大学物理10-4
目前最全大学物理电磁学题库包含答案(共43页,千道题)

大学物理电磁学试题(1)一、选择题:(每题3分,共30分)1. 关于高斯定理的理解有下面几种说法,其中正确的是:(A)如果高斯面上E处处为零,则该面内必无电荷。
(B)如果高斯面内无电荷,则高斯面上E处处为零。
(C)如果高斯面上E处处不为零,则该面内必有电荷。
(D)如果高斯面内有净电荷,则通过高斯面的电通量必不为零(E )高斯定理仅适用于具有高度对称性的电场。
[ ]2. 在已知静电场分布的条件下,任意两点1P 和2P 之间的电势差决定于:(A)1P 和2P 两点的位置。
(B)1P 和2P 两点处的电场强度的大小和方向。
(C)试验电荷所带电荷的正负。
(D)试验电荷的电荷量。
[ ] 3. 图中实线为某电场中的电力线,虚线表示等势面,由图可看出:(A)C B A E E E >>,C B A U U U >> (B)C B A E E E <<,C B A U U U << (C)C B A E E E >>,C B A U U U <<(D)C B A E E E <<,C B A U U U >> [ ]4. 如图,平行板电容器带电,左、右分别充满相对介电常数为ε1与ε2的介质,则两种介质内:(A)场强不等,电位移相等。
(B)场强相等,电位移相等。
(C)场强相等,电位移不等。
(D)场强、电位移均不等。
[ ] 5. 图中,Ua-Ub 为:(A)IR -ε (B)ε+IR(C)IR +-ε (D)ε--IR [ ]6. 边长为a 的正三角形线圈通电流为I ,放在均匀磁场B 中,其平面与磁场平行,它所受磁力矩L 等于:(A)BI a 221 (B)BI a 2341 (C)BI a2 (D)0 [ ]7. 如图,两个线圈P 和Q 并联地接到一电动势恒定的电源上,线圈P 的自感和电阻分别是线圈Q 的两倍,线圈P 和Q 之间的互感可忽略不计,当达到稳定状态后,线圈P 的磁场能量与Q 的磁场能量的比值是:(A)4; (B)2; (C)1; (D)1/2 [ ] 8. 在如图所示的电路中,自感线圈的电阻为Ω10,自感系数为H 4.0,电阻R 为Ω90,电源电动势为V 40,电源内阻可忽略。
大学物理,稳恒磁场10-4安培环路定理概述.

0I B
2πR
R
oR r
12
10.4 安培环路定理
第10章 稳恒磁场
例:求无限长载流圆柱面的磁场分布。
L1
r
IR
L2 r
0I B
2π R
oR r
解 0 r R, B d l 0 l r R, l B d l 0I
B0 B 0I
2π r 13
LB dl μ0 I
B d l
L
μ0 ( I1
I1
I1
I2)
μ(0 I1
I
)
2
I1
I2 I3
I1
L
I1
思考:
1) B 是否与回路 L 外的电流有关?
2)若 B d l 0 ,是否回路 L 上各处 B 0 ? L
是否回路 L 内无电流穿过?
2πR
当 2R d 时,
螺绕环内可视为均匀场。
令:n N
2R
B μ0nI
第10章 稳恒磁场
d
R
10
10.4 安培环路定理
第10章 稳恒磁场
例:无限长载流圆柱体的磁场。
I
解:1)对称性分析
2)选取回路
r R :
Bdl
l
μ0 I
RR
L
r
B
2 π rB 0I,
B μ0 I 2πr
电流共同产生的。
3)环路定理适用于闭合稳恒电流的磁场。而有限电 流(如一段不闭合的载流导线)不适用环路定理。
4)安培环路定理说明磁场性质 —— 磁场是非保守场,是涡旋场。
《大学物理》 第二版 课后习题答案 第十章

习题精解10-1 在平面简谐波的波射线上,A,B,C,D 各点离波源的距离分别是3,,,424λλλλ。
设振源的振动方程为cos 2y A t πω⎛⎫=+ ⎪⎝⎭ ,振动周期为T.(1)这4点与振源的振动相位差各为多少?(2)这4点的初相位各为多少?(3)这4点开始运动的时刻比振源落后多少? 解 (1) 122,2,2xxπϕπϕππλλ∆∆∆==∆==3432,222x x πϕπϕππλλ∆∆∆==∆== (2)112233440,,2223,222πππϕϕϕϕππϕϕπϕϕπ=-∆==-∆=-=-∆=-=-∆=-(3) 1212343411,,,24223,,,242t T T t T T t T T t T Tϕϕππϕϕππ∆∆∆==∆==∆∆∆==∆==10-2 波源做谐振动,周期为0.01s ,振幅为21.010m -⨯,经平衡位置向y 轴正方向运动时,作为计时起点,设此振动以1400u m s -=∙的速度沿x 轴的正方向传播,试写出波动方程。
解 根据题意可知,波源振动的相位为32ϕπ= 2122200, 1.010,4000.01A m u m s T ππωπ--====⨯=∙ 波动方程231.010cos 2004002x y t m ππ-⎡⎤⎛⎫=⨯-+ ⎪⎢⎥⎝⎭⎣⎦10-3 一平面简谐波的波动方程为()0.05cos 410y x t m ππ=-,求(1)此波的频率、周期、波长、波速和振幅;(2)求x 轴上各质元振动的最大速度和最大加速度。
解 (1)比较系数法 将波动方程改写成0.05cos10 2.5x y t m π⎛⎫=-⎪⎝⎭与cos x y A t u ω⎛⎫=-⎪⎝⎭比较得1120.05;10;0.21015; 2.5;0.5A m T s v s u m s u T m Tπωππλ--=======∙=∙=(2)各质元的速度为()10.0510sin 410v x t m s πππ-=⨯-∙ 所以1max 0.0510 1.57()v m s π-=⨯=∙ 各质元的加速度为()220.05(10)cos 410a x t m s πππ-=-⨯-∙ 所以22max 0.05(10)49.3()a m s π-=⨯=∙10-4 设在某一时刻的横波波形曲线的一部分如图10.1所示。
《大学物理》第十章气体动理论习题参考答案

第十章 气体动理论一、选择题参考答案1. (B) ;2. (B );3. (C) ;4. (A) ;5. (C) ;6. (B );7. (C ); 8. (C) ;9. (D) ;10. (D) ;11. (C) ;12. (B) ;13. (B) ;14. (C) ;15. (B) ;16.(D) ;17. (C) ;18. (C) ;19. (B) ;20. (B) ;二、填空题参考答案1、体积、温度和压强,分子的运动速度(或分子的动量、分子的动能)2、一个点;一条曲线;一条封闭曲线。
3. kT 21 4、1:1;4:1 5、kT 23;kT 25;mol /25M MRT 6、12.5J ;20.8J ;24.9J 。
7、1:1;2:1;10:3。
8、241092.3⨯9、3m kg 04.1-⋅10、(1)⎰∞0d )(v v v Nf ;(2)⎰∞0d )(v v v f ;(3)⎰21d )(212v v v v v Nf m 11、氩;氦12、1000m/s ; 21000m/s13、1.514、215、12M M三、计算题参考答案1.解:氧气的使用过程中,氧气瓶的容积不变,压强减小,因此可由气体状态方程得到使用前后的氧气质量,进而将总的消耗量和每小时的消耗量比较求解。
已知atm 1301=p ,atm 102=p ,atm 13=p ;L 3221===V V V ,L 4003=V 。
质量分布为1m ,2m ,3m ,由题意可得RT Mm V p 11=RT Mm V p 22= RT M m V p 333=所以该瓶氧气使用的时间为h)(6.94000.132)10130(3321321=⨯⨯-=-=-=V p V p V p m m m t 2.解:设管内总分子数为N ,由V NkT nkT p ==有 1210611)(⨯==.kT pV N (个)空气分子的平均平动动能的总和= J 10238-=NkT 空气分子的平均转动动能的总和 = J 106670228-⨯=.NkT 空气分子的平均动能的总和 = J 10671258-⨯=.NkT3.解:(1)根据状态方程RT MRT MV m p RT M m pV ρ==⇒=得 ρp M RT = ,pRT M ρ= 气体分子的方均根速率为1-2s m 49533⋅===ρp M RT v (2)气体的摩尔质量为1-2m ol kg 108.2⋅⨯==-p RTM ρ所以气体为N 2或CO 。
大学物理第十章课后答案

题图10-1题10-1解图d第十章习题解答10-1 如题图10-1所示,三块平行的金属板A ,B 和C ,面积均为200cm 2,A 与B 相距4mm ,A 与C 相距2mm ,B 和C 两板均接地,若A 板所带电量Q =3.0×10-7C ,忽略边缘效应,求:(1)B 和C 上的感应电荷?(2)A 板的电势(设地面电势为零)。
分析:当导体处于静电平衡时,根据静电平衡条件和电荷守恒定律,可以求得导体的电荷分布,又因为B 、C 两板都接地,所以有ACAB U U =。
解:(1)设B 、C 板上的电荷分别为B q 、C q 。
因3块导体板靠的较近,可将6个导体面视为6个无限大带电平面。
导体表面电荷分布均匀,且其间的场强方向垂直于导体表面。
作如图中虚线所示的圆柱形高斯面。
因导体达到静电平衡后,内部场强为零,故由高斯定理得:1A C q q =-2A B q q =-即 ()A B C q q q =-+ ①又因为: ACAB U U =而: 2AC ACdU E =⋅ AB AB U E d =⋅∴ 2AC AB E E =于是:002C B σσεε =⋅ 两边乘以面积S 可得: 002C B S S σσεε =⋅即: 2C B q q = ②联立①②求得: 77210,110C B q C q C --=-⨯=-⨯题图10-2(2) 00222C C A AC C AC AC q d d d U U U U E S σεε =+==⋅=⋅=⋅ 733412210210 2.2610()200108.8510V ----⨯=⨯⨯=⨯⨯⨯⨯10-2 如题图10-2所示,平行板电容器充电后,A 和B 极板上的面电荷密度分别为+б和-б,设P 为两极板间任意一点,略去边缘效应,求:(1)A,B 板上的电荷分别在P 点产生的场强E A ,E B ;(2)A,B 板上的电荷在P 点产生的合场强E ; (3)拿走B 板后P 点处的场强E ′。
大学物理B作业(原题)

处P点的电势。
E
0
2
r 0r
R1, r R1
R2 r R2
rP R1 R2
U
R2
E
dr
r
R1 0 dr
r
R2 R1
2 0 r
dr
2 0
ln
R2 R1
9-2:如图所示,载有电流I的无限长直导线的一侧有一等腰直角三角形回路MNO,
回路与直导线共面,MN边与导线平行,相距为a, 而且MN=MO=a,求通过此回路
dE
dx 40 x2
方向水平向右。
E
dE
2L dx L 40 x2
8 0 L
7-5:一半径为R的均匀带电圆环,电荷线密度为λ,设无穷远处为电势零
点,求圆环中心O点的电势。
dq
解:在圆环上任意一点取电荷元 dq dl ,它在O点产生的电势为
O
dV
dl 4 0 R
V
dV
2 R dl 0 40R
矩大小和方向,该线圈所受的磁力矩大小。
A
R B
F
解:载流AB圆弧处于均匀磁场中,
F IL B
θ
O
I
B
F
IB 2R sin
2IBR sin
2
2
Pm
IS
Pm
IS
I
R2
2
1 IR2
2
M Pm B M 0
10-1:如图所示,一长直载流导线PQ附近有导体框ABCD, 框的边长分别为AB=a,
在两个面板之间
E
0
2 0
2 0
方向水平向左,指向面密度为+σ的均匀带电面板
7-9:真空中两块互相平行的无限大均匀带电平板,电荷面密度分别为+σ 和+2σ,则板间电场强度大小为多少?
大连理工大学大学物理作业10(稳恒磁场四)及答案详解

作业 10 稳恒磁场四1.载流长直螺线管内充满相对磁导率为r μ的均匀抗磁质,则螺线管内中部的磁感应强度B 和磁场强度H 的关系是[ ]。
A. 0B H μ>B. r B H μ=C. 0B H μ=D. 0B H μ< 答案:【D 】解:对于非铁磁质,电磁感应强度与磁场强度成正比关系H B r μμ0=抗磁质:1≤r μ,所以,0B H μ<2.在稳恒磁场中,关于磁场强度H →的下列几种说法中正确的是[ ]。
A. H →仅与传导电流有关。
B.若闭合曲线内没有包围传导电流,则曲线上各点的H →必为零。
C.若闭合曲线上各点H →均为零,则该曲线所包围传导电流的代数和为零。
D.以闭合曲线L 为边界的任意曲面的H →通量相等。
答案:【C 】解:安培环路定理∑⎰=⋅0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分只与传导电流有关,并不是说:磁场强度H ρ本身只与传导电流有关。
A 错。
闭合曲线内没有包围传导电流,只能得到:磁场强度H ρ的闭合回路的线积分为零。
并不能说:磁场强度H ρ本身在曲线上各点必为零。
B 错。
高斯定理0=⋅⎰⎰SS d B ρρ,是说:穿过闭合曲面,场感应强度B ρ的通量为零,或者说,.以闭合曲线L 为边界的任意曲面的B ρ通量相等。
对于磁场强度H ρ,没有这样的高斯定理。
不能说,穿过闭合曲面,场感应强度H ρ的通量为零。
D 错。
安培环路定理∑⎰=⋅0I l d H L ρρ,是说:磁场强度H ρ的闭合回路的线积分等于闭合回路包围的电流的代数和。
C 正确。
3.图11-1种三条曲线分别为顺磁质、抗磁质和铁磁质的B H -曲线,则Oa 表示 ;Ob 表示 ;Oc 表示 。
答案:铁磁质;顺磁质; 抗磁质。
图中Ob (或4.某铁磁质的磁滞回线如图11-2 所示,则'Ob )表示 ;Oc (或'Oc )表示 。
答案:剩磁;矫顽力。
5.螺线环中心周长10l cm =,环上线圈匝数300N =,线圈中通有电流100I mA =。
(大学物理下册)2010习题2解答

作业8 波 动8-1 一个余弦横波以速度u 沿x 轴正方向传播,t 时刻波形曲线如图所示.试在图中画出A ,B ,C ,D ,E ,F ,G 各质点在该时刻的运动方向.并画出(t + T /4)时刻的波形曲线. 原题 20-18-2 地震波纵波和横波的速度分别为8000 m /s 和4450 m /s ,观测点测得这两种波到达的时间差=∆t 75.6 s ,则震中到观测点的距离 r = 7.58×105 m . 解: t u r u r ∆=-)()(12 )(2121u u u u t r -⋅∆==…= 7.58×105 m8-3 ⑴ 有一钢丝,长2.00 m ,质量20.0×103 kg ,拉紧后的张力是1000 N ,则此钢丝上横波的传播速率为 316 m /s .⑵ 钢棒中声速5200 m/s ,钢的密度=ρ7.8 g/cm 3,钢的弹性模量为 2.11×1011 (N/m 2).8-4 已知一波的波函数为 )6.0π10sin(105 2x t y -⨯=-⑴ 求波长,频率,波速及传播方向;⑵ 说明x = 0时波函数的意义.原题 20-3y8-5 一螺旋形长弹簧的一端系一频率为25 Hz 的波源,在弹簧上激起一连续的正弦纵波,弹簧中相邻的两个稀疏区之间的距离为24 cm .⑴ 试求该纵波的传播速度;⑵ 如果弹簧中质点的最大纵向位移为 0.30 cm ,而这个波沿x 轴的负向传播,设波源在 x = 0 处,而x = 0 处的质点在 t = 0 时恰好在平衡位置处,且向x 轴的正向运动,试写出该正弦波的波函数.解:⑴ νλ=u = 24 ×25 = 600 cm/s⑵ 波源处 ⎭⎬⎫>-===0sin 0cos 00ϕωυϕA A y 初相位 2π-=ϕ, 波源振动方程为 )π2cos(30.000ϕν+=t y )2ππ50cos(30.0-=t波沿x 轴的负向传播的波函数为])(cos[ϕω-+=u x t A y ]2π)600π(50cos[30.0-+=x t )]24π(252sin[30.0x t += 即,该正弦波的波函数为 )]24π(252sin[30.0x t y += (cm)8-6 波源作谐振动,周期为0.01s ,经平衡位置向正方向运动时,作为时间起点,若此振动以υ= 400 ms -1的速度沿直线传播,求:⑴ 距波源为8 m 处的振动方程和初相位;⑵ 距波源为9 m 和10 m 两点的相位差. 原题 20-58-7 一平面简谐波,沿x 轴正向传播,波速为4 m/s ,已知位于坐标原点处的波源的振动曲线如图(a)所示.⑴ 写出此波的波函数; ⑵ 在图(b)中画出t = 3 s 时刻的波形图(标明尺度)P317 13.16 解: ⑴ 由图知,A = 4 cm = 4 ×10-2 m , T = 4 s ∴ T π2=ω2π=,uT =λ= 4 × 4 = 16 m 原点处 A A y ==ϕcos 0 初相位 0=ϕ原点振动方程为 )cos(ϕω+=t A y t A ωcos =∴ 波函数为 )(cos u x t A y -=ω即 )]4(2cos[1042x t y -⨯=-π ⑵ 将t = 3 s 代入波函数,得波形曲线方程 )]43(2cos[1042x y -⨯=-π t = 3 s 时刻的波形图见图(b).8-8 一正弦式空气波沿直径为0.14 m 的圆柱形管道传播,波的平均强度为1.8⨯10-2 J/(sm 2),频率为300 Hz ,波速为300 m/s ,问波中的平均能量密度和最大能量密度各是多少?每两个相邻周相差为2π 的同相面之间的波段中包含有多少能量? 原题 20-78-9 频率为100 Hz ,传播速度为300 m /s 的平面简谐波,波线上两点振动的位相差为31π,则此两点距离为 0.5 m . 原题 20-11 解:νλu ==…= 3 m , x ∆=∆)π2(ϕ,))π2(λϕ∆=∆x =…= 0.5 m-题8-7图 -8-10 在弹性媒质中有一波动方程为)2ππ4cos(01.0--=x t y (SI )的平面波沿x 轴正向传播,若在x = 5.00处有一媒质分界面,且在分界面处相位突变 π,设反射后波的强度不变,试写出反射波的波函数.原题 20-108-11 一平面简谐波某时刻的波形图如图所示,此波以速率u 沿x 轴正向传播,振幅为A ,频率为v .⑴ 若以图中B 点为坐标原点,并以此时刻为 t = 0 时刻,写出此波的波函数; ⑵ 图中D 点为反射点,且为波节,若以D 点为坐标原点,并以此时刻为 t = 0 时刻,写出入射波的波函数和反射波的波函数;⑶ 写出合成波的波函数,并定出波节和波腹的位置坐标.P326 13.29解:⑴ B 点为坐标原点,t = 0 时刻, A A y -==ϕcos 0 ♉ 初相位 π=ϕ振动方程 )cos(ϕω+=t A y ♉ )ππ2cos(+=t A y B ν∴ 波函数为 ]π)(π2cos[+-=u x t A y ν⑵ D 点为坐标原点,t = 0 时刻,入射波: ⎭⎬⎫>'-=='=0sin 0cos 00ϕωυϕA A y ♉ 初相位 2π-='ϕ 反射波:∵D 点为波节,∴初相位 2ππ=+'=''ϕϕD 点振动方程 )2ππ2cos(-=t A y D ν入, )2ππ2cos(+=t A y D ν反∴波函数为 ]2π)(π2cos[--=u x t A y ν入, ]2π)(π2cos[++=x t A y ν反⑶ 合成波的波函数 )π2cos()2ππ2cos(2t x A y y y νν+=+=反入波节:由 π)21(2ππ2+=+k u x ν 得 νu k x ⋅=2 (k = 0, -1, -2, …) 波腹:由 π2ππ2k x =+ν 得 νu k x )412(-= (k = 0, -1, -2, …) 题8-11图8-12 入射波的波函数为)( π2cos 1λx T t A y +=,在x = 0处发生反射,反射点为自由端.⑴ 写出反射波的波函数;⑵ 写出驻波的波函数;⑶ 给出波节和波腹的位置. P327 13.30解:反射点为自由端,是波腹,无半波损失,⑴ 反射波的波函数为 )( π2cos 2λx T t A y -= ⑵ 驻波的波函数为 t Tx A y y y π2cos π2cos 221λ=+= ⑶ 当1π2cos =x λ,即ππ2 k x =λ时,得波腹的位置为 2λk x =,k = 0, 1, 2, … 当0π2cos =x λ,即2π)12(π2 +=k x λ时,得波节的位置为4)2( λ+=k x ,k = 0, 1, 2, …*8-13 一平面简谐波沿x 轴正向传播,振幅为A = 10 cm ,角频率π7=ω rad/s ,当t = 1.0 s 时,x = 10 cm 处a 质点的振动状态为0=a y ,0)d d (<a t y ;同时x = 20 cm 处b 质点的振动状态为0.5=b y cm ,0)d d (>b t y .设波长10>λcm ,求该波的波函数.P315 13.13解:当t = 1.0 s 时刻,a 质点 0cos ==a a A y ϕ,0sin )d d ( <-==a a a A t y ϕωυ,♉ 2ππ2+=k a ϕ ① b 质点 2cos A A y a b ==ϕ,0sin )d d ( >-==a b b A t y ϕωυ,♉ 3ππ2-'=k b ϕ a 、b 两点相位差 b a ϕϕϕ-=∆65π)(π2+'-=k ka 、b 两点间距λ<=-=∆10b a x x x ,∴π2<∆ϕ,则ϕ∆的取值可分两种情况 ⑴ 当0='-k k 时,b a ϕϕϕ-=∆65π=,♉λϕ2π=∆∆x ,则 )(2πϕλ∆∆=x = 24 (cm)∵波沿x 轴正向传播,可设波函数为)π2cos(0ϕλω+-=x t A y )24π2π7cos(100ϕ+-=x t 当t = 1.0 s ,x = 10 cm 时波函数的相位 a ϕϕ=+⨯-⨯01024π21.0π7 ② 由式①、②求得: 317ππ20-=k ϕ, 不妨取 k = 0,则 317π0-=ϕ 波函数为 )π31712ππ7cos(10--=x t y (cm) ⑵ 当1-='-k k 时,b a ϕϕϕ-=∆67π-= < 0,波将沿x 轴负向传播,故舍去.作业10 光的衍射10-1 如果单缝夫琅和费衍射的第一级暗纹发生在衍射角为︒=30θ的方位上,所用单色光波长为500=λnm ,则单缝宽度为: 1.0 μm .解: 暗纹公式 λθk a =sin10-2 在单缝夫琅和费衍射装置中,设中央明纹衍射角范围很小.若使单缝宽度a 变为原来的3/2,同时使入射单色光波长变为原来的3/4,则屏上单缝衍射条纹中央明纹的宽度2ρ将变为原来的 1/2 倍.解:由单缝衍射暗纹公式 λθk a =sin ,暗纹位置 θθsin tan f f x k ≈⋅=, ∴中央明半纹宽a f x λρ==1;若43λλ=',23a a =' 代入上式得 2ρρ=' 10-3 在单缝夫琅和费衍射中,设第一级暗纹的衍射角很小.若纳黄光(≈1λ589.3 nm )中央明纹宽度为4.00 mm ,则=2λ442 nm 的兰紫色光的中央明纹宽度为 3 mm. 解:单缝衍射中央明纹半宽度a f x λρ==1,∴2121λλρρ=,1122)(22ρλλρ== 3 mm 10-4 单缝夫琅和费衍射对应三级暗纹,单缝宽度所对应的波面可分为 6 个半波带.若缝宽缩小一半,原来第三级暗纹变为第 一级明 纹.(原题22-2)解:由单缝暗纹公式 263sin λλλθ⨯===k a ∴ 单缝面分为6个半波带.若缝宽缩小一半,单缝面分为3个半波带,所以原第三级暗纹为变第一级明纹. 10-5 波长分别为1λ和2λ的两束平面光波,通过单缝后形成衍射,1λ的第一极小和2λ的第二极小重合.问:⑴1λ与2λ之间关系如何?⑵ 图样中还有其他极小重合吗? 解:⑴ 由单缝极小条件 11sin λθ=a 222sin λθ=a而 21θθ= ∴ 212λλ=⑵ 由 111sin λθk a =与 222sin λθk a = ,如有其它级极小重合时,必有 21θθ= ,于是 2211λλk k = ,而212λλ=∴ 212k k = 即只要符合级数间的这个关系时,还有其它级次的极小还会重合.10-6 如图所示,用波长为546 nm 的单色平行光垂直照射单缝,缝后透镜的焦距为40.0 cm ,测得透镜后焦平面上衍射中央明纹宽度为1.50 mm ,求:⑴ 单缝的宽度;⑵ 若把此套实验装置浸入水中,保持透镜焦距不变,则衍射中央明条纹宽度将为多少?(水的折射率为1.33)原题22-1⑴ a = 2.912×10-4 m⑵ 中央明纹宽a f x λρ2221=== 1.13×10-3 m10-7 衍射光栅主极大公式λθk d =sin , ,3 ,2 ,1 ,0±±±=k .在k = 2的方向上第一条缝与第六条缝对应点发出的两条衍射光的光程差δ λ10 .解:光栅相邻缝对应点发出的衍射光在2=k 的方向上光程差为λ2,则1=N 与6=N 对应点发出的衍射光的光程差λλδ1052=⨯=.10-8 用波长为546.1 nm 的平行单色光垂直照射在一透射光栅上,在分光计上测得第一级光谱线的衍射角︒=30θ,则该光栅每一毫米上有 916 条刻痕.解:由光栅方程 λθk d =sin , 得 mm 91630sin 1条=︒==λd N 10-9 用一毫米内刻有500条刻痕的平面透射光栅观察钠光谱(3.589=λnm ),当光线垂直入射时,最多能看到第 3 级光谱.解:63102500101--⨯=⨯=d m ,光线垂直入射时,光栅衍射明纹条件λθk d =sin ∵1sin <θ, 得 39.3=<λd k ,取整数 3max =k 10-10 一束平行光垂直入射在平面透射光栅上,当光栅常数d /a = 3 时,k = 3, 6, 9级不出现.解:由光栅缺级条件()k a d k '=, ,3,2,1±±±='k 时, ,9,6,3±±±=k 级缺级当k '取1时,3=k ,∴a d 3=10-11 入射光波长一定时,当光线从垂直于光栅平面入射变为斜入射时,能观察到的光谱线最高级数max k 变大 (填“变小”或“变大”或“不变”).解:正入射光栅方程λθk d =sin ;斜入射光栅方程λθk i d '=+)sin (sin ,…,题10-6图∵︒<90θ,︒<≤︒900i ,∴1sin <θ,1sin 0<<i , ∴ m ax max k k >' 10-12 用波长范围为400~760 nm 的白光照射到衍射光栅上,其衍射光谱的第二级和第三级重叠,则第三级光谱被重叠部分的波长范围是 400 ~ 506.7 nm . 原题22-6 解:λλ''=k k ,2323λλ=,令 2λ= 760 nm ,得 3λ = 506.7 nm 10-13 从光源射出的光束垂直照射到衍射光栅上.若波长为3.6531=λnm 和2.4102=λnm 的两光线的最大值在︒=41θ处首次重合.问衍射光栅常数为何值? 解:由光栅方程公式有 dk d k 2211sin λλθ== ∴60.12.4103.6562112===λλk k 而1k 与 2k 必须是整数,又取尽量小的级数∴8,521==k k=︒⨯⨯==-41sin 103.6565sin 91θλk d 61000.5-⨯ m10-14 波长为500nm 的单色平行光垂直入射于光栅常数为3103-⨯=d mm 的光栅上,若光栅中的透光缝宽度3102-⨯=a mm ,问⑴ 哪些谱线缺级?⑵ 在光栅后面的整个衍射场中,能出现哪几条光谱线?解:⑴ 根据缺级条件 k ad k '=( ,3,2,1±±±='k )则光栅的第k 级谱线缺级(k 为整数) 本题 k k k a d k '='⨯⨯='=--2310210333 当 ='k 2、4、6….时k = 3、6、…则第±3、±6,…谱线缺级根据光栅方程 λθk d =sin , λθsin d k = , 令 2/πθ< 得 61050010103933=⨯⨯⨯=<---λdk ,再考虑到缺级. 只能出现 0、±1、±2、±4、±5共9条光谱线.10-15 一双缝,缝距 d = 0.40 mm ,两缝的宽度都是a = 0.080 mm ,用波长为480=λnm 的平行光垂直照射双缝,在双缝后放一焦距为f = 2.0 m 的透镜,求:⑴ 在透镜焦平面处的屏上,双缝干涉条纹的间距∆x ;⑵ 在单缝衍射中央亮纹范围内的双缝干涉亮纹数目.原题22-3⑴ ∆x = 2.4×10-3 m⑵ 在单缝衍射中央亮纹范围内有 9条 亮谱线:4 ,3 ,2 ,1 ,0±±±±级10-16 光学仪器的最小分辨角的大小[ C ](A) 与物镜直径成正比; (B) 与工作波长成反比(C) 取决于工作波长与物镜直径的比值;(D) 取决于物镜直径与工作波长的比值. 解:Dλϕ22.1δ= 10-17 人眼瞳孔随光强大小而变,平均孔径约为3.0 mm ,设感光波长为550 nm ,眼睛可分辨的角距离约为 1 分.解:取人眼孔径为3 mm ,入射光波长为550nm ,眼最小分辨角 122.1δ'≅= D λϕ10-18 在夜间人眼的瞳孔直径约为5.0 mm ,在可见光中人眼最敏感的波长为550 nm ,此时人眼的最小分辨角为 27.6 秒,有迎面驶来的汽车,两盏前灯相距1.30 m ,当汽车离人的距离为 9.69×103 m 时,人眼恰好可分辨这两盏灯.原题22-7 解: ==Dλϕ22.1δ; =∆∆=θx l 10-19 根据光学仪器分辨率的瑞利判据,要利用望远镜分辨遥远星系中的星体,可采用 增大透镜直径 或 用较短的波长 的方法.10-20 用一部照相机在距离地面20 km 的高空中拍摄地面上的物体,若要求它能分辨地面上相距为0.1m 的两点,问照相机镜头的直径至少要 13.4 cm .(设感光波长为550 nm )解:由 l s D ==λϕ22.1δ,得134.01.010*********.1 22.139=⨯⨯⨯⨯==-s l D λm = 13.4cm 10-21 以未知波长的X 射线掠入射于晶面间隔为10103-⨯=d m 的晶面上,测得第一级布喇格衍射角︒=51θ,则该X . 解:λϕk d =sin 2,k = 1,……10-22 一束波长范围为0.095 ~ 0.140 nm 的X 射线照射到某晶体上,入射方向与某一晶面夹角为︒30,此晶面间的间距为0.275 nm ,求这束X 射线中能在此晶面上产生强反射的波长的大小.原题22-8=λ0.1375 nm10-23 测量未知晶体晶格常数最有效的方法是X 射线衍射法.现用波长07126.0=λ nm (钼谱线)的X 射线照射到某未知晶体上,转动晶体,在三个相互正交的方位上各测得第2级布喇格衍射角分别为59561'''︒=ϕ、79132'''︒=ϕ、14943'''︒=ϕ,请分别求出这三个相互正交方位上的晶面间距.解:晶体的衍射满足布喇格方程 λϕk d =sin 2 ϕλsin 2k d = 已知 k = 2,︒=985.61ϕ、︒=319.32ϕ、︒=161.43ϕ解得:=1d 0.586 nm ,=2d 1.231 nm ,=3d 0.982 nm(该晶体为斜方晶系的无水芒硝)习题参考答案作业2 动量与角动量 功与能2-1 0.6 N·s ; 2 g 2-2 1.41 Ns2-3 M P '=2υ;=''F 30N ,=P 45W 2-4 5.30 × 1012 m 2-5 B A a b υυ= 2-6 0.45 m 2-7)(mr k ,)2(r k -2-8 )2(22k g m2-9 )6(R GMm ,)3(R GMm - 2-10 4.23×106 J , 151 s 2-11 31 J ,5.345 m /s2-12 22k ωq m E P =,222k ωp m E Q =222ωp m A x =,222ωq m A y -=作业4 气体动理论4-1 0.13 kg ,117升4-2 平衡状态,气体的准静态过程 4-3 1.53 × 104 Pa4-4 相同,不同,不同 4-5 kTpVN =4-6 10 : 3, 5 : 3, 1 : 1 4-7 略4-8 =∆E 41.55 J ,221007.2-⨯=∆K E 4-9 =∆T 0.481 K ,41000.2⨯=∆p Pa 4-10 R E 2,)5(2μE ,)π5(4μE4-11 υυυd )(d 100⎰⎰∞=='f NN N ,υυd )(100⎰∞=f P ,υυυυυυd )(d )(100100⎰⎰∞∞=f f4-12 D4-13 51035.1⨯=P Pa 4-14 n = 3.2×1017 m -3 ,=λ7.8 m ,=z 59.9 s -1 4-15 =⎪⎭⎫⎝⎛υ1kT m π2=, υυ1π41⋅=⎪⎭⎫ ⎝⎛ 4-16 )3(20υ=a ,=∆N 0.333 N ,=υ 1.220υ,=2υ 1.310υ作业6 狭义相对论基础6-1 93,10,0,2.5×10-7s 6-2 51033.3-⨯-s ,天津 6-3 3.61 m ,143369.33'︒=︒ 6-4 1.418×108 m /s = 0.473 c 6-5 12 m ,4 s6-6 =∆t 1.6 s ,='∆t 0.96 s 6-7 )(122c a υ-,)(122c mυ-,)1(22c ab mυ-6-8 cu cu l x -+=∆110,c u c u c l t -+=∆110,c =υ6-9 0.7×10-36-10 50.8%6-11 46-12 211k c -=υ 6-13 0.866 c ,0.866 c 6-14 2.94×105 eV 6-15 4.1×1066-16 m = 2.67m 0,=υ0.5c ,0031.2m m =' 6-17 c 115.0m ax =υ,=ke E 3.43×103eV ,==ke kp 1840E E 6.31×106eV作业8 波 动8-1 略 8-2 7.58×105 m 8-3 316, 2.11×10118-4 10.5m ,5Hz ,52.4m/s ,x 轴正方向x = 0处质元的振动方程 8-5 600 cm/s ,)]24π(252sin[30.0x t y +=(cm)8-6 2π9-=ϕ,2π=∆ϕ 8-7 )]4(2cos[1042x t y -⨯=-π,图略8-8 4106.0-⨯J/m 3,4102.1-⨯J/m 3;71024.9-⨯J 8-9 0.58-10 []2ππ4cos 01.0++=x t y 反 8-11 ]π)(π2cos[+-=x t A y ν]2π)(π2cos[--=x t A y ν入 ]2π)(π2cos[++=x t A y ν反波节:νu k x ⋅=2(k = 0, -1, -2, …),波腹:νu k x )412(-=(k = 0, -1, -2, …)8-12 )( π2cos 2λx T t A y -=,t Tx A y y y π2cos π2cos 221λ=+=波腹 2 λk x =,k = 0, 1, 2, …波节 4)2( λ+=k x ,k = 0, 1, 2, …8-13 )π31712ππ7cos(10--=x t y (cm)作业10 光的衍射10-1 1.0 10-2 1/2 10-3 310-4 6, 一级明10-5 212λλ=,1λ的第k 1极小和2λ的第k 2 = 2k 1极小重合. 10-6 a = 2.912×10-4m, =ρ2 1.13×10-3m 10-7 λ10 10-8 916 10-9 3 10-10 3 10-11 变大10-12 400 ~ 506.7 10-13 61000.5-⨯=d m10-14 第±3、±6,…谱线缺级,只出现 0,±1,±2,±4,±5共9条光谱线. 10-15 2.4 mm , 9条亮纹 10-16 C 10-17 110-18 27.6, 9.69×10310-19 增大透镜直径, 用较短的波长 10-20 13.410-21 111023.5-⨯ 10-22 =λ0.1375 nm10-23 =1d 0.586 nm ,=2d 1.231 nm ,=3d 0.982 nm。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2π r1 2π r1 A1 cos(1 ) A2 cos( 2 )
2 A12 A2 2 A1 A2 cos
A1 sin(1
2π r1
) A2 sin( 2
2π r2
)
A
2 1 2π
r2 r1
常量
讨论
A A 2 A1 A2 cos r2 r1 2 1 2π A
A A1 A2
r 其他
振动始终减弱
A1 A2 A A1 A2
例1(P63) 如图所示,A、B 两点为同一介质中两相 干波源.其振幅皆为5cm,频率皆为100Hz,但当点 A 为波峰时,点B 适为波谷.设波速为10m/s,试写出由A、 B发出的两列波传到点P 时干涉的结果. P 15m 解 BP 152 202 m 25 m
O
设AB间的P点因干涉而静止,其坐标为 x ,则两 列波在P点的相位分别为: t A 2 rA t A 2 x 4 t B 2 rB t B 2 (30 x) 4 Δ B A 2 (rB rA ) 2 [(30 x) x] 4 15 x (2k 1) ∴ x=2k+15 满足 0 x 30 A P x 取 k = 0, ±1, ±2,...±7.
y1 A1 cos( t 1 2 π
r1
)
s1 s2
r1
r2
P点的两个分振动
* P
y1 A1 cos( t 1 2 π
y 2 A2 cos(t 2 2 π
r1
r2
)
)
y y1 y 2 A cos( t )
tan
讨论
A
A A 2 A1 A2 cos
2 1 2 2
2 1 2π
2π
r2 r1
若
1 2 则
r
波程差 r r2 r1
r k k 0,1,2, A A1 A2 振动始终加强
(3)
r (k 1 2) k 0,1,2,
称为波的干涉现象.
1) 波的相干条件 (1)频率相同; (2)振动方向平行;
s1 s2
r1
r2
*
P
(3)相位相同或相位差恒定.
2) 波的干涉规律 波源S1、S2的振动
y10 A1 cos( t 1 )
y20 A2 cos( t 2 )
P点的两个分振动 r2 y 2 A2 cos(t 2 2 π )
有 x =1,3,5,7,…,25,27,29(m) 共15个静止的点.
x
30-x
B 30 x
O
波 的 衍 射
三 波的干涉 1 波的叠加原理
几列波相遇之后, 仍然保持它们各自原有的特征
(频率、波长、振幅、振动方向等)不变, 并按照原来 的方向继续前进, 好象没有遇到过其他波一样.
在相遇区内任一点的振动, 为各列波单独存在时在
该点所引起的振动位移的矢量和.
2 干涉现象
频率相同、振动方向平行、相位相同或相 位差恒定的两列波相遇时,使某些地方振动始 终加强,而使另一些地方振动始终减弱的现象,
2 1 2 2
(1) 合振动的振幅(波的强度)在空间各点的分布 随位置而变, 但不随时间变化, 是稳定的.
(2)
2k π k 0,1,2, A A1 A2 振动始终加强 (2k 1) π k 0,1,2, A A1 A2 振动始终减弱 其他 A1 A2 A A1 A2
的两个相干波源,两波源振动的振幅相同,频率均
为100Hz,B点相位比A点超前 ,波速为400m/s,求
A、B连线间因干涉而静止的点的位置.
A
解:
B
=100Hz, B -A = ,u = 400m/s = u / = 4m, 以A为原点建立坐标如图:
A x P x 30-x B 30 x
10 m 0.10 m 100
20m
B 设 A 的相位较 B 超 前,则 A B π .
u
A
B A 2π
点P 合振幅
BP AP
25 15 π 2π 201 π 0.1 A A1 A2 0
例2 如图,A、B两点相距30cm,为同一媒比有关.
波在传播过程中 水
惠更斯原理的应用
1) 解释波的衍射现象. 2) 由某一时刻的波阵面作出 下一时刻的波阵面 3) 几何法证明波的反射定律 和折射定律. 注:惠更斯原理只解释了衍射中波传播方 向改变的问题,并未说明波强不同分布的原因. 后来,由菲涅耳对此作了补充.
§10-4 惠更斯原理 波的衍射和干涉
惠更斯原理 介质中波动传播到的各点都可以看作是发射子波 的点波源;而在其后的任意时刻,这些子波的包络 (公切面)就是新的波前. 一
ut
平 面 波 球 面 波
R1
O
R2
二 波的衍射
波 遇到障碍物时,能绕 通 过障碍物的边缘,在 过 狭 障碍物的阴影区内继 缝 后 续传播. 的 衍射现象是波 衍 动的重要特征之一. 射