八年级下数学函数练习题及答案(最新整理)

合集下载

(完整版)八年级下数学函数练习题及答案

(完整版)八年级下数学函数练习题及答案

1.如果x 、y 之间的关系是10(0)ax y a -+=≠,那么y 是x 的 ( ) A .正比例函数 B .反比例函数 C .一次函数 D .二次函数2.函数y =-4x的图象与x 轴的交点的个数是( ) A .零个 B .一个 C .两个 D .不能确定 3.反比例函数y =-4x的图象在( )A .第一、三象限B .第二、四象限C .第一、二象限D .第三、四象限4.已知关于x 的函数y =k (x +1)和y =-kx(k ≠0)它们在同一坐标系中的大致图象是(• )5.已知反比例函数y =xk的图象经过点(m ,3m ),则此反比例函数的图象在 ( )A .第一、二象限B .第一、三象限C .第二、四象限D .第三、四象限6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P ( kPa ) 是气体体积V ( m 3 ) 的反比例函数,其图象如图所示.当气球内的气压大于120 kPa 时,气球发将爆炸.为了安全起见,气球的体积应 ( )A .不小于54m 3 B .小于54m 3 C .不小于45m 3 D .小于45m 31.6 60 OV (m 3)P (kPa)(1.6,60) 第6题7.如果点P 为反比例函数xy 4=的图象上一点,PQ ⊥x 轴,垂足为Q ,那么△POQ 的面积为( )A .2B . 4C .6D . 8 8.已知:反比例函数xmy 21-=的图象上两点A (x 1,y 1),B (x 2, y 2)当x 1<0<x 2时,y 1<y 2,则m 的取值范围( )A .m <0B .m >0C .m <21 D .m >21二、填空题(每小题2分,共20分)9.有m 台完全相同的机器一起工作,需m 小时完成一项工作,当由x 台机器(x 为不大于m 的正整数)完成同一项工作时,所需的时间y 与机器台数x 的函数关系式是____.10.已知y 与x 成反比例,且当x 32=-时,y =5,则y 与x 的函数关系式为__________. 11.反比例函数xy 3=的图象在第一象限与第 象限. 12.某食堂现有煤炭500吨,这些煤炭能烧的天数y 与平均每天烧煤的吨数x 之间的函数关系式是 .13.若n x m y ++=2)5(是反比例函数,则m 、n 的取值是 .14.两位同学在描述同一反比例函数的图象时,甲同学说:这个反比例函数图象上任意一点到两坐标轴的距离的积都是3;乙同学说:这个反比例函数的图象与直线y =x 有两个交点,你认为这两位同学所描述的反比例函数的解析式是 .15.在ABC △的三个顶点A (2,-3)、B (-4,-5)、C (-3,2)中,可能在反比例函数(0)ky k x=>的图象上的点是 . 16.如果反比例函数4ny x-=的图象位于第二、四象限,则n 的取值范围是_______;如果图象在每个象限内,y 随x 的增大而减小,则n 的取值范围是 .17.如图,△P 1OA 1、△P 2A 1 A 2是等腰直角三角形,点P 1、P 2在函数4(0)y x x=>的图象上,斜边OA 1、A 1 A 2都在x 轴上,则点A 2的坐标是 . 18.两个反比例函数k y x =和1y x=在第一象限内的图象如图所示,点P 在k y x =的图象上,PC ⊥x 轴于点C ,交1y x=的图象于点A ,PD ⊥y 轴于点D ,交1y x =的图象于点B ,当点P 在ky x=的图象上运动时,以下结论: ①△ODB 与△OCA 的面积相等;②四边形PAOB 的面积不会发生变化;③PA 与PB 始终相等; ④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分). 三、解答题(共56分) 19.(4分)反比例函数xky =的图象经过点A (2 ,3). (1)求这个函数的解析式;(2)请判断点B (1 ,6)是否在这个反比例函数的图象上,并说明理由.20.(4分)已知三角形的一边为x ,这条边上的高为y ,三角形的面积为3,写出y 与x 的函数表达式,并画出函数的图象.O A 1A 2第17题21.(4分)如图,一次函数y =kx +b 的图像与反比例函数xmy的图像相交于A 、B 两点,(1)利用图中条件,求反比例函数和一次函数的解析式(2)根据图像写出使一次函数的值大于反比例函数的值的x 的取值范围.22.(6分)某蓄水池的排水管每时排水8 m 3,6h 可将满池水全部排空. (1)蓄水池的容积是多少?(2)如果增加排水管,使每时排水量达到Q (m 3),那么将满池水排空所需的时间t (h )将如何变化?(3)写出t 与Q 之间的函数关系式.(4)如果准备在5小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时12m 3,那么最少多长时间可将满池水全部排空?第21题图23.(6分)双曲线5y x=在第一象限的一支上有一点C (1,5),过点C 的直线y =kx +b (k >0)与x 轴交于点A (a ,0). (1)求点A 的横坐标a 与k 之间的函数关系式;(2)当该直线与双曲线在第一象限内的另一交点D 的横坐标是9时,求△COA 的面积.24.(6分)已知反比例函数xmy 3-=和一次函数1-=kx y 的图象都经过点m P (,)3m -(1)求点P 的坐标和这个一次函数的解析式;(2)若点M (a ,1y )和点N (1+a ,2y )都在这个一次函数的图象上.试通过计算或利用一次函数的性质,说明1y 大于2y25.(6分)近视眼镜的度数y (度)与镜片焦距x (米)成反比例,已知800度近视眼镜镜片的焦距为0.125米, (1)求y 与x 的函数关系;(2)若张华同学近视眼镜镜片的焦距为0.25米,你知道他的眼睛近视多少度吗?第23题图26.(6分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客. (1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足 关系.(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?27.(6分)联想电脑公司新春期间搞活动,规定每台电脑0.7万元,交首付后剩余的钱数y 与时间t 的关系如图所示: (1)根据图象写出y 与t 的函数关系式. (2)求出首付的钱数.(3)如果要求每月支付的钱数不少于400元,那么还至少几个才能将所有的钱全部还清?28.(8分)如图,直线b kx y +=与反比例函数xky '=(x <0)的图象相交于点A 、点B ,与x 轴交于点C ,其中点A 的坐标为(-2,4),点B 的横坐标为-4. (1)试确定反比例函数的关系式; (2)求△AOC 的面积.图1 图2600 t 月)y () (10,600)1.下列关系中的两个量成正比例的是( )A .从甲地到乙地,所用的时间和速度;B .正方形的面积与边长C .买同样的作业本所要的钱数和作业本的数量;D .人的体重与身高 2.下列函数中,y 是x 的正比例函数的是( )A .y=4x+1B .y=2x 2C .. 3.下列说法中不成立的是( )A .在y=3x-1中y+1与x 成正比例;B .在y=-2x中y 与x 成正比例 C .在y=2(x+1)中y 与x+1成正比例; D .在y=x+3中y 与x 成正比例 4.若函数y=(2m+6)x 2+(1-m )x 是正比例函数,则m 的值是( ) A .m=-3 B .m=1 C .m=3 D .m>-35.已知(x 1,y 1)和(x 2,y 2)是直线y=-3x 上的两点,且x 1>x 2,则y 1与y 2•的大小关系是( )A .y 1>y 2B .y 1<y 2C .y 1=y 2D .以上都有可能 6.形如___________的函数是正比例函数.7.若x 、y 是变量,且函数y=(k+1)x k2是正比例函数,则k=_________. 8.正比例函数y=kx (k 为常数,k<0)的图象依次经过第________象限,函数值随自变量的增大而_________.9.已知y 与x 成正比例,且x=2时y=-6,则y=9时x=________.10.写出下列各题中x 与y 的关系式,并判断y 是否是x 的正比例函数?(1)电报收费标准是每个字0.1元,电报费y (元)与字数x (个)之间的函数关系;(2)地面气温是28℃,如果每升高1km ,气温下降5℃,则气温x (•℃)•与高度y (km )的关系;(3)圆面积y (cm 2)与半径x (cm )的关系.探究园11.在函数y=-3x 的图象上取一点P ,过P 点作PA ⊥x 轴,已知P 点的横坐标为-•2,求△POA 的面积(O 为坐标原点).答案:1.C 2.C 3.D 4.A 5.B 6.y=kx (k 是常数,k ≠0) 7.+1 8.三、一;增大 9.-310.①y=0.1x ,y 是x 的正比例函数; ②y=28-5x ,y 不是x 的正比例函数; ③y=πx 2,y 不是x 的正比例函数. 11.6. 新人教八年级(下)第17章《反比例函数》答案一、选择题1.B ;2. A ;3. B ;4. A ;5. B ;6. C ;7.A ;8. C . 二、填空题9.y =x m 210.152y x=- 11.三 12.y =x 500 13.m ≠-5 n =-3 14.y=x315.B 16.n >4,n <4 17.(0) 18.①②④ 三、解答题 19.(1)y =x 6;(2)在 20. y =6x ,图像略 21.(1)2y x=-,1y x =--;(2) 2x <-或0x <<1 22.(1)348m ;(2)t 将减小;(3)48t Q=;(4)4859.6Q Q==,;(5)48412t ==23.(1)51a k=-+, (2) 25 24.(1)12--=x y ;(2)略 25.(1)100y x=,(2)400度 26.(1)图②是用与秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数y =xk(k >0),当x 变小时,y 增大 27.(1)y =t 6000 ;(2)7000-6000=1000(元);(3)400=t 6000,t =15 28.(1)8xy =-;(2)126。

初二数学函数试题及答案

初二数学函数试题及答案

初二数学函数试题及答案一、选择题(每题2分,共10分)1. 函数y = 3x + 5的斜率是:A. 3B. -3C. 5D. 02. 如果函数f(x) = 2x - 1,那么f(-3)的值是:A. -7B. -5B. 5D. 73. 下列哪个是一次函数:A. y = x^2B. y = 4x + 3C. y = 1/xD. y = sin(x)4. 函数y = 2x的图象经过第几象限:A. 第一象限和第二象限B. 第一象限和第四象限C. 第二象限和第三象限D. 第三象限和第四象限5. 如果一个函数的图象是一条直线,那么这个函数是:A. 一次函数B. 二次函数C. 三次函数D. 指数函数二、填空题(每题2分,共10分)6. 函数y = kx + b中,k表示______。

7. 函数f(x) = 3x^2 + 2x - 1的顶点坐标是______。

8. 当x > 0时,函数y = 1/x的值是______。

9. 函数y = |x - 3|的图象是一条折线,折点坐标为______。

10. 如果一个函数的增减性是单调递增,那么这个函数是______。

三、解答题(每题10分,共30分)11. 已知函数y = 2x + 4,求当x = -1时,y的值。

12. 给定函数f(x) = x^2 - 4x + 3,求该函数的顶点坐标。

13. 函数y = 1/x在x = 2处的切线斜率是多少?四、应用题(每题15分,共30分)14. 一个物体从静止开始以匀速直线运动,其速度与时间的关系为v = 3t。

求物体在第5秒时的速度。

15. 某工厂生产的产品数量与生产时间的关系为Q = 100t + 50,其中Q表示产品数量,t表示生产时间(小时)。

如果工厂从上午8点开始生产,到中午12点结束,求工厂在这段时间内生产的总产品数量。

五、综合题(每题20分,共20分)16. 已知一次函数y = 2x - 6,如果该函数的图象与x轴交于点A,与y轴交于点B,求点A和点B的坐标。

初二函数试题及答案

初二函数试题及答案

初二函数试题及答案一、选择题(每题2分,共10分)1. 下列哪个选项是函数y=2x+3的值域?A. {x|x∈R}B. {y|y∈R}C. {(x, y)|x∈R, y∈R}D. {y|y=2x+3, x∈R}答案:D2. 函数y=f(x)=x^2-4x+3的图象开口方向是:A. 向上B. 向下C. 向左D. 向右答案:A3. 函数y=-x^2+6x-8的顶点坐标是:A. (1, -7)B. (3, -1)C. (3, 1)D. (1, 7)答案:B4. 函数y=\frac{1}{x}的图象在第几象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:B5. 下列函数中,哪一个是奇函数?A. y=x^2B. y=x^3C. y=x+1D. y=x^2-1答案:B二、填空题(每题3分,共15分)1. 函数y=3x-7的图象与x轴的交点坐标是______。

答案:(\frac{7}{3}, 0)2. 函数y=\frac{1}{2}x+1的图象与y轴的交点坐标是______。

答案:(0, 1)3. 函数y=x^2-6x+5的对称轴是直线______。

答案:x=34. 函数y=-2x+1的一次项系数是______。

答案:-25. 函数y=x^3-3x^2+3x-1的图象在x=1处的切线斜率是______。

答案:-1三、解答题(每题5分,共20分)1. 已知函数y=2x-1,求当x=2时,y的值。

答案:当x=2时,y=2*2-1=3。

2. 求函数y=x^2-4x+3的最小值。

答案:函数y=x^2-4x+3可以写成y=(x-2)^2-1,因此当x=2时,函数取得最小值-1。

3. 已知函数y=x-1,求该函数的反函数。

答案:反函数为y=x+1。

4. 已知函数y=\frac{1}{x},求该函数在x=-2处的导数值。

答案:函数y=\frac{1}{x}的导数为y'=-\frac{1}{x^2},因此在x=-2处的导数值为y'=\frac{1}{4}。

函数试题及答案初二

函数试题及答案初二

函数试题及答案初二一、选择题1. 函数的概念是什么?A. 变量之间的关系B. 变量的值C. 变量的集合D. 变量的映射答案:D2. 函数的自变量和因变量分别代表什么?A. 自变量是函数的输入,因变量是函数的输出B. 自变量是函数的输出,因变量是函数的输入C. 自变量和因变量都是函数的输入D. 自变量和因变量都是函数的输出答案:A3. 下列哪个选项是函数的表示方法?A. 列表B. 表格C. 公式D. 图像答案:C4. 函数的值域是指什么?A. 函数的所有可能输入值B. 函数的所有可能输出值C. 函数的自变量范围D. 函数的因变量范围答案:B5. 如果一个函数的自变量是x,因变量是y,那么函数可以表示为:A. y = f(x)B. x = f(y)C. f = y(x)D. f = x(y)答案:A二、填空题1. 函数是定义在某个非空数集上的一个______到另一个非空数集上的一个______。

答案:映射2. 函数的自变量可以取任意实数,那么这个函数的定义域是______。

答案:全体实数3. 如果一个函数的图像是一条直线,那么这个函数是______函数。

答案:线性4. 函数y = 2x + 3的值域是______。

答案:全体实数5. 函数y = x^2的图像是一个______。

答案:抛物线三、解答题1. 已知函数f(x) = 3x - 2,求f(5)的值。

答案:将x=5代入函数f(x) = 3x - 2,得到f(5) = 3*5 - 2 = 15 - 2 = 13。

2. 已知函数g(x) = x^2 - 4x + 3,求g(2)的值。

答案:将x=2代入函数g(x) = x^2 - 4x + 3,得到g(2) = 2^2 -4*2 + 3 = 4 - 8 + 3 = -1。

3. 已知函数h(x) = 2x + 1,求h(-3)的值。

答案:将x=-3代入函数h(x) = 2x + 1,得到h(-3) = 2*(-3) + 1 = -6 + 1 = -5。

八年级函数试题及答案

八年级函数试题及答案

八年级函数试题及答案一、选择题1. 下列哪个选项是函数y=2x+3的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=-3x+2的斜率是多少?A. 3B. -3C. 2D. -2答案:B3. 如果f(x)=x^2-4x+3,那么f(2)的值是多少?A. 1B. -1C. 3D. 5答案:A4. 函数y=x^3-3x+2的零点个数是:A. 0B. 1C. 2D. 3答案:D二、填空题1. 函数y=5x-2的图象与x轴的交点坐标是______。

答案:(2/5, 0)2. 如果函数f(x)=x^2+bx+c的顶点坐标是(-2, -3),那么b和c的值分别是______和______。

答案:-4,-33. 函数y=2x+1在x=3时的函数值是______。

答案:7三、解答题1. 已知函数f(x)=2x-3,求f(-1)的值。

答案:f(-1) = 2*(-1) - 3 = -52. 已知一次函数y=kx+b的图象经过点(1, 5)和(-1, 1),求k和b的值。

答案:将点(1, 5)代入方程得5 = k + b,将点(-1, 1)代入方程得1 = -k + b。

解方程组得k=2,b=3。

3. 已知二次函数y=ax^2+bx+c的图象开口向下,且顶点坐标为(2, 3),求a的值。

答案:因为图象开口向下,所以a<0。

顶点坐标为(2, 3),所以函数可以表示为y=a(x-2)^2+3。

由于顶点是(2, 3),所以a<0。

四、应用题1. 某工厂生产的产品数量与成本的关系为y=0.5x+1000,其中x表示产品数量,y表示成本。

如果工厂生产了500件产品,那么总成本是多少?答案:将x=500代入方程得y=0.5*500+1000=1250。

所以总成本是1250元。

2. 某地的气温与时间的关系为y=-0.2x^2+4x+10,其中x表示月份,y 表示气温。

求4月份的气温。

初二函数练习题含答案

初二函数练习题含答案

初二函数练习题含答案1. 求解下列函数的定义域:a) f(x) = √(4 - x^2)b) g(x) = 1 / (x + 3)c) h(x) = log(x - 2)2. 求解下列函数的值域:a) f(x) = x^2 + 3b) g(x) = 2x - 13. 求解下列函数的奇偶性:a) f(x) = x^3 + xb) g(x) = sin(x)c) h(x) = cos(x)4. 求解下列函数的周期性:a) f(x) = sin(2x)b) g(x) = cos(4x)5. 求解下列函数的增减性及极值点:a) f(x) = x^3 + 3x^2 - 9x + 2b) g(x) = 2x^2 - 4x + 36. 求解下列函数的反函数:a) f(x) = 2x + 3b) g(x) = 4 / (3 - x)7. 求解下列函数的复合函数:a) f(x) = 2x + 1, g(x) = x^2b) f(x) = √x, g(x) = 3x + 28. 求解下列函数的零点:a) f(x) = x^2 - 4b) g(x) = 3x + 29. 求解下列函数的渐近线:a) f(x) = (2x + 3) / (x + 1)b) g(x) = 1 / (x^2 + 1)10. 求解下列函数的图像与坐标轴的交点:a) f(x) = x^2 - 3x + 2b) g(x) = 2 / (x - 1)答案:1.a) 函数f(x)的定义域为[-2, 2],即x ∈ [-2, 2]。

b) 函数g(x)的定义域为R - {-3},即除去x等于-3的所有实数。

c) 函数h(x)的定义域为(x > 2)。

2.a) 函数f(x)的值域为[3, +∞),即f(x) ≥ 3。

b) 函数g(x)的值域为(-∞, +∞),即g(x) ∈ (-∞, +∞)。

3.a) 函数f(x)是奇函数,即f(-x) = -f(x)。

新人教版八年级下数学《函数》练习题

新人教版八年级下数学《函数》练习题

新人教版八年级下数学《函数》练习题新人教版八年级下数学《函数》练题19.1 函数19.1.1 变量与函数课前预要点感知1:在一个变化过程中,数值发生的量叫做变量,数值始终不变的量叫做常量。

预练1-1:如果直角三角形两锐角的度数分别为x、y,其关系式为y=90-x,其中变量为x,常量为90.要点感知2:在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有确定的值与其对应,那么我们就说x是自变量,y是x的函数。

如果当x=a时,y=b,那么b叫做当自变量的值为a时的函数值。

预练2-1:如果球的体积为V,半径为R,则V=πR^3.其中自变量是R,函数是V。

要点感知3:函数自变量的取值范围既要满足函数关系式,又要满足实际问题。

预练3-1:甲乙两地相距100km,一辆汽车以每小时40km的速度从甲地开往乙地,t小时与乙地相距s km,s与t的函数解析式是s=40t,自变量t的取值范围是0≤t≤2.5.当堂训练知识点1:变量与常量1.圆周长公式C=2πR中,下列说法正确的是(B)R是变量,2、π、C为常量。

2.写出下列各问题中的数量关系,并指出各个关系式中,哪些是常量?哪些是变量?1)购买单价为5元的钢笔n支,共花去y元;变量是n,常量是5.2)全班50名同学,有a名男同学,b名女同学;变量是a、b,常量是50.3)汽车以60km/h的速度行驶了t h,所走过的路程为s km;变量是t,常量是60.知识点2:函数的有关概念3.下列关系式中,一定能称y是x的函数的是(B)y=3x-1.4.若93号汽油售价7.85元/升,则付款金额y(元)与购买数量x(升)之间的函数关系式为y=7.85x,其中x是自变量,y是的函数。

5.当x=2和x=-3时,分别求下列函数的函数值。

1)y=(x+1)(x-2);当x=2时,y=0;当x=-3时,y=20.2)y=2x^2-3x+2;当x=2时,y=8;当x=-3时,y=29.知识点3:函数的解析式及自变量的取值范围6.(云南中考)函数y=(x-2)/x的自变量x的取值范围为(x≠2)。

初二函数练习题带答案

初二函数练习题带答案

初二函数练习题带答案一、选择题1. 下列函数中,不是一次函数的是:A. f(x) = 2x + 3B. f(x) = x^2 + 2C. f(x) = 3x - 1D. f(x) = 4x + 5答案:B2. 若函数f(x) = kx - 2的图象经过点(3, 4),则k的值为:A. 1B. 6C. 2D. -1答案:C3. 已知函数f(x) = (x - 1)(x + 2),则f(-2)的值为:A. 0B. -3C. 6D. 10答案:A二、计算题1. 已知函数f(x) = 2x - 1,求f(3)的值。

解析:将x替换为3,得到f(3) = 2(3) - 1 = 5。

答案:52. 若函数g(x) = 3x^2 - 2x + 1,求g(2)的值。

解析:将x替换为2,得到g(2) = 3(2)^2 - 2(2) + 1 = 13。

答案:133. 给定函数h(x) = x^3 + 2x^2 - 3x,求h(0)的值。

解析:将x替换为0,得到h(0) = 0^3 + 2(0)^2 - 3(0) = 0。

答案:04. 若函数y = 3x + k经过点(2, 7),求k的值。

解析:将x替换为2,y替换为7,得到7 = 3(2) + k。

解方程可得k = 1。

答案:15. 若函数y = kx^2 + 2x与y = x + 3有公共解,求k的值。

解析:将两个方程相等,得到kx^2 + 2x = x + 3。

整理化简可得kx^2 + x - 3 = 0。

由于有公共解,所以判别式Δ = 1^2 - 4k(-3) = 1 + 12k ≥ 0。

解不等式可得k ≥ -1/12。

答案:k ≥ -1/12三、应用题1. 某产品的销售价格y与生产成本x之间满足y = 1.5x + 3000的关系,其中y和x的单位都为元。

求该产品的生产成本为5000元时的销售价格。

解析:将x替换为5000,得到y = 1.5(5000) + 3000 = 10500。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A.m=-3
B.m=1 C.m=3
D.m>-3
5.已知(x1,y1)和(x2,y2)是直线 y=-3x 上的两点,且 x1>x2,则 y1 与 y2 的大小关系是( )
A.y1>y2
B.y1<y2
C.y1=y2
6.形如___________的函数是正比例函数.
D.以上都有可能
7.若 x、y 是变量,且函数 y=(k+1)xk2 是正比例函数,则 k=_________.
x
x
点 P 在 y k 的图象上,PC⊥x 轴于点 C,交 y 1 的图象于点 A,PD
x
x
⊥y 轴于点 D,交 y 1 的图象于点 B,当点 P 在 y k 的图象上
x
x
P1 P2
x
O
A1 A2
第 17 题
运动时,以下结论:
①△ODB 与△OCA 的面积相等;
②四边形 PAOB 的面积不会发生变化;③PA 与 PB 始终相等;
(1)电报收费标准是每个字 0.1 元,电报费 y(元)与字数 x(个)之间的
函数关系;
(2)地面气温是 28℃,如果每升高 1km,气温下降 5℃,则气温 x(℃)
与高度 y(km)的关系;
(3)圆面积 y(cm2)与半径 x(cm)的关系.
探究园 11.在函数 y=-3x 的图象上取一点 P,过 P 点作 PA⊥x 轴,已知 P 点的横坐标为-2,
1.下列关系中的两个量成正比例的是( ) A. 从 甲 地 到 乙 地 , 所 用 的 时 间 和 速 度 ;
B.正方形的面积与边长 C.买同样的作业本所要的钱数和作业本的数量;D.人的体重与身高
-6-
2.下列函数中,y 是 x 的正比例函数的是( )
A.y=4x+1
B.y=2x2
C.y=- 5 x
400= 6000 ,t=15 28.(1) y x ;(2)126
t
8
-8-
y A(-2,1)
x B(1,n) 第 21 题图
22.(6 分)某蓄水池的排水管每时排水 8 m3,6h 可将满池水全部排空. (1)蓄水池的容积是多少? (2)如果增加排水管,使每时排水量达到 Q(m3),那么将满池水排空所需 的时间 t(h)将如何变化? (3)写出 t 与 Q 之间的函数关系式. (4)如果准备在 5 小时之内将满水池排空,那么每时的排水量至少为多少? (5)已知排水管的最大排水量为每时 12m3,那么最少多长时间可将满池水全
为不大于 m 的正整数)完成同一项工作时,所需的时间 y 与机器台数 x 的函
数关系式是____.
10.已知 y 与 x 成反比例,且当 x 3 时,y=5,则 y 与 x 的函数关系式为__________. 2
11.反比例函数 y 3 的图象在第一象限与第 x
象限.
12.某食堂现有煤炭 500 吨,这些煤炭能烧的天数 y 与平均每天烧煤的吨数 x 之
Q
12
23.(1) a 5 1, (2) 25
k
24. ( 1)
y 2x 1;(2)略 25.(1) y 100 ,(2)400 度 26.(1)图②是用与 x
秤配套的秤砣,图①则使用较轻的秤砣.(2)反比例. (3)函数 y= k (k>0), x
当 x 变小时,y 增大 27.(1)y= 6000 ;(2)7000-6000=1000(元);(3) t
25.(6 分)近视眼镜的度数 y(度)与镜片焦距 x(米)成反比例,已知 800 度近视眼镜镜片的焦距为 0.125 米, (1)求 y 与 x 的函数关系; (2)若张华同学近视眼镜镜片的焦距为 0.25 米,你知道他的眼睛近视多少
度吗?
26.(6 分)对于取消市场上使用的杆秤的呼声越来越高,原因在于一些不法商
1. 如 果 x、 y 之 间 的 关 系 是 ax1 y 0(a≠0) , 那 么 y 是 x 的


A.正比例函数 B.反比例函数 C.一次函数 D.二次函数
4 2. 函 数 y= - 的 图 象 与 x 轴 的 交 点 的 个 数 是
x


A.零个
B.一个
C.两个
D.不能确定
3. 反 比 例 函 数
4 y= - 的 图 象 在
x


A.第一、三象限 B.第二、四象限
C.第一、二象限 D.第三、四象限 4.已知关于 x 的函数 y=k(x+1)和 y=- k (k≠0)它们在同一坐标系中的大
x 致图象是( )
5.已知反比例函数 y= k 的图象经过点(m,3m),则此反比例函数的图象在 x

求△POA 的面积(O 为坐标原点).
-7-
答案: 1.C 2.C 3.D 4.A 5.B 6.y=kx(k 是常数,k≠0) 7.+1 8.三、一;增大 9.-3 10.①y=0.1x,y 是 x 的正比例函数;
②y=28-5x,y 不是 x 的正比例函数; ③y= x2,y 不是 x 的正比例函数. 11.6.
n=-3 14.y=
三、解答题
19.(1)y= 6 ;(2)在 x
(2) x 2 或 0 x
20. y= 6 ,图像略 21.(1) y 2 , y x 1;
x
x
22.(1) 48m3 ;(2)t 将减小;(3) t 48 ;(4)
Q
5 48,Q 9.6 ;(5) t 48 4
图1
图2
27.(6 分)联想电脑公司新春期间搞活动,规定每台电脑 0.7 万元,交首付后
剩余的钱数 y 与时间 t 的关系如图所示:
(1)根据图象写出 y 与 t 的函数关系式.
(2)求出首付的钱数.
(3)如果要求每月支付的钱数不少于 400 元,那么还至少几个才能将所有的
钱全部还清?
y(元)
900
600
100
28.(8 分)如图,直线 y kx b 与反比例函数 y k ' ( O x
(10,600)
5 10 15 t(月)
x <0)的图象相交于点 A、点 B,与 x 轴交于点 C,其中点 A 的坐标为(-2,4), 点 B 的横坐标为-4.
(1)试确定反比例函数的关系式;
(2)求△AOC 的面积.
④当点 A 是 PC 的中点时,点 B 一定是 PD 的中点.
其中一定正确的是
(把你认为正确结论的序号都填上,少填或
错填不给分).
三、解答题(共 56 分) 19.(4 分)反比例函数 y k 的图象经过点 A(2 ,3).
x (1)求这个函数的解析式;
(2)请判断点 B(1 ,6)是否在这个反比例函数的图象上,并说明理由.
D.y= x
3.下列说法中不成立的是( )
A.在 y=3x-1 中 y+1 与 x 成正比例; B.在 y=- x 中 y 与 x 成正比例 2
C.在 y=2(x+1)中 y 与 x+1 成正比例; D.在 y=x+3 中 y 与 x 成正比例
4.若函数 y=(2m+6)x2+(1-m)x 是正比例函数,则 m 的值是( )
的面积.
y
C(1,5)
D
x
O
A
第 23 题图
24.(6 分)已知反比例函数 y 3m 和一次函数 y kx 1的图象都经过点 P(m , x
3m) (1)求点 P 的坐标和这个一次函数的解析式; (2)若点 M( a , y1 )和点 N ( a 1, y2 )都在这个一次函数的图象上.试 通过计算或利用一次函数的性质,说明 y1 大于 y2
新人教八年级(下)第 17 章《反比例函数》答案
一、选择题
1.B;2. A;3. B;4. A ;5. B ;6. C ;7.A ;8. C.
二、填空题
9.y= m2
x
3 15.B x
10. y 15
2x
11.三 12.y= 500
x
16.n>4,n<4 17.( 4 2 ,0) 18.①②④
13.m≠-5
部排空?
23.(6 分)双曲线 y 5 在第一象限的一支上有一点 C(1,5),过点 C 的直线 y=kx x
+b(k>0)与 x 轴交于点 A(a,0).
-4-
(1)求点 A 的横坐标 a 与 k 之间的函数关系式;
(2)当该直线与双曲线在第一象限内的另一交点 D 的横坐标是 9 时,求△COA
-5-
贩在卖货时将秤砣挖空,或更换较小称砣,使砣较轻,从而欺骗顾客. (1)如图,对于同一物体,哪个图用的是标准秤砣,哪个用的是较轻的秤砣? (2)在称同一物体时,所称得的物体质量 y(千克)与所用秤砣质量 x(千克)
之间满足 关系.
(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?
(1.6,60)
起见,气球的体积应 ( )
A.不小于 5 m3 B.小于 5 m3 C.不小于 4 m3 D.小于 4 m3
4
4
5
5
O
1.6 V (m3)
第6题
-1-
7.如果点 P 为反比例函数 y 4 的图象上一点,PQ⊥x 轴,垂足为 Q,那么△POQ x
的面积为(

A.2
B. 4
C.6
D. 8

A.第一、二象限 B.第一、三象限
C.第二、四象限 D.第三、四象限
6.某气球内充满了一定质量的气体,当温度不变时,气球内气体的
P (kPa)
气压 P ( kPa ) 是气体体积 V ( m3 ) 的反比例函数,其图象如图 所示.当气球内的气压大于 120 kPa 时,气球发将爆炸.为了安全 60
相关文档
最新文档