Algorithm Chapter 4
算法设计与分析基础课后习题答案solu4

C(2k) = 2C(2k−1) + 1 = 2[2C(2k−2) + 1] + 1 = 22C(2k−2) + 2 + 1 = 22[2C(2k−3) + 1] + 2 + 1 = 23C(2k−3) + 22 + 2 + 1 = ... = 2iC(2k−i) + 2i−1 + 2i−2 + ... + 1 = ... = 2kC(2k−k) + 2k−1 + 2k−2 + ... + 1 = 2k − 1 = n − 1.
Design a divide-and-conquer algorithm for this problem.
2
Hints to Exercises 4.1
1. In more than one respect, this question is similar to the divide-and-conquer computation of the sum of n numbers. Also, you were asked to analyze an almost identical algorithm in Exercises 2.4.
b. Set up and solve a recurrence relation for the number of multiplications made by this algorithm.
c. How does this algorithm compare with the brute-force algorithm for this problem?
矿物加工技术双语翻译

PartI words Chapter1 Introductionalluvial mining---冲积矿床开采aluminium—铝an optimum grind size—最佳磨矿粒度barytes—重晶石comminution—粉碎degree of liberation—解离度diamond ores—金刚石矿石Electrical conductivity properties—导电性fluorite—萤石fundamental operations—基本选别流程release/liberation—解离Galena—leadsulphide—方铅矿sphalerite-zincsulphide—闪锌矿cassiterite-tin oxide—锡石grinding—磨矿Laboratory and pilot scale test-work—试验室和半工业实验Line flowsheet—线流程locking of mineral and gangue—连生体Middlings—中矿mill(concentrator)--- 选矿厂milling costs—磨矿消耗Minerals definition(p.1)metallic ore processing –金属矿石加工gangue—脉石Mineral—矿物ore—矿石crust of the earth—地壳sea-bed—河床non-metallic ores—非金属矿石bauxite—氧化铝optical properties—光学性质Ore bodies—矿体part per million(ppm)Primary grind—粗磨product handling—产品处理pyrite –黄铁矿Recovery—回收率Refractory bricks—耐火砖abrasives—磨料Separation—分离Smelter—熔炼sorting—拣选subsequent concentration process—后续选别流程Tailings retreatment—尾矿再处理as-mined(run of mine)—原矿mineral processing(ore dressing/mineral dressing/milling(磨选))—矿物加工portion/concentrate—精矿discard/tailing—尾矿the flowsheet—工艺流程The minimum metal content(grade)—最低金属含量The valuable mineral—有用矿物complex ores—复合矿The waste minerals—脉石enrichment process—富集工艺metal losses—金属损失the enrichment ratio—富集比efficiency of mineral processing operations—矿物加工作业效率The ratio of concentration –选别比the grade/assay—品位ultra-fine particles—超细颗粒unit concentration processes—单元选别流程Chapter2Ore handingopen-pit ore(露天开采的矿石p30,左下)run-of-mine ore(原矿)Typical washing plant flowsheet(洗矿车间典型流程figure 2.2) tipper (卸料器p33 右上)Shuttle belt (梭式胶带p33 右中)Gravity bucket elevator (斗式重力提升机p33 右下)Ore storage(矿物储存p35 右上)包括:stockpile (矿场)bin(矿仓)tank (贮槽)Front-end loader (前段式装载机p35 右上)Bucket-wheel reclaimer(斗轮式装载机p35 右上)Reclaim tunnel system(隧道装运系统p35 右上)The amount of reclaimable material/the live storage(有效贮量p35 右中figure 2.7) Conditioning tank (调和槽p36 左上)Chain-feeder (罗斯链式给矿机figure 2.9)Cross-section of elliptical bar feeder (椭圆形棒条给矿机figure 2.10)Vibrating grizzly feeder (振动格筛给矿机p37 左上)Apron feeder (板式给矿机figure 2.11)Belt feeder (胶带给矿机p37 右下)Chapter 4 particle size analysisacicular(针状);adverse(相反的);algorithm(算法);angular(多角状);aperture(孔径);apex (顶点);apparatus(仪器);arithmetic(运算器,算术); assaying(化验);attenuation(衰减);beaker decantation(烧杯倾析); blinding(阻塞);calibration(校正);charge(负荷);congest(充满);consecutive(连续的);contract(压缩);convection current(对流); conversion factor(转化因子); crystalline(晶体状);cyclosizer(旋流分析仪);de-aerated(脱气);derive:(得出);dilute(稀释);dimensionless quantity(无量纲量); dispersing agent(分散剂);distort(变形);duplicate(重复); electrical impedence(电阻); electroetching(电蚀刻); electroform(电铸);elutriation(淘析);epidote(绿帘石);equilateral triangle(等边三角形); flaky(薄片状);flask(烧瓶);fractionated sample(分级产品); gauze(筛网);geometric(几何学的);granular(粒状的);graticule(坐标网);gray scale(灰度);ground glass(毛玻璃);hand sieve(手动筛);histogram(直方图);immersion(浸没);inter-conversion(相互转变); interpolate(插值);intervals(区间);laminar flow(粘性流体);laser diffraction(激光衍射);light scattering method(光散射法); line of slope(斜率);logarithmic(对数的);machine sieve(机械筛); mechanical constraint(机械阻力);mesh(目);modular(系数的,制成有标准组件的);near size(临界筛孔尺寸);nominal aperture();nylon(尼龙);opening(开口);ordinate(纵坐标);perforated(多孔的);pipette(吸管);plotting cumulative undersize(累积筛下曲线); median size(中间粒度d50);polyhedron(多面体); reflection(反射); procure(获得);projected area diameter(投影面直径);ratio of the aperture width(筛比);refractive index(折射率);regression(回归) ;reproducible(可再生的);sedimentation balance(沉降天平); sedimentation(沉降) ;segment(片);sensor section(传感器); sieve shaker(振动筛,振筛器); spreadsheet(电子表格);simultaneously(同时地);size distribution(粒度分布);spectrometer(摄谱仪);stokes diameter(斯托克斯直径);subdivide(细分);sub-sieve(微粒);suction(吸入);syphon tube(虹吸管);tabulate(列表);tangential entry(切向入口);terminal velocity(沉降末速);truncate(截断);twill(斜纹图);two way cock(双通塞);ultra sonic(超声波);underside(下侧);vertex(顶点);vortex outlet (涡流出口);wetting agent(润湿剂);Chapter 5 comminutionattrition----- 研磨batch-type grindability test—小型开路可磨性实验bond’s third theory—邦德第三理论work index----功指数breakage—破碎converyor--- 运输机crack propagation—裂隙扩展crushing and grinding processes—破碎磨矿过程crushing----压扎crystalline material—晶状构体physical and chemical bond –物理化学键diameter—直径elastic—弹性fine-grained rocks—细粒岩石coarse-grained rocks—粗粒岩石chemical additives—化学添加剂fracture----碎裂free surface energy—自由表面能potential energy of atoms—原子势能graphical methods---图解法grindability test—可磨性实验crushing and grinding efficiency--- 破碎磨矿效率grinding media—磨矿介质gyratory crusher---旋回破碎机tumbling mill --- 筒形磨矿机impact crusher—冲击式破碎机high pressure griding roll--高压辊磨impact breaking-冲击破碎impact—冲击jaw—颚式破碎机material index-材料指数grindability—可磨性mill----选矿厂non-linear regression methods--- 非线性回归法ore carry--- 矿车Parameter estimation techniques—参数估计技术reduction ratio—破碎比roll crusher—辊式破碎机operating work indices—操作功指数Scraper—电铲slurry feed—矿浆SPI(SAG Power Index)—SAG 功指数simulation of comminution processes and circuits—粉碎工艺流程模拟stirred mill—搅拌磨stram energy---应变能the breakage characteristics—碎裂特性the crystalline lattice—晶格the reference ore---参比矿石product size distribution--- 产品粒度分布theory of comminution—粉碎理论brittle—脆性的tough material--- 韧性材料platstic flow—塑性流动Tracer methods—示踪法vibration mill-- 振动磨矿机Chapter 6CrushersAG/SAG mills(autogenousgrinding/semiautogenous grinding) 自磨、半自磨Alternating working stresses交替工作应力Amplitude of swing 摆幅Arrested or free crushing 夹压碎矿、自由碎矿Bell-shaped 钟形Belt scales 皮带秤Binding agents 粘结剂Bitumen 沥青Blending and rehandling 混合再处理Breaker plate 反击板Capital costs 基建费用Capstan and chain 铰杆铰链Cast iron or steel 铸铁铸钢Chalk 白垩Cheek plates 夹板Choke fed 阻塞给矿(挤满给矿)Choked crushing 阻塞碎矿Chromium carbide 碳铬合金Clay 粘土Concave 凹的Convex 凸的Corrugated 波纹状的Cross-sectional area 截面积Cross-section剖面图Crusher gape 排矿口Crusher throat 破碎腔Crushing chamber 破碎腔Crushing rolls 辊式碎矿机Crushing 破碎Discharge aperture 排矿口Double toggle 双肘板Drilling and blasting 打钻和爆破Drive shaft 驱动轴Eccentric sleeve 偏心轴套Eccentric 偏心轮Elliptical 椭圆的Epoxy resin 环氧树脂垫片Filler material 填料Fixed hammer impact mill 固定锤冲击破碎机Flakes 薄片Flaky 薄而易剥落的Floating roll 可动辊Flywheel 飞轮Fragmentation chamber 破碎腔Grizzlies 格条筛Gypsum 石膏Gyratory crushers 旋回破碎机Hammer mills 锤碎机Hydraulic jacking 液压顶Idle 闲置Impact crushers 冲击式破碎机Interparticle comminution 粒间粉碎Jaw crushers 颚式破碎机Limestone 石灰岩Lump 成块Maintenance costs 维修费Manganese steel mantle 锰钢罩Manganese steel 锰钢Mechanical delays 机械检修Metalliferous ores 有色金属矿Nip 挤压Nodular cast iron 球墨铸铁Nut 螺母Pack 填充Pebble mills 砾磨Pillow 垫板Pitman 连杆Pivot 轴Plates 颚板Primary crushing 初碎Receiving areas 受矿面积Reduction ratio 破碎比Residual stresses 残余应力Ribbon 流量Rivets 铆钉Rod mills 棒磨Roll crushers 辊式碎矿机Rotary coal breakers 滚筒碎煤机Rotating head 旋回锥体Scalp 扫除Secondary crushing 中碎Sectionalized concaves分段锥面Set 排矿口Shales 页岩Silica 二氧化硅Single toggle 单肘板Skips or lorries 箕斗和矿车Spider 壁架Spindle 竖轴Springs 弹簧Staves 环板Steel forgings 锻件Stroke 冲程Stroke 冲程Surge bin 缓冲箱Suspended bearing 悬吊轴承Swell 膨胀Swinging jaw 动颚Taconite ores 铁燧岩矿石Tertiary crushing 细碎The (kinetic) coefficient of friction (动)摩擦系数The angle of nip啮角The angle of repose 安息角The cone crusher 圆锥破碎机The cone lining 圆锥衬里The gyradisc crusher 盘式旋回碎矿机Thread 螺距Throughput 处理量Throw 冲程Tripout 停机Trommel screen 滚筒筛Valve 阀Vibrating screens 振动筛Wear 磨损Wedge-shaped 锥形Chapter 7 grinding millsAbrasion 磨蚀Alignment Amalgamation 融合/汞剂化Asbestos 石棉Aspect ratio 纵横比/高宽比Attrition 磨蚀Autogenous mill 自磨机Ball mill 棒磨Barite 重晶石Bearing 轴承Bellow 吼叫Belly 腹部Best-fit 最优化Bolt 螺栓Brittle 易碎的Build-up 增强Butt-weld 焊接Capacitance 电容量Cascade 泻落Cataract 抛落Central shaft 中心轴Centrifugal force 离心力Centrifugal mill 离心磨Chipping 碎屑Churning 搅拌器Circulating load 循环负荷Circumferential 圆周Clinker 渣块Cobbing 人工敲碎Coiled spring 盘簧Comminution 粉碎Compression 压缩Contraction 收缩Corrosion 腐蚀Corrugated 起褶皱的Crack 裂缝Critical speed 临界速度Crystal lattice 晶格Cushion 垫子Cyanide 氰化物Diagnose 诊断Dilute 稀释Discharge 放电Drill coreElastic 有弹性的Electronic belt weigher 电子皮带秤Elongation 延长率Emery 金刚砂Energy-intensive 能量密度Entangle 缠绕Expert system 专家系统Explosives 易爆炸的Flange 破碎Fracture 折断、破碎Front-end loader 前段装备Gear 齿轮传动装置Girth 周长Granulate 颗粒状的Grate discharge 磨碎排矿GreenfieldGrindability 可磨性Grinding media 磨矿介质Groove 沟槽Helical 螺旋状的High carbon steel 高碳钢High pressure grinding roll 高压滚磨Hopper 加料斗Housing 外壳Impact 冲击Impeller 叶轮IntegralInternal stress 内部压力Kinetic energy 运动能Least-square 最小平方Limestone 石灰岩Liner 衬板Lock 锁Lubricant 润滑剂Magnetic metal liner 磁性衬板Malleable 有延展性的Manhole 检修孔Material index 材料指数Matrix 矿脉Muffle 覆盖Multivariable control 多元控制Newtonian 牛顿学的Nodular cast iron 小块铸铁Non-Newtonian 非牛顿的Normally 通常Nuclear density gauge 核密度计Nullify废弃Oblique间接地,斜的Operating 操作Orifice 孔Output shaft 产量轴Overgrinding 过磨Parabolic 像抛物线似地Pebble 砾石Pebble mill 砾磨PendulumPilot scale 规模试验Pinion 小齿轮Pitting 使留下疤痕Plane 水平面PloughPotential energy 潜力Pressure transducer 压力传感器Prime moverPrismatic 棱柱形的Probability 可能性/概率Propagation 增值Pulp density 矿浆密度Pulverize 粉碎Quartzite 石英岩Radiused 半径Rake 耙子Reducer还原剂Reduction ratio 缩小比Retention screenRetrofit 改进Rheological 流变学的Rib骨架Rod 棒Roller-bearing 滚动轴承Rotor 旋转器Rubber liner 橡胶衬板Rupture 裂开ScatsScoop铲起Scraper 刮取器Screw flight 螺旋飞行Seasoned 干燥的SegregationSet-point 选点Shaft 轴Shear 剪Shell 外壳Simulation 模拟SlasticitySpalling 击碎Spigot 龙头Spill 溢出/跌落Spin 使什么旋转Spiral classifier 螺旋分级机Spout 喷出Stationary 静止的Stator 固定片Steady-state 不变的Steel plate 钢盘Steel-capped 钢帽Stirred mill搅拌磨Stress concentration 应力集中Sump 水池Taconite 铁燧岩Tensile stress 拉伸力Thicken 浓缩Throughput 生产量Thyristor 半导体闸流管Time lag 时间间隔Tower mill塔磨Trajectory 轨迹Trial and error 反复试验Trunnion 耳轴Tube millTumbling mill 滚磨Undergrinding 欠磨Underrun 低于估计产量Unlock 开启Vibratory mill 振动磨Viscometer 黏度计Viscosity 黏性Warp 弯曲Wearing linerWedged 楔形物Work index 功指数Chapter 8Industrial screeningBauxite 铝土矿Classification 分级Diagonal 斜的Dry screening 干筛Efficiency or partition curve 效率曲线、分离曲线Electrical solenoids 电磁场Elongated and slabby particles 细长、成板层状颗粒Granular 粒状Grizzly screens 格筛Hexagons 六边形Hydraulic classifiers 水力旋流器Linear screen 线性筛Mesh 网眼Mica 云母Near-mesh particles 近筛孔尺寸颗粒Octagons 八边形Open area 有效筛分面积Oscillating 振荡的Perpendicular 垂直的Polyurethane 聚氨酯Probabilistic 概率性的Resonance screens 共振筛Rhomboids 菱形Rinse 漂洗Rubber 橡胶Screen angle 颗粒逼近筛孔的角度Shallow 浅的Static screens 固定筛Tangential 切线的The cut point(The separation size)分离尺寸Trommels 滚筒筛Vibrating screens 振动筛Water sprays 喷射流Chapter9 classification added increment(增益)aggregate(聚集)alluvial(沉积)apex(顶点) deleterious(有害) approximation(概算,近似值)apron(挡板)buoyant force(浮力)correspond(符合,相符)critical dilution(临界稀释度)cut point(分离点)descent(降落)dilute(稀释的)drag force(拖拽力)duplex(双)effective density(有效比重)emergent(分离出的)equilibrium(平衡)exponent(指数)feed-pressure gauge(给矿压力表)free-settling ratio(自由沉降比)full teeter(完全摇摆流态化)geometry(几何尺寸)helical screw(螺旋沿斜槽)hindered settling(干涉沉降)hollow cone spray(中空锥体喷流)Hydraulic classifier(水力分级机)imperfection(不完整度)incorporated(合并的)infinite(任意的)involute(渐开线式)Mechanical classifier(机械分级机)minimize(最小限度的)multi-spigot hydro-sizer(多室水力分级机)pressure-sensitive valve(压敏阀)Newton’s law(牛顿定律)orifice(孔)overflow(溢流)parallel(平行的,并联的)performance or partition curve(应用特性曲线)predominate(主导)pulp density(矿浆比重)quadruple(四倍)quicksand(流砂体)Reynolds number(雷诺数)scouring(擦洗)Settling cones(圆锥分级机)shear force(剪切力)simplex(单)simulation(模拟)slurry(矿浆)sorting column(分级柱)spherical(球形的)spigot(沉砂)Spiral classifiers(螺旋分级机)Stokes’ law(斯托克斯定律)surging(起伏波动)suspension(悬浮液)tangential(切线式)Teeter chamber(干涉沉降室)teeter(摇摆)terminal velocity(末速)The rake classifier(耙式分级机) turbulent resistance(紊流阻力)underflow (底流)vertical axis(垂直轴)vessel(分级柱)viscosity(粘度)viscous resistance(粘滞阻力) vortex finder(螺旋溢流管)well-dispersed(分散良好的)Chapter 10gravity concentrationactive fluidised bed(流化床); amplitude(振幅);annular(环状的); asbestos(石棉); asymmetrical (非对称的); baddeleyite (斜锆石); barytes (重晶石); cassiterite (锡石); chromite(铬铁矿);circular (循环的); circumference (圆周); closed-circuit (闭路);coefficient of friction (摩擦系数); compartment (隔箱);concentration criterion (分选判据); conduit(管);contaminated(污染);counteract (抵消);degradation (降解);density medium separation (重介质分选); detrimental(有害的);diaphragm (隔膜);dilate (使膨胀);displacement (置换);divert (转移);dredge (挖掘船);eccentric drive(偏心轮驱动); encapsulate (密封);equal settling rate(等沉降比);evenly(均匀的);excavation (采掘);exhaust (废气);feed size range (给矿粒度范围); fiberglass (玻璃纤维);flash floatation (闪浮);flattened(变平);float (浮子);flowing film (流膜);fluid resistance (流体阻力);gate mechanism (开启机制);halt(停止);hand jig (手动跳汰机);harmonic waveform (简谐波);helical(螺旋状的);hindered settling (干涉沉降);hutch(底箱);immobile (稳定);interlock (连结);interstice (间隙);jerk(急拉);kyanite (蓝晶石);lateral (侧向的,横向的);linoleum (漆布);mica(云母);momentum (动量) ;mount(安装);multiple (多重的);multi-spigot hydrosizer (多室水力分级机); natural gravity flower (自流); neutralization (中和作用);nucleonic density gauge (核密度计); obscure (黑暗的,含糊不清的); obsolete (报废的);onsolidation trickling (固结滴沉);open-circuit (开路);pebble stone/gravels(砾石); periphery(周边的);pinched (尖缩的) ;platelet(片晶);platinum(铂金);plunger (活塞);pneumatic table(风力摇床); pneumatically (靠压缩空气); porus(孔);preset(预设置);pressure sensing(压力传感的); pressurize (加压);pulsating (脉动的);pulsion/suction stroke (推/吸冲程); quotient (商);radial(径向的);ragging (重物料残铺层);rate of withdraw (引出速率);raw feed (新进料);reciprocate(往复);refuse (垃圾);render (使得);residual (残留的);retard(延迟);riffle (床条);rinse(冲洗);rod mill (棒磨);rotary water vale (旋转水阀); rubber(橡胶);saw tooth (锯齿形的);scraper(刮板);sectors(扇形区);semiempirical(半经验的); settling cone (沉降椎);shaft (轴);side-wall (侧壁);sinterfeed (烧结料);sinusoidal (正弦曲线);slime table(矿泥摇床);sluice (溜槽);specular hematite (镜铁矿); spinning (自转;离心分离); splitters (分离机);starolite (星石英);staurolite (十字石);stratification (分层); stratum (地层); submerge (浸没);sump (池); superimposed (附加的); surge capacity (缓冲容量); synchronization (同步的); throughput(生产能力); tilting frames (翻筛); timing belt (同步带); trapezoidal shaped (梯形的); tray (浅盘) ;trough(槽);tungsten (钨);uneven (不均匀的);uniformity(均匀性);uranolite (陨石);validate(有效);vicinity (附近);water (筛下水);wolframite (黑钨矿,钨锰铁矿);Chapter 11 dense medium separation(DMS) barite(重晶石)Bromoform(溴仿)bucket(桶)carbon tetrachloride(四氯化碳)centrifugal(离心的)chute(陡槽)Clerici solution(克莱利西溶液)corrosion(腐蚀)dependent criterion(因变判据)discard(尾渣)disseminate(分散,浸染)DMS(重介质分选)dominant(主导)Drewboy bath(德鲁博洗煤机)drum separator(双室圆筒选矿机)Drum separator(圆筒选矿机)Dyna Whirlpool()effective density of separation(有效分选比重)envisage(设想)feasibility(可行性)ferrosilicon(硅铁)flexible sink hose(沉砂软管)fluctuation(波动)fluorite(萤石)furnace(炉)grease-tabling(涂脂摇床)hemisphere(半球)incombustible(不可燃烧的)incremental(递增的)initially(最早地)installation(设备)LARCODEMS(large coal dense medium separator)lead-zinc ore(铅锌矿)longitudinal(纵向)magneto-hydrostatic(磁流体静力)mathematical model(数学模型)metalliferous ore(金属矿)nitrite(亚硝酸盐)Norwalt washer(诺沃特洗煤机)olfram(钨)operating yield(生产回收率)optimum(最佳)organic efficiency(有机效率)paddle(搅拌叶轮)Partition coefficient or partition number(分配率)Partition or Tromp curve(分配或特劳伯曲线)porous(多孔的)probable error of separation;Ecart probable (EP)(分选可能误差)raw coal(原煤)recoverable(可回收的)residue(残渣)revolving lifter(旋转提升器)two-compartmentrigidity(稳定性)sand-stone(砂岩)shale(页岩)siliceous(硅质的)sink-discharge(排卸沉砂)sodium(钠)sulphur reduction(降硫)tabulate(制表)tangential(切线)tedious (乏味)Teska Bash()Tetrabromoethane(TBE,四溴乙烷)theoretical yield(理论回收率)toxic fume(有毒烟雾)tracer(示踪剂)typical washability curves(典型可选性曲线)Vorsyl separator(沃尔西尔选矿机)weir(堰板)well-ventilated(通风良好的)Wemco cone separator(维姆科圆锥选矿机)yield stress(屈服应力)yield(回收率)Chapter 12 Froth flotationActivator(活化剂)adherence (附着,坚持)adhesion(附着)adhesion(粘附)adjoining(毗邻,邻接的)adsorption(吸附)aeration(充气)aeration(充气量)aerophilic(亲气疏水的)aerophilic(亲气性)Aggregation(聚集体)agitation(搅动)agitator(搅拌机)allegedly(据称)Amine(胺)baffle(析流板)Bank(浮选机组)barite(重晶石)Barren(贫瘠的)batch(开路)Borne(承担)Bubble(泡沫)bubble(气泡)bubble-particle(泡沫颗粒)bulk flotation (混合浮选)capillary tube(毛细管)cassiterite (锡石)cerussite(白铅矿) chalcopyrite(黄铜矿)circulating load(循环负荷)cleaner(精选)clearance(间隙)Collector(捕收剂)collide(碰撞,抵触)compensate(补偿,抵偿)component(组成)concave(凹)concentrate trade(精矿品位)Conditioning period(调整期)conditioning tank(调和槽)cone crusher(圆锥破碎机)configuration(表面配置,格局) Conjunction(关联,合流)contact angle measurement(接触角测量)contact angle(接触角)copper sulphate(硫酸铜)copper-molybdenum(铜钼矿)core(核心)correspondingly(相关的)cylindrical(圆柱)Davcra cell(page305)decantation(倾析)depressant(抑制剂)deteriorating(恶化)Dilute(稀释)Direct flotation(正浮选)disengage(脱离,解开)dissemination(传播)dissolution(解散)distilled water(蒸馏水)diverter(转向器)drill core(岩心)drill(钻头,打眼)duplication(复制)dynamic(动态,能动)economic recovery(经济回收率)Elapse(过去,推移)electrolyte(电解质)electrowinning(电积)Eliminating(消除)enhance(提高、增加)Entail(意味着)entrainment(夹带)erosion(腐蚀)Fatty acid(脂肪酸)fatty acids(脂肪酸)faulting(断层)FCTRfiltration(过滤)fine particle(较细颗粒)floatability(可浮性)flotation rate constant(浮选速率常数)flowsheet(工艺流程)fluctuation(波动)fluorite(萤石)frother(起泡剂)Frother(起泡剂)Gangue(脉石)grease(润滑脂)grindability(可磨性)gross(毛的,)Hallimond tube technique(哈利蒙管)hollow(凹,空心的)hydrophilic(亲水性)Hydrophobic(疏水)Impeller(叶轮)in situ(原位)Incorporate(合并)indicator(指标,迹象)inert(惰性的)intergrowth(连生)intermediate-size fraction(中等粒度的含量)ionising collector(离子型捕收剂)amphoteric(两性)irrespective(不论)jaw crusher(颚式破碎机)jet(喷射,喷出物)laborious(费力的)layout(布局,安排)layout(布局,设计)liable(负责)magnitude(幅度)maintenance(维修)malachite(孔雀石)manganese(锰)mathematically (数学地) mechanism(进程)metallurgical performance(选矿指标)metallurgical(冶金的)MIBC(methyl isobutyl carbinol)(甲基异丁甲醇)Microflotation(微粒浮选)Mineralized(矿化的)mineralogical composition(矿物组成) mineralogy(矿物学)mineralogy(岩相学)MLA(mineral liberation analyser)modify(改变)molybdenite(辉钼矿)multiple(复合的)multiple-step(多步)Natural floatability(天然可浮性)hydrophobic(疏水性的)neutral(中性的)non-metallic(非金属)non-technical(非技术)nozzle(喷嘴)optimum(最佳)organic solvent(有机溶剂)oxidation(氧化)oxyhydryl collector(羟基捕收剂)xanthate(黄药)Oxyhydryl collector(羟基捕收剂)palladium(钯)parallel(平行)penalty(惩罚,危害)penetrate(穿透)peripheral(周边)peripheral(周边的)permeable base(透气板)personnel(人员)pH modifier(pH调整剂)pinch(钉)platinum(铂)pneumatic(充气式)polishing(抛光)portion(比例)postulate(假设)predetermined value(预定值)prior(优先)Pulp potential(矿浆电位)pyramidal tank(锥体罐)pyrite(黄铁矿)QEMSCAN(p288)reagent(药剂)rectangular(长方形)regulator(调整剂)reluctant(惰性的)residual(残留物)reverse flotation(反浮选)rod mill(棒磨机)rougher concentrate(粗选精矿)rougher-scavenger split(粗扫选分界)scale-up(扩大)scavenger(少选精矿)scheme(计划,构想)SE(separation efficienty)sealed drum(密封桶)severity(严重性)Sinter(烧结)sleeve(滚轴)slipstream(汇集)smelter(熔炼)sparger(分布器)sphalerite(闪锌矿)sphalerite(闪锌矿)Standardize(标定,规范)stationary(静止的)stator(定子,静片)storage agitator(储存搅拌器) Straightforward(直接的)Subprocess(子过程)subsequent(随后)Sulphide(硫化物)summation(合计)sustain(保留)swirling(纷飞)tangible(有形,明确的)tensile force(张力)texture(纹理)theoretical(原理的)thickener (浓密机)titanium(钛)TOF-SIMStonnage(吨位)Tube(管,筒)turbine(涡轮)ultra-fine(极细的)undesirable(不可取) uniformity(统一性)unliberated(未解离的)utilize(使用)Vigorous(有力,旺盛)weir-type(堰式)whereby(据此)withdrawal(撤回)Work of adhesion(粘着功)XPSAgglomeration-skin flotation(凝聚-表层浮选p316 左中)Associated mineral (共生矿物)by-product (副产品)Chalcopyrite (黄铜矿)Coking coal (焦煤p344 左下)Control of collector addition rate(p322 last pa right 捕收剂添加率的控制) Control of pulp level(矿浆液位控制p321 last pa on the right )Control of slurry pH(矿浆pH控制p322 2ed pa on the left)DCS--distributed control system(分布式控制系统p320 右中)Denver conditioning tank(丹佛型调和槽figure 12.56)Electroflotation (电浮选p315 右中)feed-forward control(前馈控制p323 figure 12.60)Galena(方铅矿)Molybdenum (钼)Nickel ore (镍矿的浮选p343 左)PGMs--platinum group metals(铂族金属)PLC--programmable logic controller(可编程序逻辑控制器p320 右中)porphyry copper(斑岩铜矿)Table flotation (摇床浮选俗称“台选”p316 左中)Thermal coal (热能煤p344 左下)Ultra-fine particle(超细矿粒p315 右中)Wet grinding(湿式磨矿)Chapter 13 Magnetic and electrical separationCassiterite(锡石矿) wolframite(黑钨矿) Diamagnetics(逆磁性矿物) paramagnetics(顺磁性矿物) Ferromagnetism(铁磁性) magnetic induction(磁导率)Field intensity(磁场强度) magnetic susceptibility(磁化系数) Ceramic(瓷器) taconite(角岩)Pelletise(造球) bsolete(废弃的)Feebly(很弱的) solenoid(螺线管)Cobbing(粗粒分选) depreciation(折旧)Asbestos(石棉) marcasite(白铁矿)Leucoxene(白钛石) conductivity(导电性)Preclude(排除) mainstay(主要组成)Rutile(金红石) diesel(柴油)Cryostat(低温箱)Chapter 14 ore sortingappraisal(鉴别);audit(检查);barren waste(废石); beryllium isotope(铍同位素); boron mineral(硼矿物); category(范围);coil(线圈);downstream(后处理的); electronic circuitry(电路学); feldspar(长石); fluorescence(荧光);grease(油脂);hand sorting(手选);infrared(红外的);irradiate(照射);laser beam(激光束); limestone(石灰石); luminesce(发荧光); luminescence(荧光); magnesite(菱镁矿); magnetic susceptivity(磁敏性); matrix(基质); microwave(微波);monolayer(单层);neutron absorption separation(中子吸收法); neutron flux (中子通量);oleophilicity(亲油的);phase shift(相变);phosphate(磷酸盐);photometricsorting(光选);photomultiplier(光电倍增管);preliminary sizing(预先分级);proximity(相近性);radiometric (放射性的);scheelite(白钨矿);scintillation(闪烁);seam(缝隙);sequential heating(连续加热);shielding(防护罩);slinger(投掷装置);subtle discrimination(精细的鉴别);talc(滑石);tandem(串联的);thermal conductivity(热导率);ultraviolet(紫外线); water spray(喷水); Chapter15DewateringAcrylic(丙烯酸) monomer(单分子层) Allotted(分批的)jute(黄麻) Counterion(平衡离子) amide(氨基化合物) Diaphragm(隔膜) blanket(覆盖层) Electrolyte(电解液) gelatine(动物胶) Flocculation(聚团) decant(倒出)Gauge(厚度,测量仪表) rayon(人造纤维丝) hyperbaric(高比重的) Membrane(薄膜) coagulation(凝结) miscelaneous(不同种类的) barometric(气压的) Potash(K2CO3)tubular(管状的) Sedimentation(沉淀) filtration(过滤)Thermal drying(热干燥) polyacrylamide(聚丙烯酰胺)Chapter16 tailings disposalBack-fill method—矿砂回填法tailings dams—尾矿坝impoundment—坝墙Cyclone—旋流器Dyke—坝体slimes—矿泥Floating pump—浮动泵站compacted sand—压实矿砂Lower-grade deposits -- 低品位矿床heavy metal—重金属mill reagent—选矿药剂Neutralization agitator—中和搅拌槽thickener---浓密池overflow –溢流River valley—河谷upstream method of tailings-dam construction –上流筑坝法Sulphur compound—硫化物additional values—有价组分the resultant slimes—脱出的矿泥surface run-off-- 地表水lime—石灰the downstream method—下游筑坝法the centre-line method –中线筑坝法drainage layer—排渗层Underflow—沉砂water reclamation—回水利用reservoir—贮水池Part II ElaborationsChapter2 Ore handing1.The harmful materials and its harmful effects(中的有害物质,及其影响) -----P30 右2.The advantage of storage (贮矿的好处)-----p35 左下Chapter 4 particle size analysis3.equivalent diameter (page90);4.:stokes diameter (page98) ; median size (page95,left and bottom); 80% passing size (page95,right) ; cumulative percentage(page94-95under the title’presentation of results’); Sub-sieve;(page 97,right)5.why particle size analysis is so important in the plant operation? (page90, paragraph one); some methods of particle analysis, their theory and the applicable of thesize ranges.(table4.1+theory in page91-106)7.how to present one sizing test?(page94)8.how to operate a decantation test?(page98 sedimentation test)9.advantage and disadvantage of decantation in comparison with elutriation? (Page99 the second paragraph on the left +elutriation technique dis/advantage in page 102 the second paragraph on the left)Chapter 6Crushers10.The throw of the crusher: Since the jaw is pivoted from above, it moves a minimum distance at the entry point and a maximum distance at the delivery. This maximum distance is called the throw of the crusher.11.Arrested(free) crushing: crushing is by the jaws only12.Choked crushing: particles break each other13.The angle of nip:14.1)the angle between the crushing members2)the angle formed by the tangents to the roll surfaces at their points of contact withthe particle(roll crushers)15.Ore is always stored after the crushers to ensure a continuous supply to the grinding section. Why not have similar storage capacity before the crushers and run this section continuously?(P119,right column, line 13)16.The difference between the jaw crusher and the gyratory crusher?(P123,right column, paragraph 3)17.Which decide whether a jaw or a gyratory crusher should be used in a particular plant?(p125,left column, paragraph 2)18.Why the secondary crushers are much lighter than the heavy-duty, rugged primary machines?(P126,right column, paragraph 4)19.What’s the difference between the 2 forms of the Symons cone crusher, the Standard and the short-head?(P128,left column, paragraph3 )20.What’s the use of the parallel section in the cone crusher?(P128,left column, paragraph4)21.What’s the use of the distributing plate in the cone crusher?(P128,right column, paragraph1)22.Liner wear monitoring(P129,right column, paragraph2)23.Water Flush technology(P130, left column, paragraph1)24.What’s the difference between the gyradisc crusher and the conventional cone crusher?(P130,right column, paragraph 4)25.What’s the use of the storage bin?(P140,left column, paragraph 2)26.Jaw crushers(p120)27.the differences between the Double-toggle Blake crushers and Single-toggle Blakecrushers(p121, right column, paragraph 3)28.the use of corrugated jaw plates(p122, right column, line 8)29.the differences between the tertiary crushers and the secondary crushers?(p126,right column, paragraph 5)30.How to identify a gyratory crusher, a cone crushers?(p127, right column, paragraph 3)31.the disadvantages of presence of water during crushing(p130,right column, paragraph 2)32.the relationship between the angle of nip and the roll speed?(p133, right column)33.Smooth-surfaced rolls——used for fine crushing; corrugated surface——used for coarse crushing;(p134, left column, last paragraph)Chapter 7 grinding mills34.Autogenous grinding:An AG mill is a tumbling mill that utilizes the ore itself as grinding media. The ore must contain sufficient competent pieces to act as grinding media.P16235.High aspect ratio mills: where the diameter is 1.5-3 times of the length. P16236.Low aspect ratio mills:where the length is 1.5-3 times of the diameter. P16237.Pilot scale testing of ore samples: it’s therefore a necessity in assessing the feasibility of autogenous milling, predicting the energy requirement, flowsheet, and product size.P16538.Semi-autogenous grinding: An SAG mill is an autogenous mill that utilizes steel balls in addition to the natural grinding media. P16239.Slurry pool:this flow-back process often leads to higher slurry hold-up inside an AG or SAG mill, and may sometimes contribute to the occurrence of “slurry pool”, which has adverse effects on the grinding performance.P16340.Square mills:where the diameter is approximately equal to the length.P16241.The aspect ratio: the aspect ratio is defined as the ratio of diameter to length. Aspect ratios generally fall into three main groups: high aspect ratio mills、square mills and low aspect ratio mills.P16242.grinding circuit: Circuit are divided into two broad classifications: open and closed.( 磨矿回路p170)43.closed circuit: Material of the required size is removed by a classifier, which returns oversize to the mill.(闭路p170左最后一行)44.Circulation load: The material returned to the mill by the classifier is known as circulation load , and its weight is expressed as a percentage of the weight of new feed.(循环负荷p170右)45.Three-product cyclone: It is a conventional hydrocyclone with a modified top cover plate and a second vortex finder inserted so as to generate three product streams. (p171右)46.Parallel mill circuit: It increase circuit flexibility, since individual units can be shut down or the feed rate can be changed, with little effect on the flowsheet.(p172右) 47.multi-stage grinding: mills are arranged in series can be used to produce。
算法导论第4章

12
4.2 贪心算法的基本要素
2、最优子结构性质
当一个问题的最优解包含其子问题的最优解时, 称此问题具有最优子结构性质 称此问题具有最优子结构性质。问题的最优子结构性 最优子结构性质。问题的最优子结构性 质是该问题可用动态规划算法或贪心算法求解的关键 特征。
13
4.2 贪心算法的基本要素
3、贪心算法与动态规划算法的差异
2
顾名思义,贪心算法总是作出在当前看来最好的选择。 也就是说贪心算法并不从整体最优考虑,它所作出的选择 局部最优选择。当然,希望贪心算法 只是在某种意义上的局部最优 只是在某种意义上的局部最优选择。当然,希望贪心算法 得到的最终结果也是整体最优的。虽然贪心算法不能对所 有问题都得到整体最优解,但对许多问题它能产生整体最 优解。如单源最短路经问题,最小生成树问题等。在一些 情况下,即使贪心算法不能得到整体最优解,其最终结果 却是最优解的很好近似。
16
4.2 贪心算法的基本要素
用贪心算法解背包问题的基本步骤:
首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心 选择策略,将尽可能多的单位重量价值最高 选择策略,将尽可能多的单位重量价值最高的物品装入背包。 单位重量价值最高的物品装入背包。 若将这种物品全部装入背包后,背包内的物品总重量未超过 C,则选择单位重量价值次高的物品并尽可能多地装入背包。 依此策略一直地进行下去,直到背包装满为止。 具体算法可描述如下页:
图论第四章

15
Graph Theory
Example of Blocks
4.1.17
If H is a block of G, then H as a graph has no cut-vertex, but H may contain vertices that are cut-vertices of G.
Hence any path in Bi from every vertex in Bi-{v} to any in V(B1)∩V(B2)-{v} is retained. Since the blocks have at least two common vertices, deleting a single vertex leaves a vertex in the intersection. Paths from all vertices to that vertex are retained, so B1∪B2 cannot be disconnected by deleting one vertex.
2
Graph Theory
Example: Connectivity of Kn
4.1.2
Because a clique has no separating set, we need to adopt a convention for its connectivity.
– This explains the phrase “or has only one vertex” in Definition 4.1.1.
1
Proof: The edges incident to a vertex v of minimum degree form an edge cut; hence ’(G) (G) . It remains to show that (G) ’(G).
室外自然场景下的雾天模拟生成算法

室外自然场景下的雾天模拟生成算法Chapter 1. Introduction- Background and Motivation- Problem Statement- Objectives- Scope and Limitations- Significance of the StudyChapter 2. Literature Review- Overview of Fog Simulation Techniques- Classifications of Fog Models- Characteristics and Properties of Fog- Comparison of Existing Fog AlgorithmsChapter 3. Methodology- System Architecture- Data Acquisition- Fog Simulation Algorithm- Algorithm ExecutionChapter 4. Results and Analysis- Simulation Results- Simulation Metrics- Performance Evaluation- Sensitivity AnalysisChapter 5. Conclusion and Future Work- Summary of Findings- Implications and Contributions- Limitations and Recommendations- Future Research Directions- ConclusionReferencesChapter 1. IntroductionBackground and MotivationThe phenomenon of fog is commonplace in many natural outdoor scenes, but it can significantly affect visibility and safety in transportation, navigation, and surveillance systems. Fog is formed when the air temperature reaches dew point, causing the water droplets to condense into small particles in the atmosphere. The particles scatter light and absorb specific wavelengths, which decreases the contrast and color saturation of the scene. Capturing foggy scenes and simulating them in computer graphics and vision systems has become an active research area in recent years due to the increasing demand for realistic and robust fog simulation algorithms.Problem StatementExisting fog models and generation algorithms have several limitations, such as being computationally expensive, requiring large datasets, and not accurately representing the complex dynamics of atmospheric conditions. Therefore, there is a need for a comprehensive and efficient fog simulation algorithm that performs well in different outdoor scenarios and can generate realistic foggy images.ObjectivesThe primary objective of this study is to develop a novel algorithm to simulate fog in natural outdoor scenes. The algorithm shouldprovide realistic and visually pleasing results, be computationally efficient, and adapt to different weather conditions and lighting conditions. The secondary objectives are to compare the proposed algorithm with existing techniques and evaluate its performance and robustness in various simulated scenarios.Scope and LimitationsThis study focuses on simulating fog in natural outdoor scenes, including forests, mountains, and cities, but not in indoor or laboratory environments. The proposed algorithm is designed to work with RGB images and does not consider other modalities, such as infrared or stereo data. The study aims to provide a proofof concept and does not optimize the algorithm for real-time applications.Significance of the StudyThe proposed fog simulation algorithm can have practical applications in several domains, such as autonomous driving, visual effects, and virtual reality. By synthesizing realistic foggy images, the algorithm can improve the performance and reliability of computer vision and machine learning systems operating in outdoor environments. Furthermore, the proposed algorithm can aid in understanding and studying the complex atmospheric phenomena of fog and its impact on visual perception.In conclusion, this chapter introduces the problem of fog simulation in natural outdoor scenes and the motivation for developing a novel fog simulation algorithm. The objectives, scope, and limitations of the study are defined, and the significance of the proposed algorithm is highlighted. The next chapter will review theexisting literature on fog simulation techniques in moredetail.Chapter 2. Literature ReviewIntroductionIn recent years, fog simulation has received significant attention from the computer graphics, vision, and machine learning research communities. Several techniques have been proposed to simulate fog and haze effects in outdoor scenes, based on various physical and statistical models. This chapter reviews the existing literature on fog simulation techniques and analyzes their strengths and weaknesses.Physical ModelsPhysical models aim to simulate the scattering and absorption of light in the atmosphere, based on the laws of physics and optics. Radiative transfer equations (RTE) are commonly used to describe the light transport in the atmosphere, but they are computationally expensive and require complex boundary conditions. Approximate methods, such as the Monte Carlo method and the discrete ordinates method, have been proposed to solve RTE efficiently. However, these methods still suffer from practical limitations, such as parameterization and calibration.Statistical ModelsStatistical models approximate the appearance of foggy scenes based on empirical observations and statistical analysis. One of the earliest and most widely used statistical models for fog simulation is the Koschmieder model, which assumes uniform fog density and exponential attenuation of light with distance. However, this model is simplistic and does not account for spatial and temporalvariations in fog density and atmospheric conditions.Recently, machine learning techniques, such as deep neural networks, have been employed to learn the mapping between clear and foggy images, bypassing the need for explicit models. These techniques have shown promising results in generating realistic foggy scenes, but they require large amounts of training data and may not generalize well to unseen environments or lighting conditions.Evaluation MetricsEvaluating the quality and realism of fog simulation algorithms is challenging, as there is no objective ground truth for comparing the generated foggy images with real-world data. Therefore, several metrics have been proposed to measure different aspects of fog simulation performance, such as color preservation, contrast enhancement, and visibility improvement. These metrics include the atmospheric scattering model, the color distribution distance, and the visibility index. However, these metrics have their own limitations and may not capture all aspects of fog simulation performance.ConclusionIn conclusion, this chapter reviewed the existing literature on fog simulation techniques, including physical and statistical models and machine learning approaches. The strengths and weaknesses of these techniques were discussed, and evaluation metrics for fog simulation were introduced. The next chapter will present the proposed fog simulation algorithm, which combines physical and statistical models and uses machine learning forrefinement.Chapter 3. Proposed Fog Simulation Algorithm IntroductionIn this chapter, we propose a novel fog simulation algorithm that combines physical and statistical models and uses machine learning for refinement. The algorithm consists of three stages: 1) physical model-based fog density estimation, 2) statistical model-based image synthesis, and 3) machine learning-based refinement. Each stage will be described in detail below.Physical Model-Based Fog Density EstimationThe first stage of the proposed algorithm aims to estimate the fog density in the scene, based on physical models of light scattering and absorption in the atmosphere. We use the radiative transfer equation (RTE) to model the light transport in the atmosphere, and solve it using the discrete ordinates method with predefined boundary conditions. The inputs to this stage are the clear image and the atmospheric parameters, such as the air temperature, pressure, and humidity. The output is the depth-dependent fog density, which is used as input to the next stage.Statistical Model-Based Image SynthesisThe second stage of the proposed algorithm aims to synthesize a foggy image based on statistical models of fog appearance and empirical observations. We use a modified version of the Koschmieder model, which takes into account spatial and temporal variations in fog density and atmospheric conditions. The inputs to this stage are the clear image, the fog density estimated in the previous stage, and the atmospheric parameters. The outputs are the synthesized foggy image and a set of statistical parameters thatdescribe its appearance, such as the color distribution and contrast. Machine Learning-Based RefinementThe third stage of the proposed algorithm aims to refine the synthesized foggy image and improve its visual quality, using machine learning techniques. We use a deep neural network to learn the mapping between clear and foggy images, and use it to refine the synthesized foggy image. The training data for the neural network consists of pairs of clear and foggy images, which are generated using the physical and statistical models described above. The inputs to this stage are the synthesized foggy image and the statistical parameters, and the output is the refined foggy image. EvaluationWe evaluate the proposed algorithm using several metrics, including the atmospheric scattering model, the color distribution distance, and the visibility index. We compare the results of our algorithm with those of existing fog simulation techniques, including physical models, statistical models, and machine learning approaches. We also conduct a user study to assess the subjective quality of the generated foggy images.ConclusionIn conclusion, this chapter presented the proposed fog simulation algorithm, which combines physical and statistical models and uses machine learning for refinement. The algorithm consists of three stages, namely physical model-based fog density estimation, statistical model-based image synthesis, and machine learning-based refinement. We also described the evaluation metrics and methods used to evaluate the algorithm's performance. The nextchapter will present the experimental results and analysis of the proposed algorithm.Chapter 4. Experimental Results and Analysis IntroductionIn this chapter, we present the experimental results and analysis of the proposed fog simulation algorithm. We evaluate the algorithm using a set of benchmarks and compare it with existing fog simulation techniques, including physical models, statistical models, and machine learning approaches. We also conduct a user study to assess the subjective quality of the generated foggy images. Finally, we discuss the limitations and future directions of the proposed algorithm.Experimental SetupWe conducted our experiments on a desktop computer with an Intel Core i9-9900K CPU and an NVIDIA RTX 2080 Ti GPU. The algorithm was implemented using Python and TensorFlow. We used a set of clear images from the VOC dataset and a set of atmospheric parameters from the MERRA-2 dataset.Evaluation MetricsWe used several metrics to evaluate the performance of the proposed algorithm, including the atmospheric scattering model (ASM), the color distribution distance (CDD), and the visibility index (VI). The ASM measures the accuracy of the physical model-based fog density estimation stage. The CDD measures the similarity of the color distributions between the synthesized foggy image and the ground truth. The VI measures the visibility and contrast of the synthesized foggy image.Results and AnalysisWe first evaluated the physical model-based fog density estimation stage using the ASM metric. The results show that our algorithm achieves a higher accuracy than existing physical models, such as the Rayleigh-Debye-Gans model and the Mie scattering model.We then evaluated the statistical model-based image synthesis stage using the CDD and VI metrics. The results show that our algorithm outperforms existing statistical models, such as the Koschmieder model and the Murakami model, in terms of color distribution and visibility.Finally, we evaluated the machine learning-based refinement stage using the CDD, VI, and subjective quality metrics. The results show that our algorithm achieves a significant improvement in visual quality over the synthesized foggy image and the ground truth, with a high subjective rating from the user study. Limitations and Future DirectionsThe proposed algorithm has several limitations and future directions for improvement. Firstly, the algorithm currently only supports outdoor scenes, and further research is needed to extend it to indoor scenes. Secondly, the algorithm relies on predefined atmospheric parameters, and it may not perform well under extreme weather conditions. Thirdly, the algorithm may not generalize well to other datasets and domains. Finally, the computational cost of the algorithm is high, and further optimization is needed for real-time applications.ConclusionIn conclusion, we presented the experimental results and analysisof the proposed fog simulation algorithm, which combines physical and statistical models and uses machine learning for refinement. The results show that our algorithm outperforms existing fog simulation techniques, including physical models, statistical models, and machine learning approaches, in terms of accuracy, color distribution, visibility, and visual quality. The future directions for improving the algorithm were discussed, and they aim to address the limitations of the algorithm and extend its applicability to various domains.Chapter 5. Applications and Future WorkIntroductionIn this chapter, we present the potential applications of the proposed fog simulation algorithm in various fields, including computer graphics, autonomous driving, and remote sensing. We also discuss the future work to extend the algorithm's functionalities and improve its performance.ApplicationsComputer GraphicsThe proposed fog simulation algorithm can be used to generate realistic foggy images for computer graphics applications, such as video games, virtual reality, and augmented reality. The generated foggy images can add visual depth and atmosphere to the scene, making the virtual environment more immersive and realistic. Autonomous DrivingFoggy weather conditions can significantly reduce the visibility of the road, which poses a safety risk for autonomous driving systems.The proposed fog simulation algorithm can be used to generate foggy images for training and testing autonomous driving algorithms, enabling them to handle adverse weather conditions and improve their robustness and safety.Remote SensingFog can also affect remote sensing applications, such as satellite imagery and aerial photography. The proposed fog simulation algorithm can be used to simulate the effect of fog and remove the fog from images, enhancing the quality and accuracy of remote sensing data.Future WorkThe proposed fog simulation algorithm has several directions for future work to extend its functionalities and improve its performance.Indoor ScenesCurrently, the algorithm only supports outdoor scenes. Future work can extend the algorithm to simulate foggy weather conditions in indoor scenes, such as foggy room or foggy warehouse.Real-Time PerformanceThe current computational cost of the algorithm is high, which limits its real-time application. Future work can optimize the algorithm to improve its performance and reduce the computational cost for real-time applications.Extreme Weather ConditionsThe algorithm relies on predefined atmospheric parameters, and itmay not perform well under extreme weather conditions, such as tornadoes or hurricanes. Future work can investigate the effect of extreme weather conditions on fog simulation and develop more robust algorithms to handle them.Multi-Scale SimulationThe proposed fog simulation algorithm operates at a fixed scale, and it may not capture the multi-scale nature of fog. Future work can develop multi-scale simulation algorithms that can simulate fog at different scales, from the microscopic scale of water droplets to the macroscopic scale of fog banks.ConclusionIn conclusion, the proposed fog simulation algorithm has a broad range of potential applications in various fields, such as computer graphics, autonomous driving, and remote sensing. The future work aims to extend the algorithm's functionalities and improve its performance, enabling it to handle more complex foggy weather conditions and support real-time applications.。
算法设计与分析 课件 一

Assessment
Marks from these components and from your final examination will be combined to produce a single mark as follows: –30% (3 x 10%) for home works –30% (3 x 10%) for assignments –40% for the final examination (written, close book, close note) Attendance – 0 to -10
Getting to 1st base
If your program fails to compile you will receive zero credit. Please also ensure that it runs as per the specification given. If you are not sure as to the exact requirements, please ask.
Assignments: general advice
For all assignments, use at least the given test data. Your program will be tested with this and some other data and it must behave at least as well as my version, which is by no means perfect. Examine the sample output for each program. From this it should be clear that you need to check for various error conditions.
lec6

分治法可以说是最著名的算法设计技术,其解题步骤 分治法可以说是最著名的算法设计技术 其解题步骤: 其解题步骤
1.
将问题的实例划分为同一个问题的几个较小的实例,最好 将问题的实例划分为同一个问题的几个较小的实例 最好 拥有同样的规模 对这些较小的实例求解(一般使用递归的方法 但在问题规 对这些较小的实例求解 一般使用递归的方法,但在问题规 一般使用递归的方法 模足够小的时候,有时也会使用一些其他方法 有时也会使用一些其他方法) 模足够小的时候 有时也会使用一些其他方法 如果必要的话,合并这些较小问题的解 以得到原始问题的 如果必要的话 合并这些较小问题的解,以得到原始问题的 合并这些较小问题的解 解.
Design and Analysis of Algorithms - Chapter 4 13
A[i]≥p
ALGORITHM Quicksort(A[l..r])
//用 quicksort对子数组排序 //输入:数组A[0..n-1]中的子数组A[l..r],由左右下标l和r定义 //输出:非降序排列的子数组 A[l..r]
p A[i]≤p A[i]≥p
Design and Analysis of Algorithms - Chapter 4
12
4.2快速排序 4.2快速排序
算法描述: 算法描述: 分裂元素) 选择一个中轴元素(分裂元素)
对给定数组中的元素进行重新排列, 对给定数组中的元素进行重新排列,以得到一个快速排序 的分区。在一个分区中,所有在S下标之前的元素都小于 的分区。在一个分区中,所有在 下标之前的元素都小于 等于A[s],所有在 下标之后的元素都大于等于 下标之后的元素都大于等于A[s] 等于 ,所有在S下标之后的元素都大于等于 p A[i]≤p 快速排序两个分区
算法导论第4版英文版

算法导论第4版英文版Algorithm Introduction, Fourth Edition by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein is undoubtedly one of the most influential books in the field of computer science. With its comprehensive coverage of various algorithms and their analysis, this book has become a beloved resource for students, researchers, and professionals alike.The fourth edition of Algorithm Introduction builds upon the success of its predecessors, offering updated content and new insights into the world of algorithms. It starts with an introduction to algorithm analysis, providing readers with a solid foundation to understand the efficiency and effectiveness of different algorithms. The authors skillfully explain the techniques used in algorithm design and analysis, such as divide-and-conquer, dynamic programming, and greedy algorithms.One of the standout features of this book is its detailed and comprehensive treatment of various data structures. From arrays and linked lists to trees and graphs, the authors explore the intricacies of each data structure, discussing their properties, operations, and analysis. This thorough examination ensures that readers gain a deep understanding of the strengths and weaknesses of different data structures, enabling them to make informed decisions when choosing the appropriate structure for their algorithms.The book also covers a wide range of fundamental algorithms, including sorting, searching, and graph algorithms. The authors presentthese algorithms in a clear and concise manner, using pseudocode and diagrams to facilitate understanding. Additionally, they providedetailed analysis of these algorithms, discussing their time and space complexity, as well as their theoretical limits.Furthermore, Algorithm Introduction delves into advanced topics, such as computational geometry, network flow, and NP-completeness. These topics offer readers a glimpse into the cutting-edge research and real-world applications of algorithms. The authors' expertise in these areas shines through, making the book a valuable resource for those interested in pushing the boundaries of algorithmic research.In addition to its comprehensive content, Algorithm Introduction also stands out for its pedagogical approach. The authors include numerous exercises and problems throughout the book, encouraging readers to apply the concepts they have learned. These exercises not only serve as a means of reinforcing understanding but also provide an opportunity for readers to sharpen their problem-solving skills.The fourth edition of Algorithm Introduction is undoubtedly a must-have for anyone interested in algorithms and their applications. Its clear and concise explanations, comprehensive coverage of topics, and practical exercises make it an invaluable resource for students, researchers, and professionals alike. Whether you are a beginner looking to grasp the basics or an experienced practitioner seeking to expand your knowledge, this book will undoubtedly enhance your understanding of algorithms and their role in computer science.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
//输入:两个有序数组B[0..p-1]和C[0..q-1]
//输出:非降序列数组A-0..p+q-1] i0; j0; k0; while (i<p and j<q do){
if (n>1){
copy A[0.. [n/2]-1] to B[0..[n/2]-1] ; copy A[[n/2]..n-1] to C[0..[n/2]-1]; Mergesort(B[0..[n/2]-1]);
, M(1)=1
M(2k)=3M(2k-1)=3[3M(2k-2)]=32M(2k-2)
=...=3kM(2k-k)=3k 因为k=log2n M(2k)=M(n)=3logn=nlog3≈n1.585
28
Strassen矩阵乘法
传统方法:O(n3) 分治法:
将矩阵A,B和C中每一矩阵都分块成4个大小相等的子矩阵。由
原始问题(N个输入)
合 并 最 小 问 题 的 解
子问题1
子问题2
…
子问题k
相同的 类型
子问题1
子问题2
…
子问题k
不用再分就可求解
4
分治法的抽象化控制
算法 DANDC(int p,int q) int m,p,q; //1≤p≤q≤n// 判断输入规模q-p+1是否足够的小 if SMALL(p,q) 求解该规模问题解的函数 return(G(p,q)); else mDIVIDE(p,q); //p≤m≤q// return(COMBINE(DANDC(p,m),DANDC(m+1,q)));
17
快速排序算法计算时间
0 Tbest(n)= 2Tbest(n/2)+n n>1 n=1 Tbest(n)=Θ(nlogn)
Tworst(n)=(n+1)+n+(n-1)+...+3=Θ(n2) 0 Tavg(n)= Tavg(n) ≈2nlnn ≈1.38nlogn
18
n=0,1
思考:平均效率的递推式是如何 得到的,如何计算?
c=a*b=(a1*b1)102+[(a1+a0)*(b1+b0)-(c2+c0)] 101+(a0*b0) 100
26
分治法求解大整数乘法
计算两个n位整数a和b的积,n是正的偶数
把a的前半部分记为a1,后半部分记为a0 把b的前半部分记为b1,后半部分记为b0 a=a110n/2+a0, b=b110n/2+b0 c=a*b=(a110n/2+a0)*(b110n/2+b0)
m
l l,m r m
r
r
21
折半查找算法
算法 BinarySearch(A[0..n-1],K)
//非递归折半查找 //输入:升序数组A[0..n-1]和查找键K //输出:找到键K,返回K所在下标,否 则返回-1
当n>1时,Tw(n)=Tw([n/2])+1, T(1)=1 Tw(n)=Tw([n/2])+1 =Tw([n/4])+1+1 ... =Tw(1)+1+...+1=1+k=1+logn
24
二叉树的遍历 前序遍历(Preorder) 中序遍历(Inorder) 后序遍历(Postorder)
折半查找的二元比较树
5
每一条路经表 示一个元素的 比较序列
9
2 -6 3 0 4 7 6 23 7 54
内结点,表示 一次元素的 比较,存放已 个mid值
1 -15
8 82 9 101
25
外结点,表示不成功 检索的一种情况
}
pA[l]; il; jr+1; repeat repeat ii+1 until A[i] ≥p; repeat jj+1 until A[j] ≤p; swap(A[i],A[j]); until i ≥ j swap(A[i],A[j]); swap(A[l],A[j]); return j;
(∑[(n+1)+Tavg(s)+Tavg(n-1-s)])/n n>1
快速排序算法分析
快速排序在平均情况下仅比最优情况多执 行38%的比较操作。 它的最内循环效率非常高,在处理随机排 列数组时,速度比合并排序快。 更好的划分元素选择方法:三平均分区 当子数组足够小时改用更简单得排序方法
冒泡 合并
n>1
Memory
300K 684K
Time
7483MS 171MS
10
Example of merge sort
Example of merge sort sorting a list of random numbers
11
思考
当实例较少时,合并排序的效率如何? 合并排序的空间效率如何? 合并排序对特殊数据是否会退化? 在划分子问题时是否可以3等分,如果可以, 效率如何?
i j
p p
全部≤p 全部≤p
≥p
j
...
i
≤p ≥p
全部≥ p 全部≥ p
≤p
i= j
p
全部≤p
=p
全部≥ p
16
快速排序算法
算法 Quicksort(A[l...r])
//用Quicksort对子数组排序 //输入:数组A[0..n-1]中的子数组 //输出:非降序的子数组A[l...r]
12
练习
如何将右图中L型瓦片覆盖到一个缺了一 个方块的2n × 2n的棋盘?
13
快速排序
基本思想
选取A的某个元素t=A[s],然后将其他元素重新排列,
使A[0..n-1]中所有在t以前出现的元素都小于或等于t, 而在t之后出现的元素都大于或等于t。
A[0[ A[1] … A[s-1] A[s] A[s+1] … A[n-1]
大整数乘法
问题描述
对超过100位的十进制整数进行乘法运算。
两位整数的案例:
231*101+4*100 23*14=(2*101+3*100 )*(1*101+4*100) =(2*1)102+(3*1+2*4) 101+(3*4)100 对于任何两位数a=a1a0和b=b1b0
6
合并排序
I=(n, A[0…n-1])
I2=(n-[n/2]-1, A[[n/2]-1…n-1])
...... ......
I1=(n-[n/2], A[0…[n/2]-1])
...... ......
Ih=(1,A[0])
Ii=(1,A[1])
Ij=(1,A[m])
Ik=(1,A[n])
Ihi=(2,A[0...1]) ......
算法分析与设计
Analysis and Design of Computer Algorithms
第四章 分治法
Divide and Conquer
分治法
教学内容
分治法的一般方法 合并排序 快速排序
折半查找
二叉树遍历及其相关特性 大整数乘法和Strassen矩阵乘法
用分治法解最近对问题和凸包问题
Ijk=(2,A[m...n]) ......
MERGE I=(n,A(1),…A(n))
7
合并函数MERGE的实现
合并函数MERGE的实现思想
已排序序列B
B[0]
小 值
已排序序列C
C[0] C[1] … C[q-1]
B[1]
...
比较大小
B[p-1]
比较大小
小 值
……
剩余已排序元素
数组A B[0] C[0]
l0;rn-1; while (l≤r) do{ m(int)(l+r)/2; if (K=A[m]) return m; else if (K<A[m]) rm-1; else lm+1;
}
return -1;
22
二叉树遍历及其相关特性
二叉树的标准定义
若干个节点的有限集
合,它要么为空,要 么由一个根和两棵成 功为TL和TR的不相交 的二叉树构成,它们 分别为根的左右子树。
算法 Partition(A[l..r])
//以第一个元素作为中轴,划分数组 //输入:数组A[l..r],l,r为左右下标 //输出:A[l..r]的一个分区,返回划分点位置
if (l<r){ s Partition(A[l...r]); Quicksort(A[l...s-1]);
Quicksort(A[s+1...r]);
此可将方程C=AB重写为:
C11 C12 A11 C A 21 C22 21
要求
掌握分治法的原理、效率分析以及在常见问题问题中
的应用。
2
合并排序
8 3 2 9 7 1 5 4
8 3 2 9
8 3 8 3 2 2 9 9 7 7 1
7 1 5 4
5 4 1 5 4
3 8
2 9
1 7
4 5
2 3 8 9
1 4 5 7
1 2 3 4 5 7 8 9
3
分治法的一般方法
原始问题的解
=(a1*b1)10n+(a1*b0+a0*b1)10n/2+(a0*b0) =c210n+c110n/2+c0 c2=a1*b1 c0= a0*b0 c1=(a1+a0)*(b1+b0)-(c2+c1)