章
(hánshù)
17.3.2 第2课时
一次函数的图象(tú xiànɡ)与坐标轴的交点
第一页,共十七页。
第17章 函数(hánshù)及其图象
17.3.2 第2课时 一次函数 的图象 与坐标轴的交点 (tú xiànɡ)
知识目标 目标突破 总结反思
第二页,共十七页。
17.3.2 第2课时 一次函数的图象(tú xiànɡ)与坐标轴的交点
总结(zǒngjié)反思
知识点一 一次函数y=kx+b(k,b为常数,且k≠0)的图象与坐标轴的交点(jiāodiǎn)坐标的求法
1.由于 x 轴上的点的纵坐标为零,y 轴上的点的横坐标为零, 因此在求直线 y=kx+b 与 y 轴或 x 轴的交点坐标时,只需令 _x_=__0或__y_=_0__,即可分别求出直线 y=kx+b(k≠0)与 y 轴交点的纵 坐标或与 x 轴交点的横坐标.
1 ∴S△ABO=2×2×4=4.
第五页,共十七页。
17.3.2 第2课时(kèshí) 一次函数的图象与坐标轴的交点
【归纳总结】
直线y=kx+
与x轴的交点坐标为-bk,0;
b(k≠0)与坐标与y轴的交点坐标为(0,b);
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学同步典型例题分析专题:变量与函数(二)
题1.下列:①;②;③;④,具有函数
关系(自变量为)的是 .
题2.求下列函数中自变量x 的取值范围:
⑴; ⑵;⑶; ⑷; ⑸; ⑹;⑺; ⑻. 题3.我市出租车价格是这样规定的:不超过2.5千米,付车费5元,超过的部分按每千米
1.3元收费.已知某人乘坐出租车行驶了x (x >2.5)千米,付车费y 元,请写出出租车行驶的路程x (千米)与所付车费y (元)之间的关系式.
题4.如图,是张老师出门散步时离家的距离y 与时间x 之间的函数关系的图象,若用黑点表示张老师家的位置,则张老师散步行走的路线可能是( )
题5.在圆的周长公式中,下列说法错误的是( )
A .是变量,2是常量
B .是变量,
是常量
C .是自变量,是的函数
D .将写成,则可看作是自变量,是的函数 题6.在函数中,自变量的取值范围是( )
A .
B .且
C .且
D .错误!链接无效。

题7.为了增强居民的节约用水的意识,某市制定了新的水费标准:每户每月用水量不超过5吨的部分,自来水公司按每吨2元收费;超过5吨的部分,按每吨2.6元收费。

设某用户月用水量x 吨,自来水公司的应收水费为y 元。

2y x =21y x =+22(0)y x x =≥(0)y x x =±≥x 32-=x y 1432+-=x x y 1
1+=x y 2-=x y 3+=x x
y 12-+=x x y 5-=x x y x x y -+=212C r =πC r π,,C r ,2πr C r 2C r =π2C r =π
C r C 21y x =-x 1x ≥-1x >-12
x ≠1x ≥-12
x ≠
(1)试写出y (元)与x (吨)之间的函数关系式;
(2)该户今年5月份的用水量为8吨,自来水公司应收水费多少元?
题8.某天,小明走路去学校,开始他以较慢的速度匀速前进,然后他越走越快走了一段时间,最后他以较快的速度匀速前进到达学校。

小明走路的速度V (米/分钟)是时间t (分钟)的函数,能正确反映这一函数关系的大致图象是 ( )
以上课后练习答案及详解如下:
题1.答案:①②
解析:判断两个变量之间是否函数关系,主要要抓住定义本身,即对于的每一个值,都有唯一的值与它对应.①②中当取一个值时,变量有唯一的值与之对应,但③中当取2时,变量却有2和-2两个值与之对应,故不是函数关系;④也是一样的,当取1时,变量却有1和-1两个值与之对应,故不是函数关系.
题2.答案:(1)全体实数;(2)全体实数;(3);(4);
(5);(6);(7) ;(8). 解析:函数解析式以及函数自变量的实际意义确定自变量的取值范围是中考数学试卷中的一个考查热点,其中根据函数解析式确定自变量的取值范围可分为以下类型:
⑴整式型:当函数解析是整式时,自变量的取值范围是全实数.
⑵分式型:当函数解析式是分式时,自变量的取值范围是使分母不为零的一切实数.注意不能随意约分,同时要区分“且”和“或”的含义.
⑶偶次根式型:当函数解析式是偶次根式时,自变量的取值范围是使被开方式为非负数. ⑷零次幂或负整数次幂型:当零次幂或负整数次幂的底数中含有自变量时,该底数不为零.
其中(6)需要满足的条件是;(7)需要满足的条件是又因为不在的范围内,所以答案是,此题特别容易错误理解为;
(8)需要满足的条件是,注意不等式组解集的确定.
题3.答案:
解析:根据题意可知所付车费,特别要注意的是前面的2.5千米,已经付车费5元,无需再累加付费.
题4.答案:
D
x y x y x y x y 1-≠x 2≥x 3- x 12≠-≥x x 且50≠≥x x 且21 x ≤-
⎩⎨⎧≠-≥+0102x x ⎩⎨⎧≠-≥0
5||0x x 5-=x 0≥x 50≠≥x x 且50±≠≥x x 且⎩⎨⎧-≥+0
201 x x 4.23.1+=x y 4.23.1)2(3.15+=-+=x x y
解析:从图象可看出,张老师散步有三个过程,第一个过程随着时间的增加,张老师离家越来越远;第二个过程随着时间的增加,张老师离家的距离不变;第三个过程,随着时间的增加张老师离家越来越近,综合分析,只有D 选项的行走路线才可能符合函数关系图象. 题5.答案: A
解析:是一个数,是一个常量而不是变量.
题6.答案: C
解析:要使函数有意义,应满足,解得且,故选C .本题主要考查学生对函数自变量取值范围的确定掌握是否全面,属于复合型试题,要同时 满足两个条件:一、二次根式有意义,二、分式有意义,注意不要漏条件.
题7.答案:解:(1)当x≤5时,y =2x
当x>5时,y =10+(x-5)×2.6=2.6x-3
(2)因为x =8>5 所以y =2.6×8-3=17.3.
解析:(1)两个不同的层次有两个不同的收费标准,因此应分段求函数关系式。

(2)有了(1)的函数关系式,直接代入就可求水费.
题8.答案: A
解析:开始以较慢的速度匀整前进,说明速度保持不变,即图象是一条平行x 轴的线段;然后越走越快了一段时间,说明这段时间,速度随时间的增加而增大,说明此段图象是一条由左斜向右上的线段;最后以较快乐的速度匀速到达学校,说明图象也是一条平行x 轴的线段,位置高于第一段,且三段依次是连接的.
π21y x =-10210x x +≥⎧⎨-≠⎩1x ≥-12x ≠。

相关文档
最新文档