光子问答精选[15]分段函数的单调性
函数的单调性知识点

函数的单调性知识点在数学的广阔天地中,函数的单调性是一个非常重要的概念。
它就像是函数的“性格特征”,帮助我们更好地理解函数的变化规律。
让我们从最基础的开始理解。
什么是函数的单调性呢?简单来说,就是函数值随着自变量的增大或减小而呈现出的一种有规律的变化趋势。
如果函数值随着自变量的增大而增大,那这个函数在相应的区间就是单调递增的;反之,如果函数值随着自变量的增大而减小,那就是单调递减的。
为了更准确地判断函数的单调性,我们通常会使用一些方法。
其中,最常见的就是利用导数。
对于一个可导的函数,如果它的导数大于零,那么函数在这个区间就是单调递增的;如果导数小于零,就是单调递减的。
比如说,对于函数\(f(x) =x^2\),它的导数是\(f'(x) =2x\)。
当\(x > 0\)时,\(f'(x) > 0\),函数单调递增;当\(x < 0\)时,\(f'(x) < 0\),函数单调递减。
除了导数,我们还可以通过函数的定义来判断单调性。
假设我们有一个函数\(f(x)\),对于区间\(I\)内的任意两个自变量\(x_1\)和\(x_2\),如果当\(x_1 < x_2\)时,都有\(f(x_1) < f(x_2)\),那么函数\(f(x)\)在区间\(I\)上就是单调递增的;如果都有\(f(x_1) > f(x_2)\),那就是单调递减的。
再来看一些常见函数的单调性。
一次函数\(y = kx + b\)(\(k \neq 0\)),当\(k > 0\)时,函数在\(R\)上单调递增;当\(k <0\)时,函数在\(R\)上单调递减。
反比例函数\(y =\frac{k}{x}\)(\(k \neq 0\)),当\(k > 0\)时,函数在\((\infty, 0)\)和\((0, +\infty)\)上分别单调递减;当\(k < 0\)时,函数在\((\infty, 0)\)和\((0, +\infty)\)上分别单调递增。
分段函数的单调性问题

【规避策略】
1.弄清分段函数的单调性的特点
对于分段函数的单调性,一要保证各段上同增(减),二要保证上、下段 间端点值间的大小关系. 2.熟练掌握分段函数单调性的图象解法 画出这个分段函数的图象,结合函数图象、性质进行直观判断.
【自我矫正】选B.
由题意f(x)在R上单调递增,
a 1, 则有 4 a 0, 2 a (4 ) 2 a, 2
分段函数的单调性问题
【典例】(2015·金华模拟)f(x)=
增函数,则实数a的取值范围是 A.(1,+∞) B.[4,8) (
a x , x 1, 是R上的单调递 a (4 )x 2, x 1 2
) D.(1,8)
C.(知道错在哪里吗? 提示:上述解题过程错在忽视在定义域两段区间分界点上的函数值的 大小而导致实数a的范围扩大.
解得4≤a<8.
函数单调性判断方法

,0上是减函数。
C .(-∞,-1]D .[1,+∞)[小结](1)单调区间是定义域的子集,故求单调区间时应树立“定义域优先”的原则.(2)单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分开写,不能用并集符号“∪”连接,也不能用“或”连接.(3)函数的单调性是函数在某个区间上的“整体”性质,所以不能仅仅根据某个区间内的两个特殊变量x 1,x 2对应的函数值的大小就判断函数在该区间的单调性,必须保证这两个变量是区间内的任意两个自变量.题型二、分段函数单调性判断及应用使用情景:分段函数的单调性问题解题模板:第一步 通过观察分析,决定如何对自变量进行分类;第二步 根据常见函数的单调性,分别计算每段函数的单调性;第三步 满足函数在整个区间上是增函数(或减函数),即左段的函数的最大值(或最小值)小于等于右段函数的最小值(或最大值);第四步 得出结论.【例1】 已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( ) A .()1,2 B .(][),12,-∞+∞ C .[]1,2 D .()(),12,-∞+∞+∞+∞ D(2,) (1,)【变式练习3】已知函数223,1()lg(1),1x x f x xx x ⎧+-≥⎪=⎨⎪+<⎩,则((3))f f -= ,()f x 的最小值是[小结] 1、最值问题使用情景:分段函数的最值问题解题模板:第一步 通过观察分析,决定如何对自变量进行分类;第二步 根据常见函数的最值,分别计算每段函数的最值;第三步 满足函数在整个区间上的最值,即比较每段函数的最值大小,谁最大谁是最大值,谁最小谁是最小值;第四步 得出结论.2、单调性问题其一是分段函数在每一个区间上的增函数(或减函数)与整体函数相同;其二是满足函数在整个区间上是增函数(或减函数),即左段的函数的最大值(或最小值)小于等于右段函数的最小值(或最大值).题型三、抽象函数的单调性【例1】已知奇函数()f x 的定义域为[]2,2-,且在[]2,0-内递减,求满足:2(1)(1)0f m f m -+-<的实数m 的取值范围.【例2】定义在上的偶函数满足:,在区间与上分别递增和递减,则不等式的解集为 .【变式练习1】设奇函数()f x 在区间[1,1]-上是增函数,且(1)1f -=-.当[1,1]x ∈-时,函数2()21f x t at ≤-+,对一切[1,1]a ∈-恒成立,则实数t 的取值范围为( )A.22t -≤≤B.2t ≤-或2t ≥C.0t ≤或2t ≥D.2t ≤-或2t ≥或0t =【变式练习2】已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 足1(2)(2)a f f ->-,则a 的取值范围是______[小结]不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有: (1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效. (2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化.题型四、函数单调性判断方法(性质)的应用函数单调性的性质:(1)若f (x ),g (x )均为区间A 上的增(减)函数,则f (x )+g (x )也是区间A 上的增(减)函数,更进一步,即增+增=增,增-减=增,减+减=减,减-增=减;(2)若k >0,则kf (x )与f (x )单调性相同;若k <0,则kf (x )与f (x )单调性相反; (3)在公共定义域内,函数y =f (x )(f (x )≠0)与y =-f (x ),y =1f (x )单调性相反;(4)在公共定义域内,函数y =f (x )(f (x )≥0)与y =f (x )单调性相同;(5)奇函数在其关于原点对称的区间上单调性相同,偶函数在其关于原点对称的区间上单调性相反. 【常见判断方法】方法一 定义法使用情景:一般函数类型解题模板:第一步 取值定大小:设任意,且; 第二步 作差:;第三步 变形(合并同类项、通分、分解因式、配方等); 第四步 定符号; 第五步 得出结论. 【例1】 判断并证明:21()1f x x =+在(,0)-∞上的单调性.12,x x D ∈12x x <12()()f x f x -x 的取值范围是( )A .(8,+∞)B .(8,9]C .[8,9]D .(0,8)[方法技巧]用单调性求解与抽象函数有关不等式的策略(1)在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“f ”符号脱掉,使其转化为具体的不等式求解.此时应特别注意函数的定义域.(2)有时,在不等式一边没有符号“f ”时,需转化为含符号“f ”的形式.如若已知f (a )=0,f (x -b )<0,则f (x -b )<f (a ).应用(三) 求参数的取值范围[例5] (1)如果函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增的,则实数a 的取值范围是( ) A.⎝⎛⎭⎫-14,+∞ B.⎣⎡⎭⎫-14,+∞ C.⎣⎡⎭⎫-14,0 D.⎣⎡⎦⎤-14,0(2)设函数f (x )=⎩⎪⎨⎪⎧-x 2+4x ,x ≤4,log 2x ,x >4.若函数y =f (x )在区间(a ,a +1)上单调递增,则实数a 的取值范围是( )A .(-∞,1]B .[1,4]C .[4,+∞)D .(-∞,1]∪[4,+∞)[易错提醒](1)若函数在区间[a ,b ]上单调,则该函数在此区间的任意子区间上也是单调的.(2)对于分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值.【变式练习3】1.函数f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)2.已知函数y =f (x )是R 上的偶函数,当x 1,x 2∈(0,+∞),x 1≠x 2时,都有(x 1-x 2)·[f (x 1)-f (x 2)]<0.设a =ln 1π,b =(ln π)2,c =ln π,则( ) A .f (a )>f (b )>f (c )B .f (b )>f (a )>f (c )C .f (c )>f (a )>f (b )D .f (c )>f (b )>f (a )3.定义在R 上的奇函数y =f (x )在(0,+∞)上单调递增,且f ⎝⎛⎭⎫12=0,则满足f log 19x >0的x 的集合为________.随堂检测1.已知f (x )=⎩⎪⎨⎪⎧(2-a )x +1,x <1,a x ,x ≥1,满足对任意x 1≠x 2,都有f (x 1)-f (x 2)x 1-x 2>0成立,那么a 的取值范围是________.2.讨论函数f (x )=x +a x(a >0)的单调性.。
函数单调性的应用及解法

函数单调性的应用及解法函数的单调性是数学中的一个重要概念,它描述了函数随着自变量的增大或减小,函数值是递增还是递减的趋势。
掌握函数的单调性不仅对于理解函数的性质和行为有帮助,还可以在实际问题中进行正确的推导和解决。
本文将从函数单调性的概念、解法和应用方面进行详细论述,以便读者更好地理解和灵活运用。
首先,我们来具体定义函数的单调性。
设函数f(x)在区间I上有定义,如果对于任意x1和x2,若x1 < x2,则有f(x1) ≤f(x2),则称函数f(x)在区间I上是递增的;如果对于任意x1和x2,若x1 < x2,则有f(x1) ≥f(x2),则称函数f(x)在区间I上是递减的。
如果函数f(x)既是递增的又是递减的,则称函数f(x)在区间I上是严格单调的。
接下来,我们将介绍解决函数单调性的一般方法。
首先,我们需要找到函数的导数。
对于定义在区间I上的函数f(x),如果导数f'(x) ≥0,则f(x)在区间I上递增;如果导数f'(x) ≤0,则f(x)在区间I上递减。
如果导数f'(x) > 0,则f(x)在区间I上严格递增;如果导数f'(x) < 0,则f(x)在区间I上严格递减。
因此,解决函数单调性问题的一般步骤如下:首先,计算函数的导数;然后,找到导数的零点,即导数为0的点;最后,根据导数的正负情况,判断函数的单调性。
然而,由于计算函数的导数和求解导数的零点可能会比较复杂,所以在实际应用中,我们往往会借助一些简化的策略和技巧。
下面,我将以实际问题为例,具体介绍函数单调性的应用和解法。
第一个应用场景是求解函数极值问题。
对于一个凸函数(即导数的二阶导数大于等于0),如果在一个区间上函数的导数从正数变为负数,那么函数在该点上取得极大值;如果在一个区间上函数的导数从负数变为正数,那么函数在该点上取得极小值。
这是因为函数在这两种情况下都出现了斜率的变化,导致函数的增长或减小逐渐趋缓。
函数单调性的七类经典题型

函数单调性的七类经典题型单调性 类型一:三角函数单调区间1.函数tan 3y x π⎛⎫=- ⎪⎝⎭的单调增区间为__________. 【答案】5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭【解析】试题分析: 因为232πππππ+<-<-k x k ,所以Z k k x k ∈+<<-,656ππππ,故应填答案5,,66k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭. 2.已知函数f (x )=x 2-2x -3,则该函数的单调递增区间为( )A .(-∞,1]B .[3,+∞)C .(-∞,-1]D .[1,+∞) 解析:选B 设t =x 2-2x -3,由t ≥0, 即x 2-2x -3≥0,解得x ≤-1或x ≥3. 所以函数的定义域为(-∞,-1]∪[3,+∞).因为函数t =x 2-2x -3的图象的对称轴为x =1,所以函数t 在(-∞,-1]上单调递减,在[3,+∞)上单调递增.所以函数f (x )的单调递增区间为[3,+∞). 3.设函数f (x )=⎩⎪⎨⎪⎧1,x >0,0,x =0,-1,x <0,g (x )=x 2f (x -1),则函数g (x )的递减区间是________.g (x )=⎩⎪⎨⎪⎧x 2,x >1,0,x =1,-x 2,x <1.如图所示,其递减区间是[0,1).答案:[0,1)类型二:对数函数单调区间1.函数f(x)=ln(4+3x -x2)的单调递减区间是( )A.⎝⎛⎦⎥⎥⎤-∞,32 B.⎣⎢⎢⎡⎭⎪⎪⎫32,+∞ C.⎝ ⎛⎦⎥⎥⎤-1,32 D.⎣⎢⎢⎡⎭⎪⎪⎫32,4解析:函数f(x)的定义域是(-1,4),u(x)=-x2+3x +4=-⎝⎛⎭⎪⎪⎫x -322+254的减区间为⎣⎢⎢⎡⎭⎪⎪⎫32,4,∵e >1,∴函数f(x)的单调减区间为⎣⎢⎢⎡⎭⎪⎪⎫32,4.2.函数f (x )=|x -2|x 的单调减区间是( )A .[1,2]B .[-1,0]C .[0,2]D .[2,+∞)解析:选A 由于f (x )=|x -2|x =⎩⎨⎧x 2-2x ,x ≥2,-x 2+2x ,x <2.结合图象可知函数的单调减区间是[1,2].类型三:分段函数单调性 1.已知函数f(x)=⎩⎨⎧>≤--1,log 1,1)2(x x x x a a ,若f(x)在(-∞,+∞)上单调递增,则实数a 的取值范围为( ) A .(1,2) B .(2,3) C .(2,3] D .(2,+∞)解析:要保证函数f (x)在(-∞,+∞)上单调递增,则首先分段函数应该在各自定义域内分别单调递增.若f(x)=(a -2)x -1在区间(-∞,1]上单调递增,则a -2>0,即a >2.若f(x)=logax 在区间(1,+∞)上单调递增,则a >1.另外,要保证函数f(x)在(-∞,+∞)上单调递增还必须满足(a -2)×1-1≤loga1=0,即a≤3.故实数a 的取值范围为2<a≤3. 答案:C类型四:利用单调性求参数范围1.已知函数()f x 为定义[]2,3a -在上的偶函数,在[]0,3上单调递减,并且()22225a f m f m m ⎛⎫-->-+- ⎪⎝⎭,则m 的取值范围是_______________. 【答案】1122m ≤<【解析】试题分析: 由偶函数的定义可得032=+-a ,则5=a ,因为01)1(22,01222>+-=+->+m m m m,且)22()22(),1()1(2222+-=-+-+=--m m f m m f m f m f ,所以322122≤+-<+m m m ,解之得1122m ≤<.故应填答案1122m ≤<.2.已知y =f(x)是定义在(-2,2)上的增函数,若f(m -1)<f(1-2m),则m 的取值范围是__________.解析:依题意,原不等式等价于⎩⎪⎨⎪⎧-2<m -1<2-2<1-2m <2m -1<1-2m⇒⎩⎪⎪⎨⎪⎪⎧-1<m <3-12<m <32m <23⇒-12<m <23.答案:⎝⎛⎭⎪⎪⎫-12,233.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是________.解析:因为函数f (x )在(-∞,-a )上是单调函数,所以-a ≥-1,解得a ≤1.答案:(-∞,1]4.若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是________.解析:∵函数f (x )=-x 2+2ax 在区间[1,2]上是减函数,∴a ≤1.又∵函数g (x )=ax +1在区间[1,2]上也是减函数,∴a >0.∴a 的取值范围是(0,1].5.若函数f (x )=|log a x |(0<a <1)在区间(a,3a -1)上单调递减,则实数a 的取值范围是________.解析:由于f (x )=|log a x |(0<a <1)的递减区间是(0,1],所以有0<a <3a -1≤1,解得12<a ≤23.答案:⎝⎛⎦⎥⎥⎤12,23 类型五:范围问题1.设函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,则满足不等式f (1)<f (lg x 10)的x 的取值范围是________.押题依据 利用函数的单调性、奇偶性求解不等式是高考中的热点,较好地考查学生思维的灵活性.答案 (0,1)∪(100,+∞)解析 由题意得,f (1)<f (|lg x 10|)⇒1<|lg x10|⇒lgx 10>1或lg x10<-1⇒x >100或0<x <1.2.已知f (x )是定义在R 上的偶函数,且在区间(-∞,0)上单调递增.若实数a 满足f (2|a -1|)>f (-2),则a 的取值范围是________. 答案 ⎝⎛⎭⎪⎪⎫12,32 解析 ∵f (x )是偶函数,且在(-∞,0)上单调递增,∴在(0,+∞)上单调递减,f (-2)=f (2),∴f (2|a -1|)>f (2),∴2|a -1|<2=212,∴|a -1|<12,即-12<a -1<12,即12<a <32.3.设函数f (x )=x |x -a |,若对∀x 1,x 2∈[3,+∞),x 1≠x 2,不等式f (x 1)-f (x 2)x 1-x 2>0恒成立,则实数a的取值范围是__________. 答案 (-∞,3]解析 由题意分析可知条件等价于f (x )在[3,+∞)上单调递增,又因为f (x )=x |x -a |,所以当a ≤0时,结论显然成立,当a >0时,f (x )=⎩⎨⎧x 2-ax ,x ≥a ,-x 2+ax ,x <a ,所以f (x )在⎝ ⎛⎭⎪⎪⎫-∞,a 2上单调递增,在⎝⎛⎭⎪⎪⎫a 2,a 上单调递减,在(a ,+∞)上单调递增,所以0<a ≤3.综上,实数a 的取值范围是(-∞,3].类型六:综合题1.(作图)已知f(x)是定义在实数集R上的增函数,且f(1)=0,函数g(x)在(-∞,1]上为增函数,在[1,+∞)上为减函数,且g(4)=g(0)=0,则集合{x|f(x)g(x)≥0}等于()A.{x|x≤0或1≤x≤4} B.{x|0≤x≤4}C.{x|x≤4} D.{x|0≤x≤1或x≥4}解析:画出函数f(x)和g(x)的草图如图,由图可知当f(x)g(x)≥0时,x的取值范围是x≤0或1≤x≤4,即{x|f(x)g(x)≥0}={x|x≤0或1≤x≤4},故选A.2.函数y=f(x)(x≠0)是奇函数,且当x∈(0,+∞)时是增函数,若f (1)=0,求不等式f ⎝ ⎛⎭⎪⎪⎫x ⎝⎛⎭⎪⎪⎫x -12<0的解集.(数形结合)解:∵y =f (x )是奇函数,∴f (-1)=-f (1)=0.又∵y =f (x )在(0,+∞)上是增函数, ∴y =f (x )在(-∞,0)上是增函数,若f ⎝ ⎛⎭⎪⎪⎫x ⎝ ⎛⎭⎪⎪⎫x -12<0=f (1),∴⎩⎪⎨⎪⎧ x ⎝⎛⎭⎪⎪⎫x -12>0,x ⎝ ⎛⎭⎪⎪⎫x -12<1,即0<x ⎝⎛⎭⎪⎪⎫x -12<1,解得12<x <1+174或1-174<x <0.f ⎝ ⎛⎭⎪⎪⎫x ⎝ ⎛⎭⎪⎪⎫x -12<0=f (-1),∴⎩⎪⎨⎪⎧x ⎝⎛⎭⎪⎪⎫x -12<0,x ⎝ ⎛⎭⎪⎪⎫x -12<-1.∴x ⎝⎛⎭⎪⎪⎫x -12<-1,解得x ∈∅. ∴原不等式的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12<x <1+174或1-174<x <0.3.已知函数f (x )=⎩⎨⎧x 2-4x +3,x ≤0,-x 2-2x +3,x >0,则不等式f (a 2-4)>f (3a )的解集为( )A .(2,6)B .(-1,4)C .(1,4)D .(-3,5)解析:作出函数f (x )的图象,如图所示,则函数f (x )在R 上是单调递减的.由f (a 2-4)>f (3a ),可得a 2-4<3a ,整理得a 2-3a -4<0,即(a +1)(a -4)<0,解得-1<a <4,所以不等式的解集为(-1,4).答案:B4.如果函数y =f (x )在区间I 上是增函数,且函数y =f (x )x 在区间I 上是减函数,那么称函数y =f (x )是区间I 上的“缓增函数”,区间I 叫作“缓增区间”.若函数f (x )=12x 2-x +32是区间I 上的“缓增函数”,则“缓增区间”I 为( )A .[1,+∞)B .[0,3]C .[0,1]D .[1,3]解析:因为函数f (x )=12x 2-x +32的对称轴为x =1,所以函数y =f (x )在区间[1,+∞)上是增函数,又当x ≥1时,f (x )x =12x -1+32x ,令g (x )=12x -1+32x (x ≥1),则g ′(x )=12-32x 2=x 2-32x 2,由g ′(x )≤0得1≤x ≤3,即函数f (x )x =12x -1+32x 在区间[1,3]上单调递减,故“缓增区间”I 为[1,3].答案:D6.若函数f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2(a >0,且a ≠1)的值域是[4,+∞),则实数a 的取值范围是________.解析:因为f (x )=⎩⎨⎧-x +6,x ≤2,3+log a x ,x >2,所以当x ≤2时,f (x )≥4;又函数f (x )的值域为[4,+∞),所以⎩⎨⎧a >1,3+log a 2≥4.解得1<a ≤2,所以实数a 的取值范围为(1,2].答案:(1,2]7.已知函数f (x )是定义在R 上的奇函数,且当x >0时,f (x )=|x -a |-a (a ∈R).若∀x ∈R ,f (x +2 016)>f (x ),则实数a 的取值范围是_________. 数形结合当a =0时,f (x )=x ,x ∈R ,满足条件;当a <0时,f (x )=⎩⎪⎨⎪⎧x -2a ,x >0,0,x =0,x +2a ,x <0为R 上的单调递增函数,也满足条件;当a >0时,f (x )=⎩⎪⎨⎪⎧x -2a ,x >a ,-x ,-a ≤x ≤a ,x +2a ,x <-a ,要满足条件,需4a <2 016 ,即0<a <504, 综上实数a 的取值范围是a <504.。
分段函数的单调性

分段函数的单调性在数学中,分段函数是指由不同的函数段组成的函数。
每个函数段的定义域是不一样的,一般是非连续的。
分段函数在实际应用中比较常见,如渐进函数、分段函数曲线、阶梯函数等,因此理解和掌握分段函数的性质对于我们解决实际问题非常重要。
其中,分段函数的单调性是分析分段函数的一种重要方法,本文将介绍分段函数的单调性及其相关知识。
一、分段函数分段函数可以看做是由多个函数组成的函数。
设函数f(x)在区间[a,b]上的定义域为D,如果D可以被分成n个互不重叠的区间I1,I2,...,In,并且在每个区间Ii上,函数f(x)可以表示为与一些和f(x)有相同定义域的函数ui(x)的和,即f(x)=u1(x),x∈I1u2(x),x∈I2...un(x),x∈In则称f(x)是在区间[a,b]上的分段函数,每个ui(x)被称为f(x)的一个函数段。
二、单调性的定义单调性是指一个函数在其定义域上的单调关系,即函数值的增减关系。
我们说函数f(x)在区间[a,b]上单调递增,就是指对于任意的x1,x2∈[a,b],若x1<x2,则有f(x1)≤f(x2)。
同理,我们说函数f(x)在区间[a,b]上单调递减,就是指对于任意的x1,x2∈[a,b],若x1<x2,则有f(x1)≥f(x2)。
在实际应用中,我们需要掌握如何分析分段函数的单调性,以解决一些与实际问题相关的计算问题。
三、单调性的判断方法我们通常采用以下方法来判断分段函数的单调性。
1.求一阶导数对于分段函数f(x),如果它在每个函数段上都可导,则其导函数f'(x)也是分段函数,且f(x)单调递增/递减,当且仅当f'(x)在对应区间上满足:在x∈(a,b)内,若f'(x)>0,则f(x)在(x1,x2)上单调递增;在x∈(a,b)内,若f'(x)<0,则f(x)在(x1,x2)上单调递减。
2.分类讨论对于分段函数f(x),我们也可以通过分类讨论的方法来判断其单调性。
第2讲分段函数及函数的单调性

(1) 分段函数的函数求值问题;
(2) 分段函数的自变量求值问题; (3) 分段函数与函数性质、方程、不等式问题. 二. 函数的单调性
1. 单调性的定义
定义
增函数
减函数
一般地,设函 数
f(x) 的定义域 为
任意两个自变量的 值
x1, x2
I :如果对于定 义域
I 内某个区 D 上的 间
当 x1<x2 时,都有 f(x1)<f(x2) ,那 么就
不等式 xf < 10
2), 则 f ( lg30 -lg3 )
f x 2 (x
=___________________;
2 ( x 2), (x- 1)
的解集是 ___________________.
题型四 . 常见函数的单调性
--------------
--
一次函数、 二次函数、 反比例函数、 正切函数的单调性、单调区间。 题型五 . 判定函数的调性
②存在 x 0 ∈I ,使得 f(x 0) = M
M 为函数 y = f(x) 的最小值
三. 题型详解
题型一分段函数的函数求值(域)问题
--------------
--
1. 已知函数 f(x) =
2. 若函 数 ??(??) =
A. lg101
log 2x , x>0 ,
x
则f f
+ 1 ,x≤
3
(1) 求 函数值域、最值;
(2) 比 较大小;
比较函数值的大小, 应将自变量转化到同一个单调区间内,
然后利用函数的单调性解决.
(3) 解 不等式
在求解与抽象函数有关的不等式时,往往是利用函数的单调性将“
分段函数常见题型例析

分段函数常见题型例析发布时间:2021-04-07T11:03:29.120Z 来源:《课程-教材-教法》2021年3月作者:韩学伟[导读] 所谓“分段函数”是指在函数定义域内,对于自变量的不同取值范围,有着不同的对应法则,这样的函数叫做分段函数.分段函数是一个函数,不要把它误认为是几个函数;书写时用花括号把各段函数写在一起,并注明各段函数的自变量的取值范围。
云南省保山市昌宁县柯街中学韩学伟 678103所谓“分段函数”是指在函数定义域内,对于自变量的不同取值范围,有着不同的对应法则,这样的函数叫做分段函数.分段函数是一个函数,不要把它误认为是几个函数;书写时用花括号把各段函数写在一起,并注明各段函数的自变量的取值范围。
分段函数的定义域等于各段函数的定义域的并集.其值域等于各段函数的值域的并集.分段函数图像依据自变量的不同取值范围,分段画出函数的图像.分段函数是近几年高考的热点内容,涉及求分段函数的函数值、最值、奇偶性、单调性等问题,解答这些问题中渗透了分类讨论、数形结合等多种数学思想方法。
现就分段函数的常见题型例析如下:1、作分段函数的图像2、求分段函数的定义域、值域评注:求分段函数的函数值时,首先应确定自变量在定义域中所在的范围,然后根据所在定义域代入相应的解析式,逐步 “由内到外”逐一求值.4、求分段函数的解析式、评注:求分段函数的解析式时,分别求出定义域内各段对应的解析式,再组合在一起,要注意各区间的点要“不重不漏”求哪个区间的解析式,就把设在哪个区间上.5、求分段函数的最值评注:求分段函数的最值时,先分别求出每个区间上的最值,然后通过比较取其中最大(最小);也可数形结合法作出函数的图像,观察即得.6、判断分段函数的奇偶性评注:判断分段函数的奇偶性时,先看定义域是否关于原点对称,不对称就不是奇(偶)函数,若定义域是关于原点对称再分段判断,也可画出分段函数的图像,转化为图像的对称性进行判断.7、判断分段函数的单调性评注:判断分段函数的单调性时,首先应该判断各段函数的单调性,若每一段函数单调性一致,再判断分界点处函数值的关系,符合单调性定义,则该函数在整个定义域上单调递增或递减,不符合,则必须分段说明单调性.8、分段函数与不等式评注:方程的根与函数的零点是一一对应的,在新课标教材中,这是一个基础的知识点,其中含参问题更是高考热点.10、分段函数的应用问题评注:实际问题中分段函数的模型是高考考查分段函数的重点.以上各类题型的分析中,不难得到分段函数在考查中的一种解题的重要途径是:若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解,使问题得到大大简化, 效果明显.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光子问答精选[15]分段函数的单调性
分段函数单调性的问题时常出现在高考试题中,判断分段函数的单调性,需先判断各段函数的单调性,若每一段函数的单调性一致,再考虑分界点处函数值的关系,如果符合单调性的定义,那么该分段函数在整个定义域上为单调函数,否则,该分段函数在整个定义域上不具有单调性.
例1讨论分段函数f(x)=8
>>
<
>>
:
(3a−1)x+4a,x 1,
log a x,x>1
在R上的单调性.
——提问者:duang2016-09-2215:06
解(解答者:燕子)
由对数函数的性质,知a>0,且a=1.函数f(x)在R上单调递减时,需满足
8
>> >> ><
>> >> >:3a−1<0,
0<a<1,
3a−1+4a 0,
即
1 7 a<
1
3
.
函数f(x)在R上单调递增时,需满足
8
>> >> ><
>> >> >:3a−1>0,
a>1,
3a−1+4a 0,
此时无解.
综上,当1
7
a<
1
3
时,函数f(x)在R上单调递减;
当0<a<1
7
或
1
3
a<1或a>1时,函数f(x)在R上不具有单调性.
例2已知f(x)=8
>>
<
>>
:
−x2+ax,x 1
ax−1,x>1
,若存在x1,x2∈R且x1=x2,使得f(x1)=
f(x2)成立,则实数a的取值范围是.
——提问者:风行者2016-09-2314:54解(解答者:duang)
若存在x1,x2∈R且x1=x2,使得f(x1)=f(x2)成立,则函数f(x)在R上不单调,可从反面考虑问题:
若函数f(x)在R上为单调函数,考虑到x<1时,函数f(x)=−x2+ax图象开口向下,所以f(x)只能在R上单调递增,则有
8 >> >> ><
>> >> >:a
2
1,
a>0,
−12+a·1 a·1−1,
解得a 2.
因此由补集的概念可知所求实数a的取值范围为a<2.
注解答过程中非常巧妙的运用了“正难则反”的思想,从而使得复杂问题简单化.
总结已知分段函数
f(x)=8
>>
<
>>
:
f1(x),x a, f2(x),x>a.
若f(x)同时满足:
(1)f1(x)在(−∞,a]上单调递增,f2(x)在(a,+∞)上单调递增,
(2)f1(a) f2(a),
则函数f(x)在R上单调递增;
若f(x)同时满足:
(1)f1(x)在(−∞,a]上单调递减,f2(x)在(a,+∞)上单调递减,
(2)f1(a) f2(a),
则函数f (x )在R 上单调递减.
练习
1.已知函数f (x )=8
>><>
>:x 2
+ax +1,x 1ax 2
+x +1,x <1
在R 上是单调递增函数,则实数a 的取
值范围是
.
——提问者:阿鹏2016-09-1122:11
2.已知f (x )=8>><>>:x 2
−4x +3,
x 0,
−x 2−2x +3,x >0,不等式f (x +a )>f (2a −x )在[a,a +1]上恒成立,则实数a 的取值范围是
.
——提问者:燕子2016-09-2216:04
3.已知函数f (x )=8
>><>
>:k 2x +k (1−a 2),x 0
x 2
+(a 2−4a )x +(3−a )2,x <0
,其中a ∈R .若对任意
的非零实数x 1,都存在唯一的非零实数x 2,且x 1=x 2,使得f (x 1)=f (x 2)成立,求实数k 的取值范围.
——提问者:燕子2016-09-2216:15
答案
1.
−1
2
,0
;2.a <−2;3.(−∞,0]∪[8,+∞).
备注:若要查阅详细的解答过程,请在光子问答APP 中搜索用户名,查看用户提问的问题,找到对应时间所发的题即可.。