钱集中学八年级上数学期中模拟试卷7
钱集中学八年级上数学期中模拟试卷(8)含答案

学校:____ 班级:_____ 姓名:_______ 学号:____ 。
装。
订。
线。
勿。
答。
题。
八年级数学试卷10一、单项选择题(本题共8小题,每小题只有1个选项符合题意。
每小题3分,共24分)1. 下列四副图案中,不是轴对称图形的是 【 ▲ 】2. 如图,ΔABC≌ΔADE ,AB=AD ,AC=AE ,∠B=28º,∠E=95º,∠EAB=20º,则∠BAD 为 【 ▲ 】A.75ºB. 57ºC. 55ºD. 77º3. 如图所示,AB =AC ,要说明△ADC ≌△AEB ,需添加的条件不能是【 ▲】 A .∠B =∠C B .AD =AE C .DC =BE D .∠ADC =∠AEB4. 如图,两条笔直的公路、相交于点O ,公路的旁边建三个加工厂 A 、B 、D ,已知AB=AD=5.2 km ,CB=CD=5 km ,村庄C 到公路l 1的距离为4 km ,则C 村到公路l 2的距离是【 ▲ 】 A.3 km B.4 km C.5 km D.5.2 km 5. 在数学活动课上,小明提出这样一个问题:∠B =∠C =90°,E 是 BC 的中点,DE 平分∠ADC ,如图,则下列说法正确的有几个【 ▲ 】, 大家一起热烈地讨论交流,小红第一个得出正确答案,是( ). (1)AE 平分∠DAB ;(2)△EBA ≌△DCE ; (3)AB +CD =AD ; (4)AE ⊥DE .(5)AB //CD(A )2个 (B )3个 (C )4个 (D )5个 6. 下列说法中,正确的是【 ▲ 】 A .两个全等三角形一定关于某直线对称B .等边三角形的高、中线、角平分线都是它的对称轴C .两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D .关于某直线对称的两个图形是全等形 7. 如图,在ΔABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN ∥BC 交AB 于M , 交AC 于N ,若BM +CN =9,则线段MN 的长为【 ▲ 】 A . 6 B . 7 C . 8 D . 98. 如图,在第1个△ABA 1中,∠B=52°,AB=A 1B ,在A 1B 上取一点C ,延长AA 1到A 2,使得A 1A 2=A 1C ;在A 2C 上取一点D ,延长A 1A 2到A 3,使得A 2A 3=A 2D ;……,按此做法进行下去,第2019个三角形的以A 2019为顶点的内角的度数为【 ▲ 】D C B第5题DE BC第4题第2题 第3题 第7题第8题A.20122128︒ B.20132128︒ C.20142128︒ D.20152128︒二、填空题(本题共11小题,每题2分,共22分) 9. 五角星有___▲__条对称轴;角的对称轴是 _ ▲__。
八年级数学上册期中考试卷及答案

八年级数学上册期中考试卷及答案(试卷满分:150分;考试时间;120分钟)一.选择题(本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.9的算术平方根是()A.±3B.-3C.√3D.32.下列四个数中,是无理数的是( )A.π2B.227C.√﹣83D.√43.在平面直角坐标系中,点(4,-3)在()A.第一象限B.第二象限C.第三象限D.第四象限4.下列运算正确的是( )A.√2+√3=√5B.2√2-√2=1C.√2x2√2=3√2D.√8÷√2=25.已知直线y=-x+2经过M(1,y1),N(3,y2)两点,则y1与y2的关系为()A.y1+y2=4B.y1>y2C.y1=y2D.y1<y26.在半面直角坐标系中,若点A(-a,b)在第三象限,则函数y=ax+b的图象大致是( )7.已知{x=3y=﹣2是方程ax+y=7的一个解,那么常数a的值是()A.5B.﹣5C.3D.﹣38.《孙子算经》是中国古代重要的数学著作,成书大约在一千五百年前.其中一道题,原文是:"今三人共车,两车空;二人共车,九人步.问人与车各几何?"意思是:现有若干人和车,若每辆车乘坐3人,则空余两辆车;若每辆车乘坐2人,则有9人步行,问人与车各多少?设有x人,y辆车,可列方程组为()A.{x=3(y+2)x=2y﹣18B.{x=3(y﹣2)x=2y﹣18C.{x=3(y+2)x=2y+9D.{x=3(y﹣2)x=2y+99.如图,在△ABC中,∠ACB=90°,BC=2,AC=1,BC在数轴上,以B点为圆心,AB长为半径画弧,交数轴于点D,则D点表示的数是()A.3﹣√5B.√5C.√5﹣3D.3﹣√3(第9题图)(第10题图)10.如图1,将矩形ABCD置于平面直角坐标系中,其中AD边在x轴上,AB=2,直线MN:y=x-4沿x轴的①点A 的坐标为(1,0);②矩形ABCD 的面积是8;③a 的值为2√2;④b 的值为10A.1个B.2个C.3个D.4个 二.填空题:(本大题共5个小题,每小题4分,共20分)11.如果有序数对(1,4)表示第一单元4号住户,那么第三单元6号住户用有序数对表示为 。
八年级数学上学期期中试卷(7).doc

八年级数学上学期期中试卷(时间: 100分钟总分: 120分)一、相信你必定能选对!(每题 4 分,共 32 分)1.三角形的三边长分别为6,8,10,它的最短边上的高为()2. A. 6: B. 4.512,9,15 C. 2.4, m D. 8,m n a2, a21, a22 .下边几组数①7,8,9;②;③m+ n, 2mn m n);④22 2 –n2(,均为正整数此中能构成直角三角形的三边长的是()A. ①②B. ②③C. ①③D.③④3.三角形的三边为a、 b、 c,由以下条件不可以判断它是直角三角形的是()A .a: b:c=8 ∶16 ∶17B.a2-b2 =c2C .a2=(b+c)( b- c)b)2 c 2D .a:b:c =13 ∶5∶124.三角形的三边长为 (a2ab ,则这个三角形是()A. 等边三角形B. 钝角三角形C. 直角三角形D. 锐角三角形 .5.已知一个直角三角形的两边长分别为 3 和 4,则第三边长是()A. 5 B .25 C .7D.5或76.已知 Rt △ABC中,∠C=90 °,若a+ b=14cm ,c=10cm ,则 Rt △ABC的面积是()A. 24cm 2B. 36cm 2C. 48cm 2D. 60cm 27.直角三角形中向来角边的长为9,另两边为连续自然数,则直角三角形的周长为()A .121B. 120C. 90 D .不可以确立8.下学此后,小红和小颖从学校分手,分别沿东南方向和西南方向回家,若小红和小颖行走的速度都是40 米 /分,小红用 15分钟到家,小颖20 分钟到家,小红和小颖家的直线距离为()A. 600 米 B. 800 米 C. 1000米 D. 不可以确立二、你能填得又快又对吗?(每题 4 分,共 32分)9.在△ABC 中,∠C=90°, AB=5,则AB2+ AC2+BC2=_______ .10.如图,是2002年 8月北京第24 届国际数学家大会会标,由 4 个全等的直角三角形拼合而成.假如图中大、小正方形的面积分别为52 和 4 ,那么一个直角三角形的两直角边的和等于.60AB2C106140第 10题图第13题图第14题图第 15题图11 .直角三角形两直角边长分别为 5 和 12,则它斜边上的高为_______.12 .直角三角形的三边长为连续偶数,则这三个数分别为__________ .13 .如图,一根树在离地面 9 米处断裂,树的顶部落在离底部12 米处.树折断以前有米.14 .如下图,是一个外轮廓为矩形的机器部件平面表示图,依据图中标出尺寸(单位:mm )计算两圆孔中心 A 和 B 的距离为.15 .如图,梯子AB靠在墙上,梯子的底端 A 到墙根 O 的距离为2米,梯子的顶端 B 到地面的距离为7米.现将梯子的底端 A 向外挪动到A,’使梯子的底端A’到墙根O的距离等于 3 米,同时梯子的顶端B降落至’那么,BB ’的值:①等于1 米;②大于 1 米 5;③小于 1米 .此中正确结论的序号是.B16. 小刚准备丈量河水的深度 ,他把一根竹竿插到离岸边 1.5m 远的水底 ,竹竿超出水面0.5m, 把竹竿的顶端拉向岸边 ,竿顶和岸边的水面恰好相齐,河水的深度为.三、仔细解答,必定要仔细哟!(共 72分)17 .( 5 分)右图是由 16 个边长为 1 的小正方形拼成的,随意连接这些小正方形的若干个极点,可获得一些线段,试分别画出一条长度是有理数的线段和一条长度是无理数的线段.18 .( 6 分)已知a、b、c是三角形的三边长,a=2 n2+2 n, b=2 n+1, c=2 n2+2 n+1( n 为大于 1 的自然数) ,试说明△ABC为直角三角形 .19 .( 6 分)小东拿着一根长竹竿进一个宽为3 米的城门,他先横着拿不进去,又竖起来拿,结果竿比城门高1 米,当他把竿斜着时,两头恰好顶着城门的对角,问竿长多少米?20. ( 6 分)如下图 ,某人到岛上去探宝,从 A 处登岸后先往东走4km ,又往北走 1.5km,碰到阻碍后又往西走 2km ,再折回向北走到 4.5km 处往东一拐,仅走 0.5km就找到宝藏。
2014-2015学年安徽省合肥市长丰县钱集中学八年级(上)期中数学模拟试卷(3)

2014-2015学年安徽省合肥市长丰县钱集中学八年级(上)期中数学模拟试卷(3)一、选择题(共10小题,每小题3分,满分30分)1.(3分)(2012秋•英德市期末)下列各组数分别为一个三角形三边的长,其中能构成直角三角形的一组是()A.1,2,3 B.2,3,4 C.3,4,5 D.4,5,62.(3分)(2014秋•无锡校级期末)如图是轴对称图形,它的对称轴有()A.2条B.3条C.4条D.5条3.(3分)(2014春•滕州市校级期末)在一个直角三角形中,若斜边的长是13,一条直角边的长为12,那么这个直角三角形的面积是()A.30 B.40 C.50 D.604.(3分)(2015秋•绵竹市期末)如图,AB=AD,AE平分∠BAD,则图中有()对全等三角形.A.2 B.3 C.4 D.55.(3分)(2014秋•长丰县校级期中)将一直角三角形的三边长变为原来的2.5倍后,得到的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.无法确定6.(3分)(2014秋•蓟县期中)如图:在△ABC中,AD是∠BAC的平分线,DE⊥AC于E,DF⊥AB于F,且FB=CE,则下列结论:①DE=DF,②AE=AF,③BD=CD,④AD⊥BC.其中正确的个数有()A.1个B.2个C.3个D.4个7.(3分)(2010•株洲)如图所示的正方形网格中,网格线的交点称为格点.已知A、B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形,则点C的个数是()A.6 B.7 C.8 D.98.(3分)(2013秋•镇原县校级期末)下列命题中正确的个数是()①全等三角形对应边相等;②三个角对应相等的两个三角形全等;③三边对应相等的两三角形全等;④有两边对应相等的两三角形全等.A.4个B.3个C.2个D.1个9.(3分)(2014秋•无锡校级期末)如图是一块三角形的草坪,现要在草坪上建一座凉亭供大家休息,要使凉亭到草坪三条边的距离相等,则凉亭的位置应选在()A.△ABC三条中线的交点B.△ABC三边的垂直平分线的交点C.△ABC三条角平分线的交点D.△ABC三条高所在直线的交点10.(3分)(2012秋•沙河市期末)已知一直角三角形的木版,三边的平方和为1800cm2,则斜边长为()A.80cm B.30cm C.90cm D.120cm二、填空题(共8小题,每小题3分,满分24分)11.(3分)(2014秋•长丰县校级期中)如图,若AO=OB,∠1=∠2,加上条件______,则有△AOC≌△BOC.12.(3分)(2015秋•姜堰市期中)如图,△ABC是等腰三角形,AD是底边BC上的高,若AB=5cm,BD=3cm,则△ABC的周长是______.13.(3分)(2004•昆明)如图,已知△ABC中,∠ACB=90°,以△ABC的各边为过在△ABC 外作三个正方形,S1、S2、S3分别表示这三个正方形的面积,S1=81,S3=225,则S2=______.14.(3分)(2013•邵东县模拟)如图,△ABC中,∠C=90°,AD平分∠BAC,AB=5,CD=2,则△ABD的面积是______.15.(3分)(2015秋•寿光市期末)如图,在△ABC中,AD=AE,BD=EC,∠ADB=∠AEC=105°,∠B=40°,则∠CAE=______.16.(3分)(2014秋•长丰县校级期中)如图:等腰三角形△ABC中,AB=AC,BD平分∠ABC,如果AD=BD=BC,则∠A=______.17.(3分)(2015秋•无锡期中)在Rt△ABC中,三边长分别用a、b、c表示,已知a=3、b=5,则c2=______.18.(3分)(2014秋•无锡校级期末)在等腰三角形ABC中,∠A=80°,则∠B=______.三、解答题(共7小题,满分66分)19.(8分)(2014秋•莘县期末)如图,AC=DF,AD=BE,BC=EF.求证:∠C=∠F.20.(10分)(2014秋•巢湖期末)如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积.21.(8分)(2013秋•张家港市校级期末)(1)如图,分别作出点P关于OA、OB的对称点P1、P2,连接P1P2,分别交OA、OB于点M、N,连接PM,PN;(2)若P1P2=5cm,则△PMN的周长为______.22.(10分)(2014秋•长丰县校级期中)如图,AB=AD,∠BAD=∠CAE,AC=AE,求证:BC=DE.23.(10分)(2010•德州)如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.24.(10分)(2015秋•西区期末)如图,在△ABC中,AB=AC,BD⊥AC于D,CE⊥AB 于E,BD、CE相交于F.求证:AF平分∠BAC.25.(10分)(2013秋•海陵区期中)如图,在一小水库的两测有A、B两点,A、B间的距离不能直接测得,采用方法如下:取一点可以同时到达A、B的点C,连结AC并延长到D,使AC=DC;同法,连结BC并延长到E,使BC=EC;这样,只要测量DE的长度,就可以得到A、B的距离了,这是为什么呢?根据以上的描述,请画出图形,并写出已知、求证、证明.2014-2015学年安徽省合肥市长丰县钱集中学八年级(上)期中数学模拟试卷(3)参考答案一、选择题(共10小题,每小题3分,满分30分)1.C;2.C;3.A;4.B;5.C;6.D;7.C;8.C;9.C;10.B;二、填空题(共8小题,每小题3分,满分24分)11.CO=CO;12.16cm;13.144;14.5;15.35°;16.36°;17.34或16;18.50°或20°或80°;三、解答题(共7小题,满分66分)19.;20.;21.5cm;22.;23.;24.;25.;。
八年级上册期中数学试卷07含答案

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。
2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。
亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。
相信你是最棒的!第一学期期中测试卷一、选择题(每题3分,共30分)1.下列图形中,不是轴对称图形的是( )2.如果等腰三角形的两边长分别为3和6,那么它的周长为( ) A.9 B.12 C.15 D.12或153.在平面直角坐标系中,点P(-2,3)关于x轴对称的点的坐标为( ) A.(-2,-3) B.(2,-3) C.(-3,-2) D.(3,-2)4.已知一个正多边形的内角是140°,则这个正多边形的边数是( ) A.6 B.7 C.8 D.95.如图,在△ABC中,边AC的垂直平分线交边AB于点D,∠A=50°,则∠BDC=( )A.50° B.100° C.120° D.130°6.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,AE∥BD交CB的延长线于点E,若∠E=35°,则∠BAC的度数为( )A.40° B.45° C.60° D.70°7.如图,在△ABC中,∠C=90°,BC=35,∠BAC的平分线AD交BC于点D.若D CDB=25,则点D到AB的距离是( )A.10 B.15 C.25 D.208.如图,在△ABC中,AC=2,∠BAC=75°,∠ACB=60°,高BE与AD相交于点H,则DH的长为( )A.4 B.3 C.2 D.19.如图,等边三角形ABC的边长为4,AD是BC边上的中线,F是AD上的动点,E是AC边上一点.若AE=2,则EF+CF取得最小值时,∠ECF的度数为( )A.15° B.22.5° C.30° D.45°10.已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,C,D,E三点在同一条直线上,连接BD.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中正确的个数是( )A.1 B.2 C.3 D.4二、填空题(每题3分,共24分)11.一木工师傅有两根木条,木条的长分别为40 cm和30 cm,他要选择第三根木条,将它们钉成一个三角形木架.设第三根木条长为x cm,则x的取值范围是____________.12.如图,在△ABC中,点D在边BC上,∠BAD=80°,AB=AD=DC,则∠C=________.13.如图,在△ABC中,AB=AC=6,BC=4.5,分别以A,B为圆心,4为半径画弧交于两点,过这两点的直线交AC于点D,连接BD,则△BCD的周长是________.14.如图,已知PA⊥ON于A,PB⊥OM于B,且PA=PB,∠MON=50°,∠OPC=30°,则∠PCA=________.15.由于木制衣架没有柔性,在挂置衣服的时候不大方便操作,小敏设计了一种衣架,在使用时能轻易收拢,然后套进衣服后松开即可.如图①,衣架杆OA=OB=18cm,若衣架收拢时,∠AOB=60°,如图②,则此时A,B两点之间的距离是________ cm.16.如图,在△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(点E在BC上,点F在AC上)折叠,点C与点O恰好重合,则∠OEC的度数为________.17.如图,在2×2的正方形网格中,有一个以格点为顶点的△ABC,请你找出网格中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有________个.18.在△ABC中,AB=AC=12 cm,BC=6 cm,D为BC的中点,动点P从点B出发,以1cm/s的速度沿B→A→C的方向运动.设运动时间为ts,当t=____________时,过点D,P两点的直线将△ABC的周长分成两部分,使其中一部分是另一部分的2倍.三、解答题(19~21题每题6分,23,24题每题8分,26题12分,其余每题10分,共66分)19.如图,在五边形ABCDE中,∠A=∠C=90°.求证∠B=∠DEF+∠EDG.20.如图,在△ABC中,AB=AC,∠BAC=120°,P是BC上一点,且∠BAP=90°,CP=4 cm.求BP的长.21.已知:如图,点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,垂足分别为D,E.求证OB=OC.22.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出△ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1________,B1________,C1________;(3)求△A1B1C1的面积;(4)在y轴上画出点P,使PB+PC最小.23.如图,在等边三角形ABC中,AD⊥BC于点D,以AD为一边向右作等边三角形ADE,DE与AC交于点F.(1)试判断DF与EF的数量关系,并给出证明;(2)若CF的长为2 cm,试求等边三角形ABC的边长.24.如图,在等腰直角三角形ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC,交DE的延长线于点F,连接CF,交AD于点G.(1)求证AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.25.如图,把三角形纸片A′BC沿DE折叠,点A′落在四边形BCDE内部点A处.(1)写出图中一对全等的三角形,并写出它们的所有对应角.(2)设∠AED的度数为x,∠ADE的度数为y,那么∠1,∠2的度数分别是多少(用含x或y的式子表示)?(3)∠A与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律,并说明理由.26.如图,已知在△ABC中,AB=AC=10 cm,BC=8 cm,D为AB的中点.(1)如果点P在线段BC上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.①若点Q的运动速度与点P的运动速度相等,1s后,△BPD与△CQP是否全等?请说明理由.②若点Q的运动速度与点P的运动速度不相等,则点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以第(1)题②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,经过多少时间,点P与点Q第一次在△ABC的哪条边上相遇?答案一、1.C 2.C 3.A 4.D 5.B 6.A7.A 8.D 9.C 10.D二、11.10<x<70 12.25° 13.10.5 14.55° 15.18 16.108°17.5 18.7或17三、19.证明:在五边形ABCDE中,∠A+∠B+∠C+∠EDC+∠AED=180°×(5-2)=540°.∵∠A=∠C=90°,∴∠B+∠AED+∠EDC=360°.又∵∠AED+∠DEF=180°,∠EDC+∠EDG=180°,∴∠AED+∠EDC+∠DEF+∠EDG=360°.∴∠B=∠DEF+∠EDG.20.解:∵AB=AC,∠BAC=120°,∴∠B=∠C=12(180°-∠BAC)=30°.∵∠PAC=∠BAC-∠BAP=120°-90°=30°,∴∠C=∠PAC.∴AP=CP=4 cm.在Rt△ABP中,∵∠B=30°,∴BP=2AP=8 cm.21.证明:∵点O在∠BAC的平分线上,BO⊥AC,CO⊥AB,∴OE=OD,∠BEO=∠CDO=90°.在△BEO与△CDO中,{∠BEO=∠CDO,OE=OD,∠EOB=∠DOC,∴△BEO≌△CDO(ASA).∴OB=OC.22.解:(1)△A1B1C1如图所示.(2)(3,2);(4,-3);(1,-1)(3)△A 1B 1C 1的面积=3×5-12×2×3-12×1×5-12×2×3=6.5.(4)如图,P 点即为所求.23.解:(1)DF =EF .证明:∵△ABC 是等边三角形,∴∠BAC =60°.又∵AD ⊥BC ,∴AD 平分∠BAC .∴∠DAC =30°.∵△ADE 是等边三角形,∴∠DAE =60°.∴∠DAF =∠EAF =30°.∴AF 为△ADE 的中线,即DF =EF .(2)∵AD ⊥DC ,∴∠ADC =90°.∵△ADE 是等边三角形,∴∠ADE =60°.∴∠CDF =∠ADC -∠ADE =30°.∵∠DAF =∠EAF ,AD =AE ,∴AF ⊥DE .∴∠CFD =90°.∴CD =2CF =4 cm.∵AD ⊥BC ,AB =AC ,∴BD =CD ,∴BC =2CD =8 cm.故等边三角形ABC的边长为8 cm.24.(1)证明:∵BF∥AC,∠ACB=90°,∴∠CBF=180°-90°=90°.∵△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°.又∵DE⊥AB,∴∠BDF=45°,∴∠BFD=45°=∠BDF.∴BD=BF.∵D为BC的中点,∴CD=BD.∴BF=CD.在△ACD和△CBF中,{AC=CB,∠ACD=∠CBF=90°,CD=BF,∴△ACD≌△CBF(SAS).∴∠CAD=∠BCF.∴∠CGD=∠CAD+∠ACF=∠BCF+∠ACF=∠ACB=90°.∴AD⊥CF.(2)解:△ACF是等腰三角形.理由如下:由(1)可知BD=BF.又∵DE⊥AB,∴AB是DF的垂直平分线.∴AD=AF.又由(1)可知△ACD≌△CBF,∴AD=CF,∴AF=CF.∴△ACF是等腰三角形.25.解:(1)△EAD≌△EA′D,其中∠EAD与∠EA′D,∠AED与∠A′ED,∠ADE与∠A′DE是对应角.(2)∵△EAD≌△EA′D,∴∠A′ED=∠AED=x,∠A′DE=∠ADE=y.∴∠AEA′=2x,∠ADA′=2y.∴∠1=180°-2x,∠2=180°-2y.(3)规律为∠1+∠2=2∠A.理由:由(2)知∠1=180°-2x,∠2=180°-2y,∴∠1+∠2=180°-2x+180°-2y=360°-2(x+y).∵∠A+∠AED+∠ADE=180°,∴∠A=180°-(x+y).∴2∠A=360°-2(x+y).∴∠1+∠2=2∠A.26.解:(1)①△BPD与△CQP全等.理由如下:运动1 s时,BP=CQ=3×1=3(cm).∵D为AB的中点,AB=10 cm,∴BD=5 cm.∵CP=BC-BP=5 cm,∴CP=BD.又∵AB=AC,∴∠B=∠C.在△BPD和△CQP中,{BD=CP,∠B=∠C,BP=CQ,∴△BPD≌△CQP(SAS).②∵点Q的运动速度与点P的运动速度不相等,∴BP≠CQ.又∵∠B=∠C,∴两个三角形全等需BP=CP=4 cm,BD=CQ=5 cm.∴点P,Q运动的时间为4÷3=43 (s).∴点Q的运动速度为5÷43=154(cm/s).(2)设x s后点Q第一次追上点P.根据题意,得(154-3)x =10×2.解得x =803.∴点P 共运动了3×803=80(cm).∵△ABC 的周长为10×2+8=28(cm),80=28×2+24=28×2+8+10+6,∴点P 与点Q 第一次在△ABC 的AB 边上相遇.。
最新初二数学上期中模拟试卷(含答案)

最新初二数学上期中模拟试卷(含答案)一、选择题1.“五一”期间,某中学数学兴趣小组的同学们租一辆小型巴士前去某地进行社会实践活动,租车租价为180元.出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费.若小组原有x 人,则所列方程为( )A .18018032x x -=-B .18018032x x -=+C .18018032x x -=+D .18018032x x-=- 2.如图,在△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BD 于点E ,连接CE ,若∠A=60°,∠ACE=24°,则∠ABE 的度数为( )A .24°B .30°C .32°D .48°3.下列分式中,最简分式是( )A .B .C .D . 4.如图,三角形ABC 中,D 为BC 上的一点,且S △ABD =S △ADC ,则AD 为( )A .高B .角平分线C .中线D .不能确定 5.一个三角形的两边长分别为3和4,且第三边长为整数,这样的三角形的周长最大值是( ) A .11 B .12 C .13 D .146.如图,在ABC ∆中,90A ∠=o ,30C ∠=o ,AD BC ⊥于D ,BE 是ABC ∠的平分线,且交AD 于P ,如果2AP =,则AC 的长为( )A .2B .4C .6D .87.如图,AD,CE分别是△ABC的中线和角平分线.若AB=AC,∠CAD=20°,则∠ACE 的度数是()A.20°B.35°C.40°D.70°8.如图,在等腰∆ABC中,AB=AC,∠BAC=50°,∠BAC的平分线与AB的垂直平分线交于点O、点C沿EF折叠后与点O重合,则∠CEF的度数是()A.60°B.55°C.50°D.45°9.下列各式能用平方差公式计算的是( )A.(3a+b)(a-b)B.(3a+b)(-3a-b)C.(-3a-b)(-3a+b)D.(-3a+b)(3a-b)10.计算b aa b b a+--的结果是A.a-b B.b-a C.1D.-111.如图,△ABC中,AB=5,AC=6,BC=4,边AB的垂直平分线交AC于点D,则△BDC的周长是()A.8B.9C.10D.1112.若正多边形的内角和是540︒,则该正多边形的一个外角为()A.45︒B.60︒C.72︒D.90︒二、填空题13.关于x的方程211x ax+=-的解是正数,则a的取值范围是_________.14.关于x的方程25211ax x-+=---的解为正数,则a的取值范围为________.15.若分式方程1133a x x x -+=--有增根,则 a 的值是__________________. 16.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________. 17.当x =_________时,分式33x x -+的值为零. 18.若分式62m -的值是正整数,则m 可取的整数有_____. 19.若a+b=17,ab=60,则a-b 的值是__________.20.若2x+5y ﹣3=0,则4x •32y 的值为________.三、解答题21.某地有两所大学和两条相交叉的公路,如图所示(点M ,N 表示大学,AO ,BO 表示公路).现计划修建一座物资仓库,希望仓库到两所大学的距离相等,到两条公路的距离也相等.你能确定仓库应该建在什么位置吗?在所给的图形中画出你的设计方案;22.如图,某校准备在校内一块四边形ABCD 草坪内栽上一颗银杏树,要求银杏树的位置点P 到边AB ,BC 的距离相等,并且点P 到点A ,D 的距离也相等,请用尺规作图作出银杏树的位置点P (不写作法,保留作图痕迹).23.列方程解应用题某服装厂准备加工400套运动装,在加工完160套后,采用新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,那么原计划每天加工服装多少套?24.如图,作业本上有这样一道填空题,其中有一部分被墨水污染了,若该题化简的结果为1x 3+.(1)求被墨水污染的部分;(2)原分式的值能等于17吗?为什么? 25.因式分解、计算:(1)a 3-4ab 2; (2)2a 3-8a 2+8a .(3)22142a a a --- (4)3155a a a-+【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】设小组原有x 人,根据题意可得,出发时又增加了两位同学,结果每位同学比原来少分摊了3元车费,列方程即可.【详解】设小组原有x 人,可得:180180 3.2x x -=+ 故选B.【点睛】考查由实际问题抽象出分式方程,读懂题目,找出题目中的等量关系是解题的关键. 2.C解析:C【解析】【分析】先根据BC 的垂直平分线交BD 于点E 证明△BFE ≌△CFE (SAS ),根据全等三角形的性质和角平分线的性质得到ABE EBF ECF ∠=∠=∠,再根据三角形内角和定理即可得到答案.【详解】解:如图:∵BC 的垂直平分线交BD 于点E ,∴BF=CF ,∠BFE=∠CFE=90°,在△BFE 和△CFE 中,EF EF EFB EFC BF CF =⎧⎪∠=∠⎨⎪=⎩∴△BFE ≌△CFE (SAS ),∴EBF ECF ∠=∠(全等三角形对应角相等),又∵BD 平分∠ABC ,∴ABE EBF ECF ∠=∠=∠,又∵180ABE EBF ECF ACE A ∠+∠+∠+∠+∠=︒(三角形内角和定理), ∴180602496ABE EBF ECF ∠+∠+∠=︒-︒-︒=︒, ∴196323ABE ∠=⨯︒=︒, 故选C .【点睛】本题主要考查了三角形全等的判定与性质、角平分线的性质、三角形内角和定理,证明ABE EBF ECF ∠=∠=∠是解题的关键.3.A解析:A【解析】【分析】根据最简分式的定义:分子和分母中不含公分母的分式,叫做最简分式,对四个选项中的分式一一判断即可得出答案.【详解】解:A.,分式的分子与分母不含公因式,是最简分式; B.,分式的分子与分母含公因式2,不是最简分式;C. ,分式的分子与分母含公因式x-2,不是最简分式;D. ,分式的分子与分母含公因式a,不是最简分式,故选A.【点睛】本题考查了最简分式的概念.对每个分式的分子和分母分别进行因式分解是解题的关键. 4.C解析:C【解析】试题分析:三角形ABD和三角形ACD共用一条高,再根据S△ABD=S△ADC,列出面积公式,可得出BD=CD.解:设BC边上的高为h,∵S△ABD=S△ADC,∴,故BD=CD,即AD是中线.故选C.考点:三角形的面积;三角形的角平分线、中线和高.5.C解析:C【解析】【分析】根据三角形的三边关系“第三边大于两边之差,而小于两边之和”,求得第三边的取值范围,再根据第三边是整数,从而求得周长最大时,对应的第三边的长.【详解】解:设第三边为a,根据三角形的三边关系,得:4-3<a<4+3,即1<a<7,∵a为整数,∴a的最大值为6,则三角形的最大周长为3+4+6=13.故选:C.【点睛】本题考查了三角形的三边关系,根据三边关系得出第三边的取值范围是解决此题的关键.6.C解析:C【解析】【分析】易得△AEP的等边三角形,则AE=AP=2,在直角△AEB中,利用含30度角的直角三角形的性质来求EB的长度,然后在等腰△BEC中得到CE的长度,则易求AC的长度【详解】解:∵△ABC中,∠BAC=90°,∠C=30°,∴∠ABC=60°.又∵BE是∠ABC的平分线,∴∠EBC=30°,∴∠AEB=∠C+∠EBC=60°,∠C=∠EBC,∴∠AEP=60°,BE=EC.又AD⊥BC,∴∠CAD=∠EAP=60°,则∠AEP=∠EAP=60°,∴△AEP的等边三角形,则AE=AP=2,在直角△AEB中,∠ABE=30°,则EB=2AE=4,∴BE=EC=4,∴AC=CE+AE=6.故选:C.【点睛】本题考查了含30°角的直角三角形的性质、角平分线的性质以及等边三角形的判定与性质.利用三角形外角性质得到∠AEB=60°是解题的关键.7.B解析:B【解析】【分析】先根据等腰三角形的性质以及三角形内角和定理求出∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.再利用角平分线定义即可得出∠ACE=12∠ACB=35°.【详解】∵AD是△ABC的中线,AB=AC,∠CAD=20°,∴∠CAB=2∠CAD=40°,∠B=∠ACB=12(180°-∠CAB)=70°.∵CE是△ABC的角平分线,∴∠ACE=12∠ACB=35°.【点睛】本题考查了等腰三角形的两个底角相等的性质,等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合的性质,三角形内角和定理以及角平分线定义,求出∠ACB=70°是解题的关键.8.C解析:C【解析】【分析】连接OB ,OC ,先求出∠BAO=25°,进而求出∠OBC=40°,求出∠COE=∠OCB=40°,最后根据等腰三角形的性质,问题即可解决.【详解】如图,连接OB ,∵∠BAC=50°,AO 为∠BAC 的平分线,∴∠BAO=12∠BAC=12×50°=25°.又∵AB=AC ,∴∠ABC=∠ACB=65°.∵DO 是AB 的垂直平分线,∴OA=OB ,∴∠ABO=∠BAO=25°,∴∠OBC=∠ABC−∠ABO=65°−25°=40°.∵AO 为∠BAC 的平分线,AB=AC ,∴直线AO 垂直平分BC ,∴OB=OC ,∴∠OCB=∠OBC=40°,∵将∠C 沿EF(E 在BC 上,F 在AC 上)折叠,点C 与点O 恰好重合,∴OE=CE.∴∠COE=∠OCB=40°;在△OCE 中,∠OEC=180°−∠COE−∠OCB=180°−40°−40°=100°∴∠CEF=12∠CEO=50°.故选:C.【点睛】本题考查了等腰三角形的性质的运用、垂直平分线性质的运用、折叠的性质,解答时运用等腰三角形的性质和垂直平分线的性质是解答的关键.9.C解析:C【解析】【分析】利用平方差公式的逆运算判断即可.【详解】解:平方差公式逆运算为:()()22a b a b a b +-=- 观察四个选项中,只有C 选项符合条件.故选C.此题重点考查学生对平方差公式的理解,掌握平方差公式的逆运算是解题的关键. 10.D解析:D【解析】【分析】将第二个式子提出一个负号,即可使分母一样,然后化简即可得出答案.【详解】b a b --aa b-=b aa b--=-1,所以答案选择D.【点睛】本题考查了分式的化简,熟悉掌握计算方法是解决本题的关键.11.C解析:C【解析】【分析】由ED是AB的垂直平分线,可得AD=BD,又由△BDC的周长=DB+BC+CD,即可得△BDC的周长=AD+BC+CD=AC+BC.【详解】解:∵ED是AB的垂直平分线,∴AD=BD,∵△BDC的周长=DB+BC+CD,∴△BDC的周长=AD+BC+CD=AC+BC=6+4=10.故选C.【点睛】本题考查了线段垂直平分线的性质,三角形周长的计算,掌握转化思想的应用是解题的关键.12.C解析:C【解析】【分析】根据多边形的内角和公式()2180n-•︒求出多边形的边数,再根据多边形的外角和是固定的360︒,依此可以求出多边形的一个外角.【详解】Q正多边形的内角和是540︒,∴多边形的边数为54018025︒÷︒+=,Q多边形的外角和都是360︒,∴多边形的每个外角360572÷︒==.【点睛】本题主要考查了多边形的内角和与外角和之间的关系,关键是记住内角和的公式与外角和的特征,难度适中.二、填空题13.a>-1【解析】分析:先去分母得2x+a=x-1可解得x=-a-1由于关于x 的方程=1的解是正数则x >0并且x-1≠0即-a-1>0且-a-1≠1解得a <-1且a≠-2详解:去分母得2x+a=x-1解析:a>-1【解析】分析:先去分母得2x+a=x-1,可解得x=-a-1,由于关于x 的方程21x a x +-=1的解是正数,则x >0并且x-1≠0,即-a-1>0且-a-1≠1,解得a <-1且a≠-2.详解:去分母得2x+a=x-1,解得x=-a-1, ∵关于x 的方程21x a x +-=1的解是正数, ∴x >0且x≠1,∴-a-1>0且-a-1≠1,解得a <-1且a≠-2,∴a 的取值范围是a <-1且a≠-2.故答案为a <-1且a≠-2. 点睛:本题考查了分式方程的解:先把分式方程化为整式方程,解整式方程,若整式方程的解使分式方程左右两边成立,那么这个解就是分式方程的解;若整式方程的解使分式方程左右两边不成立,那么这个解就是分式方程的增根.14.且【解析】【分析】方程两边乘最简公分母可以把分式方程转化为整式方程求解它的解为含有a 的式子解为正数且最简公分母不为零得到关于a 的一元一次不等式解之即可【详解】方程两边同乘(x −1)得:2−(5-a)解析:5a <且3a ≠【解析】【分析】方程两边乘最简公分母,可以把分式方程转化为整式方程求解,它的解为含有a 的式子,解为正数且最简公分母不为零,得到关于a 的一元一次不等式,解之即可.【详解】方程两边同乘(x−1)得:2−(5-a)=-2(x−1)解得:x=52a - ∵x>0且x−1≠0,∴5025102a a -⎧>⎪⎪⎨-⎪-≠⎪⎩ 解得:a<5且a≠3故答案为:a<5且a≠3【点睛】本题考查了分式方程解的定义,求出使分式方程中令等号左右两边相等且分母不等于零的未知数的值,这个值叫分式方程的解,考查了一元一次不等式组的解法,求解每个不等式,再求两个不等式解集的公共部分即可.15.4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根所以应先确定增根的可能值让最简公分母x ﹣3=0得到x=3然后代入整式方程算出a 的值即可【详解】方程两边同时乘以x ﹣3得:1+x ﹣3=a ﹣解析:4【解析】【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x ﹣3=0,得到x =3,然后代入整式方程算出a 的值即可.【详解】方程两边同时乘以x ﹣3得:1+x ﹣3=a ﹣x .∵方程有增根,∴x ﹣3=0,解得:x =3,∴1+3﹣3=a ﹣3,解得:a =4.故答案为:4.【点睛】本题考查了分式方程的增根,先根据增根的定义得出x 的值是解答此题的关键.16.k<6且k≠3【解析】分析:根据解分式方程的步骤可得分式方程的解根据分式方程的解是正数可得不等式解不等式可得答案并注意分母不分零详解:方程两边都乘以(x-3)得x=2(x-3)+k 解得x=6-k≠3解析:k <6且k≠3【解析】分析:根据解分式方程的步骤,可得分式方程的解,根据分式方程的解是正数,可得不等式,解不等式,可得答案,并注意分母不分零. 详解:233x k x x -=--, 方程两边都乘以(x-3),得x=2(x-3)+k ,解得x=6-k≠3,关于x 的方程程233x k x x -=--有一个正数解,∴x=6-k>0,k<6,且k≠3,∴k的取值范围是k<6且k≠3.故答案为k<6且k≠3.点睛:本题主要考查了解分式方程、分式方程的解、一元一次不等式等知识,能根据已知和方程的解得出k的范围是解此题的关键.17.3【解析】【分析】分式的值为零时:分子等于零但是分母不等于零【详解】依题意得:x-3=0且x+3≠0解得x=3故答案是:3【点睛】本题考查了分式的值为零的条件分式值为零的条件是分子等于零且分母不等于解析:3【解析】【分析】分式的值为零时:分子等于零,但是分母不等于零.【详解】依题意得:x-3=0且x+3≠0,解得x=3.故答案是:3.【点睛】本题考查了分式的值为零的条件.分式值为零的条件是分子等于零且分母不等于零.18.3458【解析】【分析】根据此分式的值是正整数可知m-2是6的约数而6的约数是1236然后分别列出四个方程解之即可得出答案【详解】解:∵分式的值是正整数∴m-2=1或2或3或6∴m=3或4或5或8故解析:3,4,5,8【解析】【分析】根据此分式的值是正整数可知m-2是6的约数,而6的约数是1,2,3,6,然后分别列出四个方程,解之即可得出答案.【详解】解:∵分式62m的值是正整数,∴m-2=1或2或3或6,∴m=3或4或5或8.故答案为3,4,5,8.【点睛】本题考查了分式的有关知识.理解m-2是6的约数是解题的关键.19.±7【解析】∵∴∴故答案为:±7点睛:本题解题的关键是清楚:与的关系是:解析:±7【解析】∵1760a b ab +==,,∴222()()41724049a b a b ab -=+-=-=,∴7a b -=±.故答案为:±7.点睛:本题解题的关键是清楚:2()a b -与2()a b +的关系是:22()()4a b a b ab -=+-. 20.8【解析】∵2x+5y ﹣3=0∴2x+5y=3∴4x•32y=(22)x·(25)y=22x·25y=22x+5y=23=8故答案为:8【点睛】本题主要考查了幂的乘方的性质同底数幂的乘法转化为以2为解析:8【解析】∵2x+5y ﹣3=0,∴2x+5y=3,∴4x •32y =(22)x ·(25)y =22x ·25y =22x+5y =23=8, 故答案为:8.【点睛】本题主要考查了幂的乘方的性质,同底数幂的乘法,转化为以2为底数的幂是解题的关键,整体思想的运用使求解更加简便.三、解答题21.见解析【解析】【分析】作∠AOB 的角平分线与线段MN 的垂直平分线的交点即所求仓库的位置.【详解】如图所示:点P 即为所求,【点睛】此题考查角平分线的性质,线段垂直平分线的性质,作图—应用与设计作图,解题关键在于掌握作图法则.22.见解析【解析】分析:首先作出∠ABC 的角平分线进而作出线段AD 的垂直平分线,即可得出其交点P 的位置.详解:如图所示:P 点即为所求.点睛:本题主要考查了应用设计与作图,正确掌握角平分线以及线段垂直平分线的性质是解题的关键.23.原计划每天加工20套.【解析】【分析】设原计划每天加工x 套,根据准备订购400套运动装,某服装厂接到订单后,在加工160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用18天完成任务,可列方程.【详解】解:设原计划每天加工x 套,由题意得:16040016018(120%)x x-+=+ 解得:x=20,经检验:x=20是原方程的解.答:原计划每天加工20套.考点:分式方程的应用24.(1)x-4;(2)不能,见解析.【解析】试题分析:(1)设被墨水污染的部分是A ,计算即可得到结论;(2)令1137x =+,解得x =4,而当x =4时,原分式无意义,所以不能. 试题解析:解:(1)设被墨水污染的部分是A ,则2443193(3)(3)3x A x x x x x x A x ---÷=⋅=--+-+,解得:A = x -4; (2)不能,若1137x =+,则x =4,由原题可知,当x =4时,原分式无意义,所以不能. 25.(1)()()22a a b a b +- (2)()222a a - (3)12a + (4)15 【解析】【分析】 (1)先提取公因式,再用平方差公式进行因式分解即可.(2)先提取公因式,再用完全平方公式进行因式分解即可.(3)先同分母,再提取公因式即可. (4)先同分母,再提取公因式即可.【详解】(1)a 3-4ab 2()224a a b =-()()22a a b a b =+-.(2)2a 3-8a 2+8a()2244a a a =-+()222a a =-.(3)22142a a a --- 2224a a a --=- ()()222a a a -=+-12a =+. (4)3155a a a-+ 15155a a+-= 5a a= 15=. 【点睛】本题考查了因式分解和计算的问题,掌握完全平方公式、平方差公式是解题的关键.。
八年级数学上期中试卷【含答案】

八年级数学上期中试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 18cmD. 28cm2. 下列哪个数是有理数?A. √3B. -√5C. 0.333D. π3. 已知等差数列的前三项分别为2,5,8,则第10项是多少?A. 29B. 30C. 31D. 324. 若函数f(x) = 2x + 3,则f(-1)的值为多少?A. -1B. 1C. -2D. 25. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 圆D. 梯形二、判断题(每题1分,共5分)1. 两个负数相乘的结果一定是正数。
()2. 所有的偶数都是2的倍数。
()3. 两个等边三角形的面积一定相等。
()4. 任何数乘以0都等于0。
()5. 一条直线的垂线只有一条。
()三、填空题(每题1分,共5分)1. 若一个等腰三角形的底边长为8cm,腰长为5cm,则这个三角形的周长为____cm。
2. 若一个数是9的倍数,那么这个数除以9的余数为____。
3. 已知等差数列的前三项分别为2,5,8,则公差为____。
4. 若函数f(x) = 3x 2,则f(2)的值为____。
5. 下列图形中,面积最大的是____。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是等差数列?给出一个例子。
3. 什么是函数?给出一个函数的例子。
4. 简述平行线的性质。
5. 什么是轴对称图形?给出一个例子。
五、应用题(每题2分,共10分)1. 一个长方形的长是10cm,宽是5cm,求这个长方形的面积。
2. 若一个数是3的倍数,那么这个数除以3的余数为多少?3. 已知等差数列的前三项分别为2,5,8,求第6项。
4. 若函数f(x) = 4x + 1,求f(3)的值。
5. 下列图形中,哪个是中心对称图形?六、分析题(每题5分,共10分)1. 证明:若一个数的平方是奇数,那么这个数是奇数。
八年级上期中数学试卷7(及答案)

八年级上期中数学试卷7(及答案)一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.下列四个等式从左到右的变形,是多项式因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+x=x(x+)D.a2b+ab2=ab(a+b)3.下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2+a2b=4ab C.2ab∙3a=6a2b D.(a﹣1)(1﹣a)=a2﹣14.分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)5.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+26.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处7.若(x+y)2=11,(x﹣y)2=7,则xy和(x2+y2)的值分别为()A.4,18 B.1,18 C.1,9 D.4,98.2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为()A.1 B.﹣1 C.4032 D.40319.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=610.如图,已知△ABC中,AD=BD,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C.2D.511.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对12.如图,△ABE和△ADC分别沿着边AB、AC翻折180°形成的,若∠BCA:∠ABC:∠BAC=28:5:3,BE与DC交于点F,则∠EFC的度数为()A.20°B.30°C.40°D.45°二、填空题(每小题3分,共18分)13.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是.14.如图,△ABC的周长为19cm,AC的垂直平分线DE交AC于点E,E为垂足,AE=3cm,则△ABD的周长为.15.如图,AE∥DF,AB=DC,不再添加辅助线和字母,要使△EAC≌△FDB,需添加的一个条件是(只写一个条件即可)16.点O是△ABC内一点,且点O到三边的距离相等,∠A=50°,则∠BOC=.17.若x2﹣(m﹣1)x+36是一个完全平方式,则m的值为.18.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)=.(2)根据你的猜想,计算:1+3+32+33…+3n=.(其中n是正整数)三、解答题:19.在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标:A2;B2;C2.20.化简求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣.21.因式分解:(1)18axy﹣3ax2﹣27ay2(2)(a2+4)2﹣16a2(3)c(a﹣b)﹣2(a﹣b)2c+(a﹣b)3c.22.如图,B是AC中点,∠F=∠E,∠1=∠2.证明:AE=CF.23.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=5,BC=6,求△ABC的周长.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.八年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目的要求的.1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.【点评】本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2.下列四个等式从左到右的变形,是多项式因式分解的是()A.(a+3)(a﹣3)=a2﹣9 B.x2+x﹣5=x(x+1)﹣5C.x2+x=x(x+)D.a2b+ab2=ab(a+b)【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式化为几个整式的积的形式,故B错误;C、没把一个多项式化为几个整式的积的形式,故C错误;D、把一个多项式化为几个整式的积的形式,故D正确;故选:D.【点评】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.3.下列运算正确的是()A.﹣a(a﹣b)=﹣a2﹣ab B.(2ab)2+a2b=4ab C.2ab∙3a=6a2b D.(a﹣1)(1﹣a)=a2﹣1【分析】原式各项计算得到结果,即可作出判断.【解答】解:A、原式=﹣a2+ab,错误;B、原式=4a2b2+a2b,错误;C、原式=6a2b,正确;D、原式=﹣a2+2a﹣1,错误,故选C【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.分解因式x2y﹣y3结果正确的是()A.y(x+y)2B.y(x﹣y)2C.y(x2﹣y2)D.y(x+y)(x﹣y)【分析】首先提取公因式y,进而利用平方差公式进行分解即可.【解答】解:x2y﹣y3=y(x2﹣y2)=y(x+y)(x﹣y).故选:D.【点评】此题主要考查了提取公因式法以及公式法分解因式,熟练应用平方差公式是解题关键.5.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.【点评】本题考查了整式的除法,以及整式的加减运算,正确求得另一边长是关键.6.如图,有A、B、C三个居民小区的位置成三角形,现决定在三个小区之间修建一个购物超市,使超市到三个小区的距离相等,则超市应建在()A.在AC,BC两边高线的交点处B.在AC,BC两边中线的交点处C.在AC,BC两边垂直平分线的交点处D.在∠A,∠B两内角平分线的交点处【分析】要求到三小区的距离相等,首先思考到A小区、B小区距离相等,根据线段垂直平分线定理的逆定理知满足条件的点在线段AB的垂直平分线上,同理到B小区、C小区的距离相等的点在线段BC的垂直平分线上,于是到三个小区的距离相等的点应是其交点,答案可得.【解答】解:根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等.则超市应建在AC,BC两边垂直平分线的交点处.故选C.【点评】本题主要考查线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等;此题是一道实际应用题,做题时,可分别考虑,先满足到两个小区的距离相等,再满足到另两个小区的距离相等,交点即可得到.7.若(x+y)2=11,(x﹣y)2=7,则xy和(x2+y2)的值分别为()A.4,18 B.1,18 C.1,9 D.4,9【分析】已知等式利用完全平方公式化简,整理即可求出所求式子的值.【解答】解:已知等式整理得:(x+y)2=x2+2xy+y2=11①,(x﹣y)2=x2﹣2xy+y2=7②,①﹣②得:4xy=4,即xy=1;①+②得:2(x2+y2)=18,即x2+y2=9,故选C【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.8.2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为()A.1 B.﹣1 C.4032 D.4031【分析】应用乘法分配律,求出算式2016×2016﹣2016×2015﹣2015×2014+2015×2015的值为多少即可.【解答】解:2016×2016﹣2016×2015﹣2015×2014+2015×2015=2016×+2015×=2016+2015=4031故选:D.【点评】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算,注意乘法分配律的应用.9.根据下列已知条件,能唯一画出△ABC的是()A.AB=3,BC=4,AC=8 B.AB=4,BC=3,∠A=30°C.∠A=60°,∠B=45°,AB=4 D.∠C=90°,AB=6【分析】要满足唯一画出△ABC,就要求选项给出的条件符合三角形全等的判定方法,不符合判定方法的画出的图形不一样,也就是三角形不唯一,而各选项中只有C选项符合ASA,是满足题目要求的,于是答案可得.【解答】解:A、因为AB+BC<AC,所以这三边不能构成三角形;B、因为∠A不是已知两边的夹角,无法确定其他角的度数与边的长度;C、已知两角可得到第三个角的度数,已知一边,则可以根据ASA来画一个三角形;D、只有一个角和一个边无法根据此作出一个三角形.故选C.【点评】此题主要考查了全等三角形的判定及三角形的作图方法等知识点;能画出唯一三角形的条件一定要满足三角形全等的判定方法,不符合判定方法的画出的三角形不确定,当然不唯一.10.如图,已知△ABC中,AD=BD,AC=4,H是高AD和BE的交点,则线段BH的长度为()A.B.4 C.2D.5【分析】易证△ADC≌△BDH后就可以得出BH=AC,进而可求出线段BH的长度.【解答】解:∵AD⊥BC,∴∠ADC=∠BDH=90°,∴∠AHE+∠DAC=90°,∠DAC+∠C=90°,∴∠AHE=∠BHD=∠C,在△ADC和△BDH中,,∴△ADC≌△BDH(AAS),∴BH=AC=4,故选B.【点评】本题考查了等腰直角三角形的性质的运用,全等三角形的判定及性质的运用,解答时找到全等三角形是关键.11.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OC,然后判断出△AOE和△COE 全等,再根据等腰三角形三线合一的性质可得AD⊥BC,从而得到△ABC关于直线AD轴对称,再根据全等三角形的定义写出全等三角形即可得解.【解答】解:∵EF是AC的垂直平分线,∴OA=OC,又∵OE=OD,∴Rt△AOE≌Rt△COE,∵AB=AC,D是BC的中点,∴AD⊥BC,∴△ABC关于直线AD轴对称,∴△AOC≌△AOB,△BOD≌△COD,△ABD≌△ACD,综上所述,全等三角形共有4对.故选D.【点评】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,全等三角形的判定,等腰三角形三线合一的性质,熟练掌握各性质以及全等三角形的判定是解题的关键.12.如图,△ABE和△ADC分别沿着边AB、AC翻折180°形成的,若∠BCA:∠ABC:∠BAC=28:5:3,BE与DC交于点F,则∠EFC的度数为()A.20°B.30°C.40°D.45°【分析】根据∠BCA:∠ABC:∠BAC=28:5:3,三角形的内角和定理分别求得∠BCA,∠ABC,∠BAC 的度数,然后根据折叠的性质求出∠D、∠DAE、∠BEA的度数,在△AOD中,根据三角形的内角和定理求出∠AOD的度数,继而可求得∠EOF的度数,最后根据三角形的外角定理求出∠EFC的度数.【解答】解:在△ABC中,∵∠BCA:∠ABC:∠BAC=28:5:3,∴设∠BCA为28x,∠ABC为5x,∠BAC为3x,则28x+5x+3x=180°,解得:x=5°,则∠BCA=140°,∠ABC=25°,∠BAC=15°,由折叠的性质可得:∠D=25°,∠DAE=3∠BAC=45°,∠BEA=140°,在△AOD中,∠AOD=180°﹣∠DAE﹣∠D=110°,∴∠EOF=∠AOD=110°,∴∠EFC=∠BEA﹣∠EOF=140°﹣110°=30°.故选B.【点评】本题考查图形的折叠变化及三角形的内角和定理.关键是要理解折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,只是位置变化.二、填空题(每小题3分,共18分)13.如果点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,则a+b的值是1.【分析】结合关于x轴、y轴对称的点的坐标的特点:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).求解即可.【解答】解:∵点P(﹣2,b)和点Q(a,﹣3)关于x轴对称,∴a=﹣2,b=3,∴a+b=﹣2+3=1.故答案为:1.【点评】本题考查了关于x轴、y轴对称的点的坐标的特点,解答本题的关键在于熟练掌握:(1)关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);(2)关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变.即点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).14.如图,△ABC的周长为19cm,AC的垂直平分线DE交AC于点E,E为垂足,AE=3cm,则△ABD的周长为13cm.【分析】根据垂直平分线的性质计算.△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC.【解答】解:∵AC的垂直平分线DE交BC于D,E为垂足∴AD=DC,AC=2AE=6cm,∵△ABC的周长为19cm,∴AB+BC=13cm∴△ABD的周长=AB+BD+AD=AB+BD+CD=AB+BC=13cm.故答案为:13cm.【点评】本题考查了线段垂直平分线的性质;解决本题的关键是利用线段的垂直平分线性质得到相应线段相等.15.如图,AE∥DF,AB=DC,不再添加辅助线和字母,要使△EAC≌△FDB,需添加的一个条件是∠E=∠F或AE=DF(只写一个条件即可)【分析】添加条件AB=CD可证明AC=BD,然后再根据AE∥FD,可得∠A=∠D,再利用ASA定理证明△EAC≌△FDB即可,或AE=DF利用SAS定理证明△EAC≌△FDB.【解答】解:添加∠E=∠F,理由如下:∵AE∥FD,∴∠A=∠D,∵AB=CD,∴AC=BD,在△AEC和△DFB中,,∴△EAC≌△FDB(ASA).故答案是:∠E=∠F.当添加AE=DF时,利用SAS即可证得.故答案是:∠E=∠F或AE=DF.【点评】此题主要考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.16.点O是△ABC内一点,且点O到三边的距离相等,∠A=50°,则∠BOC=115°.【分析】根据三角形内角和定理求出∠ABC+∠ACB=130°,再根据角平分线上的点到角的两边的距离相等判断出点O是△ABC角平分线的交点,再根据角平分线的定义求出∠OBC+∠OCB的度数,然后在△OBC 中,利用三角形内角和定理列式进行计算即可得解.【解答】解:如图,∵∠A=50°,∴∠ABC+∠ACB=180°﹣50°=130°,∵点O到△ABC三边的距离相等,∴点O是△ABC角平分线的交点,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130°=65°,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣65°=115°.故答案为:115°.【点评】本题主要考查了角平分线上的点到角的两边的距离相等的性质,三角形的内角和定理,角平分线的定义,判断出点O是△ABC角平分线的交点是解题的关键,要注意整体思想的利用.17.若x2﹣(m﹣1)x+36是一个完全平方式,则m的值为﹣11或13.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2﹣(m﹣1)x+36是一个完全平方式,∴m﹣1=±12,故m的值为﹣11或13,故答案为:﹣11或13【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18.阅读下文,寻找规律.计算:(1﹣x)(1+x)=1﹣x2,(1﹣x)(1+x+x2)=1﹣x3,(1﹣x)(1+x+x2+x3)=1﹣x4….(1)观察上式,并猜想:(1﹣x)(1+x+x2+…+x n)=1﹣x n+1.(2)根据你的猜想,计算:1+3+32+33…+3n=﹣.(其中n是正整数)【分析】(1)归纳总结得到一般性规律,写出即可;(2)原式变形后,利用得出的规律计算即可得到结果.【解答】解:解:(1)(1﹣x)(1+x+x2+…+x n)=1﹣x n+1;(2)1+3+32+…+3n=﹣(1﹣3)(1+3+32+33…+3n)=﹣.故答案为:(1)1﹣x n+1,(2)﹣.【点评】本题考查了平方差公式,解决本题本题的关键是熟记平方差公式.三、解答题:19.在平面直角坐标系中,A(1,2),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于y轴的对称△A1B1C1;(2)写出△ABC关于x轴对称△A2B2C2的各顶点坐标:A2(1,﹣2);B2(3,﹣1);C2(﹣2,1).【分析】(1)利用关于y轴对称点的性质得出各对应点位置得出答案;(2)利用关于x轴对称点的性质得出各对应点位置得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C2,即为所求;A2(1,﹣2);B2(3,﹣1);C2(﹣2,1).故答案为:(1,﹣2),(3,﹣1),(﹣2,1).【点评】此题主要考查了关于坐标轴对称点的性质,正确把握横纵坐标关系是解题关键.20.化简求值:(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1),x=﹣.【分析】对(2x﹣1)2﹣(3x+1)(3x﹣1)+5x(x﹣1)先去括号,再合并同类项,化简后将代入化简后的式子,即可求得值.其中(2x﹣1)2利用完全平方公式去括号,(3x+1)(3x﹣1)利用平方差公式去括号.【解答】解:原式=4x2﹣4x+1﹣9x2+1+5x2﹣5x=(4﹣9+5)x2﹣(4+5)x+(1+1)=﹣9x+2当时,原式=﹣9×+2=3.【点评】同学们要注意对于整式的求值,首先利用平方差公式、完全平方式、立方公式等去括号,再合并同类项,最后代入求值.21.因式分解:(1)18axy﹣3ax2﹣27ay2(2)(a2+4)2﹣16a2(3)c(a﹣b)﹣2(a﹣b)2c+(a﹣b)3c.【分析】(1)首先提取公因式﹣3a,进而利用完全平方公式分解因式得出答案;(2)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;(3)首先提取公因式c(a﹣b),进而利用平方差公式分解因式得出答案.【解答】解:(1)18axy﹣3ax2﹣27ay2=﹣3a(﹣6xy+x2+9y2)=﹣3a(x﹣3y)2;(2)(a2+4)2﹣16a2=(a2+4+4a)(a2+4﹣4a)=(a﹣2)2(a+2)2;(3)c(a﹣b)﹣2(a﹣b)2c+(a﹣b)3c=c(a﹣b)[1﹣2(a﹣b)+(a﹣b)2]=c(a﹣b)(a﹣b﹣1)2.【点评】此题主要考查了提取公因式法以及公式法分解因式,正确应用公式是解题关键.22.如图,B是AC中点,∠F=∠E,∠1=∠2.证明:AE=CF.【分析】根据全等三角形的判定和性质即可得到结论.【解答】证明:∵B是AC中点,∴AB=BC,∵∠1=∠2,∴∠1+∠FBE=∠2+∠EBF,即∠ABE=∠CBF,在△ABE与△CBF中,,△EBA≌△FBC(AAS),∴AE=CF.【点评】本题考查了全等三角形的判定和性质,熟练掌握全等三角形的判定和性质是解题的关键.23.已知:如图,∠BAC的角平分线与BC的垂直平分线DG交于点D,DE⊥AB,DF⊥AC,垂足分别为E,F.①求证:BE=CF;②若AF=5,BC=6,求△ABC的周长.【分析】①连接CD,根据垂直平分线性质可得BD=CD,可证RT△BDE≌RT△CDF,可得BE=CF;②根据Rt△ADE≌Rt△ADF得出AE=AF解答即可.【解答】①证明:连结CD,∵D在BC的中垂线上∴BD=CD∵DE⊥AB,DF⊥ACAD平分∠BAC∴DE=DF∠BED=∠DCF=90°在RT△BDE和RT△CDF中,,∴RT△BDE≌RT△CDF(HL),∴BE=CF;②解:由(HL)可得,Rt△ADE≌Rt△ADF,∴AE=AF=5,∴△ABC的周长=AB+BC+AC,=(AE+BE)+BC+(AF﹣CF)=5+6+5=16.【点评】本题考查了直角三角形全等的判定,考查了垂直平分线的性质,考查了角平分线的性质,本题中求证RT△BDE≌RT△CDF是解题的关键.24.(1)阅读理解:如图①,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.解决此问题可以用如下方法:延长AD到点E使DE=AD,再连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD),把AB、AC,2AD集中在△ABE中,利用三角形三边的关系即可判断.中线AD的取值范围是2<AD<8;(2)问题解决:如图②,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证:BE+CF>EF;(3)问题拓展:如图③,在四边形ABCD中,∠B+∠D=180°,CB=CD,∠BCD=140°,以C为顶点作一个70°角,角的两边分别交AB,AD于E、F两点,连接EF,探索线段BE,DF,EF之间的数量关系,并加以证明.【分析】(1)延长AD至E,使DE=AD,由SAS证明△ACD≌△EBD,得出BE=AC=6,在△ABE中,由三角形的三边关系求出AE的取值范围,即可得出AD的取值范围;(2)延长FD至点M,使DM=DF,连接BM、EM,同(1)得△BMD≌△CFD,得出BM=CF,由线段垂直平分线的性质得出EM=EF,在△BME中,由三角形的三边关系得出BE+BM>EM即可得出结论;(3)延长AB至点N,使BN=DF,连接CN,证出∠NBC=∠D,由SAS证明△NBC≌△FDC,得出CN=CF,∠NCB=∠FCD,证出∠ECN=70°=∠ECF,再由SAS证明△NCE≌△FCE,得出EN=EF,即可得出结论.【解答】(1)解:延长AD至E,使DE=AD,连接BE,如图①所示:∵AD是BC边上的中线,∴BD=CD,在△BDE和△CDA中,,∴△BDE≌△CDA(SAS),∴BE=AC=6,在△ABE中,由三角形的三边关系得:AB﹣BE<AE<AB+BE,∴10﹣6<AE<10+6,即4<AE<16,∴2<AD<8;故答案为:2<AD<8;(2)证明:延长FD至点M,使DM=DF,连接BM、EM,如图②所示:同(1)得:△BMD≌△CFD(SAS),∴BM=CF,∵DE⊥DF,DM=DF,∴EM=EF,在△BME中,由三角形的三边关系得:BE+BM>EM,∴BE+CF>EF;(3)解:BE+DF=EF;理由如下:延长AB至点N,使BN=DF,连接CN,如图3所示:∵∠ABC+∠D=180°,∠NBC+∠ABC=180°,∴∠NBC=∠D,在△NBC和△FDC中,,∴△NBC≌△FDC(SAS),∴CN=CF,∠NCB=∠FCD,∵∠BCD=140°,∠ECF=70°,∴∠BCE+∠FCD=70°,∴∠ECN=70°=∠ECF,在△NCE和△FCE中,,∴△NCE≌△FCE(SAS),∴EN=EF,∵BE+BN=EN,∴BE+DF=EF.【点评】本题考查了三角形的三边关系、全等三角形的判定与性质、角的关系等知识;本题综合性强,有一定难度,通过作辅助线证明三角形全等是解决问题的关键.2016年12月8日。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学校:____ 班级:_____ 姓名:_______ 学号:____ 。
装。
订。
线。
勿。
答。
题。
八年级数学试题9(满分:120分 考试时间:100分钟)
一、选择题:(每题3分,共24分)
1.下列图形中,不是轴对称图形的是( )
2.以下列各组数为边长,不能构成直角三角形的是( )
A. 1,5,2,3
B.7,24,25
C.6,8,10
D. 9,12,15 3.到三角形的三个顶点距离相等的点是( )
A.三条角平分线的交点
B.三条中线的交点
C.三条高的交点
D.三条边的垂直平分线的交点 4.如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( )
A. 30
B. 45
C. 90
D. 60° 5.如图,在△ABC 中,BC =8cm ,AB 的垂直平分线交AB 于点D ,交边AC 点E ,AC 的长为12cm ,则△BCE 的周长等于( )
A.16cm
B.20cm
C.24cm
D.26cm
6.如图,等腰三角形ABC 中,AB =AC ,∠A = 46,CD ⊥AB 于D ,则 ∠DCB 等于( ) A. 30 B. 26 C. 23 D. 20
O A
B
C
D 第6题
A
B
C
D C
D
E
B
A
第5题
第4题
7.已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为( )
A .40
B .80
C .40或360
D .80或360 8.将一正方形纸片按下面图(1)、(2)的方式依次对折后,再沿(3)中的虚线裁剪,最后将(4)中的纸片打开铺平,所得图案应该是下面图案中的( )
二、填空题:(每空3分,共30分)
9.若等腰三角形的底角为70度,则它的顶角为 度.
10.已知三角形ABC 中∠C=90°,AC=3,BC=4,则斜边AB 上的高为 11.若直角三角形两直角边的比为3:4,斜边长为20,则此直角三角形的周长为 。
12.已知ΔABC ≌ΔDEF ,点A 与点D.点B 与点E 分别是对应顶点, (1)若ΔABC 的周长为32,AB=10,BC=14,则DF= (2)∠A=48°,∠B =53°,则∠F= 。
13.在镜子中看到时钟显示的时间是 ,则实际时间是 14.已知┃x -12┃+┃z -13┃与y 2-10y +25互为相反数,则以x 、y 、z 为三边的三角形是 三角形。
15.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么图中共有 对全等三角形.
16.如图,ΔABC ,DE ⊥AB ,垂
足为E ,CD=2㎝,则
第15题 第16题 第17题
17.如图,有一个直角三角形ABC ,∠C=90°,AC=10,BC=5,一条线段PQ=AB ,P.Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,问P 点运动到 位置时,才能使ΔABC ≌ΔPQA.
18. 如图,四边形ABCD 中,∠BAD =110°,∠B=∠D =90°,在BC 、CD 上分别找一点M 、N ,使△AMN 周长最小,此时∠MAN 的度数为 °.
三、解答题
19.(本题8分)如图:已知∠AOB 和C 、D 两点,用直尺和圆规求作一点P ,使PC=PD ,且点P 到∠AOB 两边的距离相等.
20.(本题8分)如图,点D ,E 在△ABC 的边BC 上,连接AD ,AE . ①AB =AC ;②AD =AE ;③BD =CE .以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:(1)①②⇒③;(2)①③⇒②;(3)②③⇒①. (1)以上三个命题是真命题的为(直接写号) ;
Q A B A
第18题
B
(2)请选择一个真命题进行证明(先写出所选命题,然后证明).
21.(本题8分)如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?
22.(本题8分)如图,已知点A 、E 、F 、C 在同一直线上,∠1=∠2,AE=CF ,AD=CB.
23.(本题8分)已知:如图,AD=4,CD=3,∠ADC=90°,AB=13,∠ACB=90°,•求图形中阴影部分的面积.
24.(本题8分)已知,如图,∠ABC=∠ADC=90°,M ,N 分别是AC ,BD 的中点。
求证:①BM=DM ②MN ⊥BD.
E D C
B A
A D E
B
C
25. (本题8分)如图,折叠长方形(四个角都是直角,对边相等)的一边AD 使点D落在BC边的点F处,已知AB = 8cm,BC = 10 cm,求EC的长
26.(本题10分)已知在等腰△ABC中,AB=AC,在射线CA上截取线段CE,在射线AB上截取线段BD,连接DE,DE所在直线交直线BC与点M。
请探究:
(1)如图(1),当点E在线段AC上,点D在AB延长线上时,若BD=CE,请判断线段MD和线段ME的数量关系,并证明你的结论。
(4分)
(2)如图(2),当点E在CA的延长线上,点D在AB的延长线上时,若BD=CE,则(1)中的结论还成立吗?如果成立,请证明;如果不成立,说明理由;(4分)
(3)如图(3),当点E在CA的延长线上,点D在线段AB上(点D不与A,B 重合),DE所在直线与直线BC交于点M,若CE=2BD,请直接写出线段MD与线段ME的数量关系。
(2分)
八年级数学试卷答案
1—8 A A D C B C C B
9 .40
12
10.
5
11.48
12. 8 、79°
13.16︰25︰08
14.直角
15. 3
16. 6
17. 点C
18. 40
19. 要求尺规作图,小结语1分
20. (2)(3)每写1个2分,证明略。
21. 10KM
22.平行,结论1分,证明略
23. 24
24. 提示连结BM、DM利用三角形三线合一证
25. 3cm
26.(1) 提示:过E作EF平行于AD DM=EM (2)成立 DM=EM (3)EM=2DM,其中1,2两问的结论各1分。