量子力学考试试题-
量子力学试题及答案

量子力学试题及答案一、选择题(每题2分,共20分)1. 量子力学的基本原理之一是:A. 牛顿运动定律B. 薛定谔方程C. 麦克斯韦方程组D. 热力学第二定律2. 波函数的绝对值平方代表:A. 粒子的动量B. 粒子的能量C. 粒子在某一位置的概率密度D. 粒子的波长3. 以下哪个不是量子力学中的守恒定律?A. 能量守恒B. 动量守恒C. 角动量守恒D. 电荷守恒4. 量子力学中的不确定性原理是由哪位物理学家提出的?A. 爱因斯坦B. 波尔C. 海森堡D. 薛定谔5. 在量子力学中,一个粒子的波函数可以表示为:B. 一个复数C. 一个向量D. 一个矩阵二、简答题(每题10分,共30分)1. 简述海森堡不确定性原理,并解释其在量子力学中的意义。
2. 解释什么是量子纠缠,并给出一个量子纠缠的例子。
3. 描述量子隧道效应,并解释它在实际应用中的重要性。
三、计算题(每题25分,共50分)1. 假设一个粒子在一维无限深势阱中,其波函数为ψ(x) = A *sin(kx),其中A是归一化常数。
求该粒子的能量E。
2. 考虑一个二维电子在x-y平面上的波函数ψ(x, y) = A * e^(-αx) * cos(βy),其中A是归一化常数。
求该电子的动量分布。
答案一、选择题1. B. 薛定谔方程2. C. 粒子在某一位置的概率密度3. D. 电荷守恒4. C. 海森堡二、简答题1. 海森堡不确定性原理指出,粒子的位置和动量不能同时被精确测量,其不确定性关系为Δx * Δp ≥ ħ/2,其中ħ是约化普朗克常数。
这一原理揭示了量子世界的基本特性,即粒子的行为具有概率性而非确定性。
2. 量子纠缠是指两个或多个量子系统的状态不能独立于彼此存在,即使它们相隔很远。
例如,两个纠缠的电子,无论它们相隔多远,测量其中一个电子的自旋状态会即刻影响到另一个电子的自旋状态。
3. 量子隧道效应是指粒子在经典物理中无法穿越的势垒,在量子物理中却有一定概率能够穿越。
量子力学考研试题及答案

量子力学考研试题及答案一、单项选择题(每题5分,共20分)1. 量子力学中,波函数的平方代表粒子的什么物理量?A. 动量B. 能量C. 位置D. 概率密度答案:D2. 以下哪项是海森堡不确定性原理的表述?A. 粒子的位置和动量可以同时精确测量B. 粒子的位置和动量不能同时精确测量C. 粒子的能量和时间可以同时精确测量D. 粒子的能量和时间不能同时精确测量答案:B3. 薛定谔方程描述的是:A. 经典力学B. 电磁学C. 量子力学D. 热力学答案:C4. 泡利不相容原理适用于:A. 光子B. 电子C. 质子D. 中子答案:B二、填空题(每题5分,共20分)1. 根据量子力学,一个粒子的波函数可以表示为 \(\psi(x, t)\),其中 \(x\) 代表粒子的________,\(t\) 代表时间。
答案:位置2. 量子力学中的波粒二象性表明,粒子既表现出________的性质,也表现出粒子的性质。
答案:波动3. 量子力学中,一个粒子的能量可以表示为 \(E =\frac{p^2}{2m}\),其中 \(p\) 代表粒子的________。
答案:动量4. 量子力学中的隧道效应是指粒子可以穿过________的势垒。
答案:经典物理认为不可能三、简答题(每题10分,共30分)1. 简述德布罗意波的概念及其在量子力学中的意义。
答案:德布罗意波是指物质粒子(如电子)具有波动性,其波长与粒子的动量成反比。
在量子力学中,这一概念是波函数理论的基础,它表明粒子的行为不能完全用经典力学来描述,而是需要用波动方程来描述。
2. 描述一下量子力学中的量子态叠加原理。
答案:量子态叠加原理是指一个量子系统可以同时处于多个可能状态的叠加,直到进行测量时,系统才会坍缩到其中一个特定的状态。
这一原理是量子力学的核心特征之一,它导致了量子力学的非经典行为和概率解释。
3. 解释什么是量子纠缠,并给出一个实际应用的例子。
答案:量子纠缠是指两个或多个量子粒子之间存在的一种非经典的强关联,即使它们相隔很远,一个粒子的状态改变会即时影响到另一个粒子的状态。
量子力学试题含答案

一、填空题:(每题 4 分,共 40 分)1. 微观粒子具有 波粒 二象性。
2.德布罗意关系是粒子能量E 、动量P 与频率ν、波长λ之间的关系,其表达式为:E=h ν, p=/h λ 。
3.根据波函数的统计解释,dx t x 2),(ψ的物理意义为:粒子在x —dx 范围内的几率 。
4.量子力学中力学量用 厄米 算符表示。
5.坐标的x 分量算符和动量的x 分量算符x p 的对易关系为:[],x p i = 。
6.量子力学关于测量的假设认为:当体系处于波函数ψ(x)所描写的状态时,测量某力学量F 所得的数值,必定是算符Fˆ的 本征值 。
7.定态波函数的形式为: t E in n ex t x-=)(),(ϕψ。
8.一个力学量A 为守恒量的条件是:A 不显含时间,且与哈密顿算符对易 。
9.根据全同性原理,全同粒子体系的波函数具有一定的交换对称性,费米子体系的波函数是_反对称的_____________,玻色子体系的波函数是_对称的_______ _。
10.每个电子具有自旋角动量S ,它在空间任何方向上的投影只能取两个数值为: 2± 。
二、证明题:(每题10分,共20分)1、(10分)利用坐标和动量算符的对易关系,证明轨道角动量算符的对易关系:证明:zy x L i L L ˆ]ˆ,ˆ[ =]ˆˆ,ˆˆ[]ˆ,ˆ[z x y z yx p x p z p z p y L L --=2、(10分)由Schr ödinger 方程证明几率守恒:其中几率密度 几率流密度 证明:考虑 Schr ödinger 方程及其共轭式:2|),(|),(),(),(t r t r t r t rψ=ψψ=*ω22(,)[()](,)2i r t V r r t t μ∂ψ=-∇+ψ∂0=∙∇+∂∂J tω][2ψ∇ψ-ψ∇ψ=**μi J ]ˆˆ,ˆ[]ˆˆ,ˆ[z x y z x z p x p z p z p x p z py ---=]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[]ˆ,ˆ[z y x y z z x z p x p z p z p z p x p y p z py +--=]ˆ,ˆ[]ˆ,ˆ[z y x z p x p z p z py +=y z z y z x x z p p x z p x p z p p z y p z py ˆ]ˆ,[]ˆ,ˆ[ˆ]ˆ,[]ˆ,ˆ[+++=y z x z p p x z p z py ˆ]ˆ,[]ˆ,ˆ[+=y z y z x z x z p p x z p p z x p z p y p pyz ˆˆ],[ˆ]ˆ,[ˆ],ˆ[]ˆ,ˆ[+++=y x p i x pi y ˆ)(ˆ)( +-=]ˆˆ[x y p y px i -= zL i ˆ =在空间闭区域τ中将上式积分,则有:三、计算题:(共40分)1、(10分)设氢原子处于状态),()(23),()(21),,(11211021ϕθϕθϕθψ--=Y r R Y r R r 求氢原子能量E 、角动量平方L 2、角动量Z 分量L Z 的可能值及这些可能值出现的几率。
量子力学试题及答案

量子力学试题及答案一、选择题1. 下列哪个不是量子力学的基本假设?A. 薛定谔方程描述了微观粒子的运动B. 波粒二象性存在C. 粒子的能量只能取离散值D. 电子具有自旋答案:A2. 量子力学中,波函数ψ的物理意义是什么?A. 粒子的位置分布概率幅B. 粒子的动量C. 粒子的自旋D. 粒子的能量答案:A3. 下列哪个是测量厄米算符A的本征值所对应的本征态?A. |A⟩= A|ψ⟩B. A|ψ⟩= λ|ψ⟩C. A|ψ⟩= |ψ⟩D. A|ψ⟩ = 0答案:B4. 对于厄米算符A和B,若它们对易(即[A, B] = 0),则可以同时拥有共同的一组本征态。
A. 正确B. 错误答案:A5. 量子力学中,双缝干涉实验的实验结果说明了下列哪个基本原理?A. 波粒二象性B. 运动不确定性原理C. 量子纠缠D. 全同粒子统计答案:A二、填空题1. 薛定谔方程的一般形式为___________。
答案:iℏ∂ψ/∂t = Hψ2. 微观粒子的自旋可取的两个可能取值是_________。
答案:±1/23. 薛定谔方程描述的是粒子的_________。
答案:波函数4. 在量子力学中,观测算符A的平均值表示为_________。
答案:⟨A⟩ = ⟨ψ|A|ψ⟩5. 测量量子系统时,波函数会坍缩到观测算符A的_________上。
答案:本征态三、简答题1. 请简要解释波粒二象性的概念及其在量子力学中的意义。
答:波粒二象性是指微观粒子既具有粒子性质又具有波动性质。
在量子力学中,波函数描述了粒子的波动性质,可以通过波函数的模的平方得到粒子在不同位置出现的概率分布。
波粒二象性的意义在于解释了微观世界中一些奇特的现象,例如双缝干涉实验和量子隧穿现象。
2. 请简要说明量子力学中的不确定性原理。
答:量子力学中的不确定性原理由海森堡提出,它表明在同时测量一粒子的位置和动量时,粒子的位置和动量不能同时具有确定的值,其精度存在一定的限制。
量子力学期末试题

量子力学期末试题1一. 填空(3分×5=15分)1.2)2,(h vr ψ的含义是 2.在非定态下,力学量的平均值一定随时间变化吗?3.211ˆ(,)________L Y θϕ=;2,1ˆ(,)________z L Y θϕ−= 4.坐标y 在动量表象中的矩阵元为__________________________.5.2ˆ[,]y z σσ=____ 二.证明(10分×2=20分)1.(10分)设ˆA v ,ˆB v 是与σˆv 对易的任何矢量算符, 证明:)ˆˆ(ˆˆˆ)ˆˆ)(ˆˆ(B A i B A B A v v v v v v v v v ו+•=••σσσ。
2.(10分)设力学量A 不显含时间t ,H 为体系的Hamilton 量,试证明]],,[[222H H A A dt d =−h三.计算(65分),1. (15分)求一维谐振子的坐标,x 动量ˆp及Hamilton 量ˆH 在能量表象中的矩阵表示。
(已知:1111)n n n n n x ψ+−−+=+− 2.(15分)在ˆz σ表象中,求01ˆ10x σ⎛⎞=⎜⎟⎝⎠和0ˆ0y i i σ−⎛⎞=⎜⎟⎝⎠的本征值和所属的本征函数。
3.(15分)设粒子在势场 ⎩⎨⎧><∞<<=.,0,;0,0)(a x x a x x u 中运动, 求:粒子的能量本征值和本征函数。
(15分)4.(20分)考虑耦合谐振子,H H H ′+=0,其中)(21)(22221222221220x x x x H ++∂∂+∂∂−=μωμh ;21x x H λ−=′(λ为实常数,刻画耦合强度)(1).求出0H 的本征值及能级的简并度;(2).以第一激发态为例用简并微扰论计算H ′对能级的影响(一级近似)试卷1参考答案一. 填空(每题3分,共15分)1. 电子自旋向上位置在r v处的几率密度, 2. 不一定,3. ),(2112ϕθY h ;),(1,2ϕθ−−Y h , 4. )(p p p i y p p ′′−′′∂∂=′′′δh5. 0二.证明(每题10分,共20分) 1 证明原式左端)(z z y y x x A A A σσσ++=)(z z y y x x B B B σσσ++ (5分)z z z y y y x x x B A B A B A 222σσσ++=x y x y y x y x z x z x x z x z y z y z z y z y B A B A B A B A B A B A σσσσσσσσσσσσ++++++又因为1222===z y x σσσ,z x y y x i σσσσσ=−=,x y z z y i σσσσσ=−=,y z x x z i σσσσσ=−= (3分)整理得)(B A i B A vv v v v ו+•σ (2分)问题得证 2 证明对于不显含时间t 的力学量A 有hi A dt d 1=],[H A (5分) 上式两边对t 求导,则有 h h i H A i dt d A dt d 1],[122==]],,[1[H H A i h ]],,[[12H H A h−= (5分)即]],,[[222H H A A dt d =−h三.计算题 1.解:取占有数表象,由已知可得:(2分)1) 坐标x 的矩阵表示为,1,n n n n n n x ′′′+⎞=+⎟⎟⎠(3分)0000100x α⎛⎞⎜⎟⎟⎟⎟⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L L L L L L L L L L L L L (2分) 2) 由于ˆdpi dx=−h ,所以,1,n n n n n n p ′′′−⎤=−⎥⎦(2分)故有0000000p i α⎛⎞⎜⎟⎟⎟⎟⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠L L h L L L L L L L L L L L (2分) 3) 能量ˆ(H=1ˆ2N ω+h ,所以 ,1()2n n n n H n ωδ′′=+h (2分)故有 1000230002ˆ50002100002H n ⎛⎞⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟=⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟+⎜⎟⎝⎠L L L L L L L L (2分)2.解:解:(1) 先求x σ的本征值和本征函数在z σ表象中,x σ=⎟⎟⎠⎞⎜⎜⎝⎛0110,设x σ本征值为λ,本征态为⎟⎟⎠⎞⎜⎜⎝⎛b a , 则本征方程为:⎟⎟⎠⎞⎜⎜⎝⎛=⎟⎟⎠⎞⎜⎜⎝⎛⎟⎟⎠⎞⎜⎜⎝⎛b a b a λ1001 (3分) 解得: 1±=λ (2分)x σ∴的归一化的本征态为:⎪⎪⎩⎪⎪⎨⎧−=⎟⎟⎠⎞⎜⎜⎝⎛−==⎟⎟⎠⎞⎜⎜⎝⎛=1112111121λσλσx x (4分)(2) 同理可求y σ的本征值为1±=′λ (2分)相应于y σ的归一化本征态为:⎪⎪⎩⎪⎪⎨⎧−=⎟⎟⎠⎞⎜⎜⎝⎛−==⎟⎟⎠⎞⎜⎜⎝⎛=11211121λσλσi i y y (4分)3.1 解:一维定态薛定鄂方程为222()2d u x E m dxψψψ−+=h (2分) 1) 在0x a ≤≤范围:22202d E m dxψ+=h (2分) 故 sin cos A x B x ψαα=+,1222mE α⎛⎞=⎜⎟⎝⎠h (2分) 2) 根据波函数的连续性条件:()(0)0a ψψ==,可得 sin cos 0,0A a B a B αα+==故有 sin A x ψα= (3分)由sin 0a α=可得,(1,2,3)n n aπα==L (1分)3) 由归一化条件:2||1dx ψ+∞−∞=∫,可得2220sin 1aA xdx α=∫故有A =(2分) 4) 结合1222mE α⎛⎞=⎜⎟⎝⎠h 和(1,2,3)n n a πα==L 可得 2222222222n n n E m a ma ππ==h h (2分)所以()n x x aπψ= 1,2,3n =L (1分) 4.解:)(21)(22221222221220x x x x H ++∂∂+∂∂−=μωμh )212(2122122x x μωμ+∂∂−=h )212(2222222x x μωμ+∂∂−+h 表示两个独立的谐振子,它们的共同本征态为:21n n21n n =)()(212x x n n n ψψ0201)21()21(21ωωh h +++=∴n n E n nL L h 3,2,1,)1(0=+=N N ω (4分) 当N 给定时, N n L L ,2,1,01= 0,2,1,2L L −−=N N N nN+1种组合因此,能级的简并度为N+1 (4分) (2)第一激发态为N=1 能级简并度为二重00)0(12)1(ωωh h =+=N E相应的波函数为:⎩⎨⎧==),()()(),()()(21220112112110x x x x x x x x φψψφψψ (1分) ⎟⎟⎠⎞⎜⎜⎝⎛′′′′=′∴22122111φφφφφφφφνμH H H H H (2分) 01111=′=′∴φφH H , 02222=′=′∴φφH H (2分) 221122αλ−=′=′∴H H (4分) ′⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−−=′∴022022αλαλνμH00220)1(22)1(=′⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛−−−−∴E E αλαλ2)1(2αλ±=∴E (2分) 0020)1(1)0(112222μωλωαλωhh h ±=±=+=∴E E E (1分)量子力学期末试题2一.填空(3分×5=15分)1 粒子处于力学量B v 的本征态)(r n vψ的迭加态,)()(41)(21)(321r C r r r n v v v v ψψψψ++=则粒子处于)(1r vψ的概率是 ,C = (取实数)2 若ˆ,FG GF ik−=,则算符F 和G 之间满足测不准关系________________ 3 在粒子数表象中,产生算符和湮灭算符满足关系式:ˆ4an ++= ;ˆ1a n += 4.一个正电子和一个负电子同时在空间运动在两粒子相遇区域是否可以将其分辨?______5 中心力场中的粒子处于定态,则角动量取确定值,对吗? 二.证明(10分×2=20分)1.(10分)设λ为常数,z σ为泡利算符,证明:cos sin zi z ei λσλσλ=+2.(10分)证明:Hermite 算符的属于不同本征值的本征函数彼此正交(假定本征值是离散的)。
量子力学考试试题(附答案)

量子力学考试试题(附答案)1.束缚于某一维势阱中的粒子,其波函数由下列诸式所描述:()()()023cos 222ikx L x x x L L x Ae x L L x x ψπψψ=<-=-<<=>(a )、求归一化常数A,(b )、在x=0及x=L/4之间找到粒子的概率为何? 解:(a )由波函数的归一化条件()222222222331coscos 33cos cos 3cos 6cos 126sin 262ikx ikx ikx ikx LLx x x dx Ae Ae dx L Lx x A e e dxL L x A dx L A x dx L A L x x L A L ππψππππππ∞∞-∞-∞∞--∞∞-∞∞-∞-====⎛⎫=+ ⎪⎝⎭⎛⎫=+ ⎪⎝⎭=⎰⎰⎰⎰⎰于是:A =(b)()224406sin 0.196926LL A L x x dx x L πψπ⎛⎫=+= ⎪⎝⎭⎰2、证明在定态中,概率流密度与时间无关。
证:对于定态,可令)]()()()([2 ])()()()([2 )(2 )( )()()(******r r r r mi e r e r e r e r m i mi J e r t f r t r Et i Et i Et iEt i Etiψψψψψψψψψψ∇-∇=∇-∇=ψ∇ψ-ψ∇ψ===ψ-----)()(, 可见t J 与无关。
4、波长为1.0*10-12m 的X 射线投射到一个静止电子上,问在与入射光成60o 角的方向上,探测到散射光的波光为多少?解:由公式 22sin 2c θλλλ'-=其中:120 2.43102ch m m cλ-==⨯可得:1212212601.0102 2.4310sin 1.215102λλλ---''-=-⨯=⨯⨯⨯=⨯ 01212212601.0102 2.4310sin 1.215102λλ---'-=-⨯=⨯⨯⨯=⨯122.21510m λ-=⨯。
量子力学测试题

量子力学测试题有关量子力学的测试题1. 问题一:波粒二象性a) 解释波粒二象性是什么意思,并举出一个例子来说明。
b) 描述质子和电子的波动性和粒子性。
2. 问题二:不确定原理a) 解释不确定原理是什么,并列举一个不确定原理的实例。
b) 讨论量子力学中的位置-动量不确定性原理和能量-时间不确定性原理。
3. 问题三:量子态和测量a) 解释什么是量子态和态矢量,并说明它们的物理意义。
b) 描述一个典型的量子测量实验过程。
4. 问题四:量子力学中的干涉与衍射a) 解释量子力学中的干涉和衍射,并与经典物理中的情况进行比较。
b) 描述一个干涉或衍射实验的结果,并解释观察到的现象。
5. 问题五:量子力学中的量子纠缠a) 解释量子纠缠是什么,并说明它的应用领域。
b) 描述一个经典物理无法解释的量子纠缠实验,并讨论实验结果。
6. 问题六:量子力学中的超导性a) 解释什么是超导性,并说明它与量子力学的关系。
b) 讨论超导性的发现对于量子力学的重要性。
7. 问题七:量子计算a) 解释什么是量子计算,并说明它与传统计算的区别。
b) 讨论量子计算的优势和可能的应用领域。
8. 问题八:量子力学中的量子隧穿a) 解释量子隧穿现象,并说明它在实践中的重要性。
b) 描述一个与量子隧穿相关的实验,并说明其结果。
9. 问题九:湮灭和产生算符a) 解释湮灭和产生算符,并说明它们在量子力学中的运用。
b) 描述一个与湮灭和产生算符相关的实际物理系统。
10. 问题十:量子力学中的双缝实验a) 解释双缝实验,并说明其对于理解量子力学的重要性。
b) 描述一个双缝实验并解释观测到的结果。
以上是关于量子力学的测试题,供您简单了解和思考。
希望能对您有所帮助。
量子力学选择题试题一

1. 量子力学只适应于【 】A.微观客体B.低速微观客体C.宏观物体D.宏观物体和微观客体2.算符A 本征态是指【 】A.在该态上测量力学量A 没有确定值B.算符A 为厄米算符C.在该态上多次测量力学量A 有唯一确定值D.一个确定的状态3.定态是指【 】A.波函数形式为Et i e r -)(ψ的态B.波函数形式为r p i e t ∙-)(ψ的态C.波函数形式为)(21x p Et i x e-- π的态 D.波函数形式为)ˆ(23)2(1x p Et i e ∙-- π的态4.波函数和体系状态的关系是【 】A.波函数完全确定体系状态B.只有定态波函数才能唯一确定体系状态C.因不确定常数因子的影响,波函数不能完全确定体系状态D.因不确定相因子的影响,波函数不能完全确定体系状态5.波函数确定则【 】A.所有力学量的取值概率完全确定B.某些力学量的取值可以完全确定C.只有体系能量完全确定D.波函数与力学量取值无关6.可测量的物理量在量子力学中可以用厄密算符表示,原因是【 】A.厄米算符作用在波函数上得到复数乘以该波函数B.厄米算符是幺正算符C. 厄密算符的本征值都是实数D.厄密算符的本征值取值概率一定7. 中心力场中体系守恒量有【 】A.只有能量B.动量和角动量C.只有角动量D.能量和角动量8.两个电子体系的自旋波函数是A. )2()1(βαB. )1()2(βαC. )]2()1([21βα+D. )]1()2()2()1([21βαβα+9.下列说法错误的是【 】A.电子是费米子B.电子自旋在z 方向的分量是2±C. 电子是玻色子D. 电子满足Pauli 不相容原理10.下列说法错误的是【 】A.Pauli 矩阵是厄米矩阵B.y y σσσ、、x 的本征值都是1± C.在各种表象下y y σσσ、、x 的表示形式不变 D.在不同表象下y y σσσ、、x 的表示不同。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5.量子力学中守恒定量需要满足的条件是。
6.描述费米体系的波函数必须满足交换。
7.质量为 的粒子,在阱宽为 的一维无限深势阱中运动的第n个能级为,相应的波函数满足的边界条件为。
8.氢原子的基态能为,基态时氢原子轨道角动量为。
9.自旋角动量的对易关系是。
10.服从玻色-爱因斯坦统计的全同粒子被称为玻色子,描述该系统的波函数必须满足交换。
(1) 0.92Å,(2)1.23Å,(3)12.6Å,(4)0.17Å。
4.设体系处在 的态中,则 的可能值为()。
(1) ,(2)2 ,(3)4 ,(4)不确定。
5.质量为 的粒子,在阱宽 为的一维无限深势阱中运动,当 时,粒子处于状态 ,其中, 为粒子的第 个能量本征态。则当 时,能量为 的取值几率为()。
五、(15分)一电荷为e的线性谐振子受到恒定弱电场 的作用,电场沿X的正方向。试求体系的定态能量和波函数。
六、(10分)当氢原子处于基态时,求:(1)势能的平均值;(2)最可积半径。
二、选择题(每题4分,共20分):
1.两个电子的自旋波函数可以够成下面四中独立的对称或者反对称波函数,其中反对称的波函数是().
(1) ,(2) ,
(3) ,
(4) 。
2.由实验测出的氦原子的基态能量是().
(1) ,(2) ,()。
陕西理工学院考试试卷(B卷)
2012— 2013学年第一学期
科目:量子力学物理系物理学专业09级1-2班
题号
一
二
三
四
五
六
七
八
九
十
总分
得分
阅卷人
一、填空题(每题2分,共20分):
1.不考虑自旋时,氢原子能级的简并度是,考虑自旋时简并度变为。
2.产生激光的两个条件是和。
3.能量和时间的测不准关系可以表示为。
(1)1/2,(2)1/4,(3)-1/4,(4)不确定。
三、简答、证明题(每题5分,共20分):
1、散射理论中光学定理是什么?简述其的物理意义。
2、由薛定谔方程导出粒子的概率流密度。
3、试用波函数的统计解释证明属于厄米算符不同本征值本征函数正交
4、由泡利算符的对易关系推导出他们的反对易关系。
四、(15分)设t=0时,粒子的波函数为 ,求此时粒子的动量期望值和动能期望值。