春新人教版八级下册数学期中试卷及答案
新人教版八年级数学下册期中考试卷及答案【完整版】

新人教版八年级数学下册期中考试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若分式211x x -+的值为0,则x 的值为( ) A .0 B .1 C .﹣1 D .±12.不等式组111324(1)2()x x x x a -⎧-<-⎪⎨⎪-≤-⎩有3个整数解,则a 的取值范围是( )A .65a -≤<-B .65a -<≤-C .65a -<<-D .65a -≤≤-3.下列长度的三条线段,能组成三角形的是( )A .4cm ,5cm ,9cmB .8cm ,8cm ,15cmC .5cm ,5cm ,10cmD .6cm ,7cm ,14cm4.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图象经过第一、二、四象限,那么k 、b 应满足的条件是( )A .k >0,且b >0B .k <0,且b >0C .k >0,且b <0D .k <0,且b <05.二次函数2y ax bx c =++的图象如图所示,对称轴是直线1x =.下列结论:①0abc <;②30a c +>;③()220a c b +-<;④()a b m am b +≤+(m 为实数).其中结论正确的个数为( )A .1个B .2个C .3个D .4个6.如果2a a 2a 1-+,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.下列四个图形中,线段BE是△ABC的高的是()A. B.C. D.8.如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60,则它们重叠部分的面积为()A.1 B.2 C 3 D.23 39.如图所示,下列推理及括号中所注明的推理依据错误的是()A.∵∠1=∠3,∴AB∥CD(内错角相等,两直线平行)B.∵AB∥CD,∴∠1=∠3(两直线平行,内错角相等)C.∵AD∥BC,∴∠BAD+∠ABC=180°(两直线平行,同旁内角互补)D.∵∠DAM=∠CBM,∴AB∥CD(两直线平行,同位角相等)10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A .12B .1C .2D .2二、填空题(本大题共6小题,每小题3分,共18分)1.已知2320x y --=,则23(10)(10)x y ÷=_______.2.已知34(1)(2)x x x ---=1A x -+2B x -,则实数A=__________. 3.分解因式:2x 3﹣6x 2+4x =__________.4.通过计算几何图形的面积,可表示一些代数恒等式,如图所示,我们可以得到恒等式:2232a ab b ++=________.5.正方形111A B C O 、2221A B C C 、3332A B C C 、…按如图所示的方式放置.点1A 、2A 、3A 、…和点1C 、2C 、3C 、…分别在直线1y x =+和x 轴上,则点n B 的坐标是__________.(n 为正整数)6.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,CE ∥BD ,DE ∥AC .若AC=4,则四边形CODE 的周长是__________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x yx y-=⎧⎨+=⎩(2)272253xyyx⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:3x4x2xx1x1--⎛⎫-÷⎪--⎝⎭,其中1x2=.3.已知关于x的分式方程311(1)(2)x kx x x-+=++-的解为非负数,求k的取值范围.4.如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由;(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.5.如图,点E,F在BC上,BE=CF,∠A=∠D,∠B=∠C,AF与DE交于点O.(1)求证:AB=DC;(2)试判断△OEF的形状,并说明理由.6.某公司计划购买A,B两种型号的机器人搬运材料.已知A型机器人比B型机器人每小时多搬运30kg材料,且A型机器人搬运1000kg材料所用的时间与B型机器人搬运800kg材料所用的时间相同.(1)求A,B两种型号的机器人每小时分别搬运多少材料;(2)该公司计划采购A,B两种型号的机器人共20台,要求每小时搬运材料不得少于2800kg,则至少购进A型机器人多少台?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、B5、C6、C7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、1002、13、2x (x ﹣1)(x ﹣2).4、()()2a b a b ++.5、1(21,2)n n -- 6、8三、解答题(本大题共6小题,共72分)1、(1)11x y =⎧⎨=⎩;(2)23x y =⎧⎨=⎩2、x 2-,32-. 3、8k ≥-且0k ≠.4、(1)略;(2)四边形BECD 是菱形,理由略;(3)当∠A =45°时,四边形BECD 是正方形,理由略5、(1)略(2)等腰三角形,理由略6、(1)A 型机器人每小时搬运150千克材料,B 型机器人每小时搬运120千克材料;(2)至少购进A 型机器人14台.。
新人教版八年级下册数学期中测试卷及答案)

新人教版八年级下册数学期中测试卷及答案)八年级下册数学期中测试卷(1)一、选择答案:(每题3分,共30分)1、下列二次根式中,属于最简二次根式的是()A。
1B。
2√2C。
4D。
52、二次根式x+3有意义的条件是()A.x>3B。
x>-3C。
x≥-3D。
x≥33、正方形面积为36,则对角线的长为()A.6B.6√2C.9D.9√24、矩形的两条对角线的夹角为60度,对角线长为15,则矩形的较短边长为()A。
12B。
10C。
7.5D。
55、下列命题中,正确的个数是()①若三条线段的比为1:1:2,则它们组成一个等腰直角三角形;②两条对角线相等的平行四边形是矩形;③对角线互相垂直的四边形是菱形;④有两个角相等的梯形是等腰梯形;⑤一条直线与矩形的一组对边相交,必分矩形为两个直角梯形。
A、2个B、3个C、4个D、5个6、下列条件中能判断四边形是平行四边形的是()A)对角线互相垂直B)对角线相等C)对角线互相垂直且相等D)对角线互相平分7、在□ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A)1cmB)2cmC)3cmD)4cm8、如图,菱形ABCD中,E、F分别是AB、AC的中点,若EF=3,则菱形ABCD的周长是()A.12B.16C.20D.249、如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D’处,则重叠部分△AFC的面积为()A.6B.8C.10D.1210、如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=()A.45°B.30°C.60°D.55°二、填空:(每题2分,共20分)11、ABCD中一条对角线分∠A为35°和45°,则∠B=100度。
12、矩形的两条对角线的夹角为60度,较短的边长为12cm,则对角线的长为12√3 cm。
人教版数学八年级下册期中考试试题附答案

人教版数学八年级下册期中考试试卷一、单选题1.下列条件中,不能判断四边形ABCD 是平行四边形的是()A .∠A=∠C ,∠B=∠DB .AB ∥CD ,AB=CDC .AB=CD ,AD ∥BCD .AB ∥CD ,AD ∥BC2.下列各组长度的线段能组成直角三角形的是().A .a =2,b =3,c =4B .a =4,b =4,c =5C .a =5,b =6,c =7D .a =5,b =12,c =133.下列各式中,最简二次根式是()AB C .D 4.若式子在实数范围内有意义,则x 的取值范围是()A .x≤﹣3B .x≥﹣3C .x <﹣3D .x >﹣35.平行四边形ABCD 中,若2B A ∠=∠,则C ∠的度数为().A .120︒B .60︒C .30︒D .15︒6.下列命题中,正确的是().A .有一组邻边相等的四边形是菱形B .对角线互相平分且垂直的四边形是矩形C .两组邻角相等的四边形是平行四边形D .对角线互相垂直且相等的平行四边形是正方形7.如图,矩形ABCD 中,AB=3,两条对角线AC 、BD 所夹的钝角为120°,则对角线BD 的长为A .B .C .33D .38.如图,在矩形ABCD 中,84AB BC ==,,将矩形沿对角线AC 折叠,则重叠部分AFC △的面积为()A .12B .10C .8D .69.如图,正方形ABCD 的两条对角线AC ,BD 相交于点O ,点E 在BD 上,且BE =CD ,则∠BEC 的度数为()A .22.5°B .60°C .67.5°D .75°10.如图,点P 是正方形ABCD 的对角线BD 上一点,PE ⊥BC ,PF ⊥CD ,垂足分别为点E ,F ,连接AP ,EF ,给出下列四个结论:①AP=EF;②∠PFE=∠BAP;③2EC;④△APD 一定是等腰三角形.其中正确的结论有().A .1个B .2个C .3个D .4个二、填空题11.在研究了平行四边形的相关内容后,老师提出这样一个问题:“四边形ABCD 中,AD ∥BC ,请添加一个条件,使得四边形ABCD 是平行四边形”.经过思考,小明说“添加AD=BC”,小红说“添加AB=DC”.你同意________的观点,理由是________.12.如图,菱形ABCD 中,若BD=24,AC=10,则AB 的长等于________,该菱形的面积为____________.13.在Rt △ABC 中,a ,b 均为直角边且其长度为相邻的两个整数,若1a b <<,则该直角三角形斜边上的高为____________.14.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为.现已知△ABC 的三边长分别为1,2ABC的面积为______.15.已知:,x y为实数,且4y <,则4y --果为_______.16.如图以直角三角形ABC 的斜边BC 为边在三角形ABC 的同侧作正方形BCEF ,设正方形的中心为O,连结AO,如果AB=4,,则AC=________三、解答题17.计算:(1+;(2.18.如图,已知 ABCD,E,F是对角线BD上的两点,且DE=BF.求证:四边形AECF是平行四边形.19.如图所示,已知平行四边形ABCD,对角线AC,BD相交于点O,∠OBC=∠OCB.(1)求证:平行四边形ABCD是矩形;(2)请添加一个条件使矩形ABCD为正方形.20.如图,P是正方形ABCD对角线AC上一点,点E在BC上,且PE=PB.(1)求证:PE=PD;(2)连接DE,试判断∠PED的度数,并证明你的结论.21.如图,菱形ABCD的对角线AC和BD交于点O,分别过点C.D作CE∥BD,DE∥AC,CE和DE交于点E.(1)求证:四边形ODEC是矩形;(2)当∠ADB=60°,AD=23EA的长。
新人教版八年级数学下册期中考试卷及答案【汇总】

新人教版八年级数学下册期中考试卷及答案【汇总】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .1 3.解分式方程11222x x x-=---时,去分母变形正确的是( ) A .()1122x x -+=---B .()1122x x -=--C .()1122x x -+=+-D .()1122x x -=---4.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩ 5.如图,已知菱形的两条对角线分别为6cm 和8cm ,则这个菱形的高DE 为( )A .2.4cmB .4.8cmC .5cmD .9.6cm6.已知关于x的不等式组320x ax->⎧⎨->⎩的整数解共有5个,则a的取值范围是()A.﹣4<a<﹣3 B.﹣4≤a<﹣3 C.a<﹣3 D.﹣4<a<3 27.如图,在▱ABCD中,对角线AC的垂直平分线分别交AD、BC于点E、F,连接CE,若△CED的周长为6,则▱ABCD的周长为()A.6 B.12 C.18 D.248.如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()A.1cm B.2cm C.3cm D.4cm9.如图,在正方形ABCD中,AB=9,点E在CD边上,且DE=2CE,点P是对角线AC上的一个动点,则PE+PD的最小值是()A.310B.103C.9 D.9210.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为()A .9B .6C .4D .3二、填空题(本大题共6小题,每小题3分,共18分)1.若2x =5,2y =3,则22x+y =________.2.已知菱形ABCD 的面积是12cm 2,对角线AC =4cm ,则菱形的边长是______cm .3.33x x -=-,则x 的取值范围是________.4.如图,正方形ABCD 中,点E 、F 分别是BC 、AB 边上的点,且AE ⊥DF ,垂足为点O ,△AOD 的面积为7,则图中阴影部分的面积为________.5.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为________.6.如图,在平行四边形ABCD 中,添加一个条件_____使平行四边形ABCD 是菱形.三、解答题(本大题共6小题,共72分)1.解方程:(1)12111x x x -=-- (2)31523162x x -=--2.化简求值:(1)27x -48×4x +23x ; (2)2(53)(113)(113)-++-.3.已知5a+2的立方根是3,3a +b -1的算术平方根是4,c 是13的整数部分,求3a-b+c 的平方根.4.如图,在▱ABCD 中,对角线 AC ,BD 相交于点 O ,过点 O 的一条直线分别交 AD ,BC 于点 E ,F .求证:AE=CF .5.在杭州西湖风景游船处,如图,在离水面高度为5m 的岸上,有人用绳子拉船靠岸,开始时绳子BC 的长为13m ,此人以0.5m/s 的速度收绳.10s 后船移动到点D 的位置,问船向岸边移动了多少m ?(假设绳子是直的,结果保留根号)6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、D4、B5、B6、B7、B8、B9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、7523、3x≤45、36、AB=BC(或AC⊥BD)答案不唯一三、解答题(本大题共6小题,共72分)1、(1)2x3=;(2)10x9=.2、(12)3、3a-b+c的平方根是±4.4、略.5、(12m6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案略。
新人教版八年级数学下册期中考试题及参考答案

新人教版八年级数学下册期中考试题及参考答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.若2n +2n +2n +2n =2,则n=( )A .﹣1B .﹣2C .0D .142.若正多边形的内角和是540︒,则该正多边形的一个外角为( )A .45︒B .60︒C .72︒D .90︒3.已知α、β是方程x 2﹣2x ﹣4=0的两个实数根,则α3+8β+6的值为( )A .﹣1B .2C .22D .304.若不等式组11324x x x m+⎧<-⎪⎨⎪<⎩无解,则m 的取值范围为( ) A .2m ≤ B .2m < C .2m ≥ D .2m >5.用配方法解方程2680x x --=时,配方结果正确的是( )A .2(3)17x -=B .2(3)14x -=C .2(6)44x -=D .2(3)1x -=6.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根 7.下列说法中错误的是( )A .12是0.25的一个平方根 B .正数a 的两个平方根的和为0 C .916的平方根是34D .当0x ≠时,2x -没有平方根 8.如图,在△ABC 中,∠C=90°,,将△ABC 绕点A 顺时针方向旋转60°到△AB ′C ′的位置,连接C ′B ,则C ′B 的长为( ).A.1 B.31-C.2 D.222-9.如图在正方形网格中,若A(1,1),B(2,0),则C点的坐标为()A.(-3,-2) B.(3,-2) C.(-2,-3) D.(2,-3) 10.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD 二、填空题(本大题共6小题,每小题3分,共18分)1273=________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.分解因式:2x3﹣6x2+4x=__________.4.如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a ,OE=b ,则a+2b 的取值范围是________.5.如图,在矩形ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别是AO 、AD 的中点,若AB=6cm ,BC=8cm ,则AEF 的周长=______cm .6.如图,AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,S △ABC =7,DE =2,AB=4,则AC 的长是________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2101x x -=+ (2)2216124x x x --=+-2.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中2,b=12.3.已知方程组713x y m x y m+=--⎧⎨-=+⎩的解满足x 为非正数, y 为负数. (1)求m 的取值范围;(2)化简:||32m m --+;(3)在m 的取值范围内,当m 为何整数时,不等式221mx x m +<+的解为1x >.4.如图,将矩形ABCD沿对角线AC翻折,点B落在点E处,FC交AD于F.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.5.如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F、H在菱形ABCD的对角线BD上.=;(1)求证:BG DE(2)若E为AD中点,2FH=,求菱形ABCD的周长.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、C3、D4、A5、A6、A7、C8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、2、-153、2x (x ﹣1)(x ﹣2).4、2≤a+2b ≤5.5、96、3三、解答题(本大题共6小题,共72分)1、(1)x=1;(2)方程无解2、原式=a b a b -=+3、(1)23m -<≤;(2)12m -;(3)1m =-4、(1)略;(2)10.5、(1)略;(2)8.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。
新人教版八年级数学下册期中考试卷及答案【完美版】

新人教版八年级数学下册期中考试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-6 3.函数2y x =-的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限 4.若关于x 的方程333x m m x x ++--=3的解为正数,则m 的取值范围是( ) A .m <92B .m <92且m ≠32C .m >﹣94D .m >﹣94且m ≠﹣34 5.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为( )A .91.210⨯个B .91210⨯个C .101.210⨯个D .111.210⨯个6.如果a ,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是( )A .乙前4秒行驶的路程为48米B .在0到8秒内甲的速度每秒增加4米/秒C .两车到第3秒时行驶的路程相等D .在4至8秒内甲的速度都大于乙的速度9.如图,两个不同的一次函数y=ax+b 与y=bx+a 的图象在同一平面直角坐标系的位置可能是( )A .B .C .D .10.如图,将△ABC 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,且EA 与EB 重合于线段EO ,若∠DOF =142°,则∠C 的度数为( )A .38°B .39°C .42°D .48°二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:2()4()a a b a b ---=________.2.计算:16=_______.3.使x 2-有意义的x 的取值范围是________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别是AB ,AC 的中点,点F 是AD 的中点.若AB=8,则EF=________.6.如图所示,在△ABC 中,∠BAC=106°,EF 、MN 分别是AB 、AC 的垂直平分线,点E 、N 在BC 上,则∠EAN=________.三、解答题(本大题共6小题,共72分)1.解方程:(1)2(1)30x +-= (2)4(2)3(2)x x x +=+2.先化简,再求值:822224x x x x x +⎛⎫-+÷ ⎪--⎝⎭,其中12x =-.3.若方程组3133x y m x y m +=+⎧⎨+=-⎩的解满足x 为非负数,y 为负数.(1)请写出x y +=_____________;(2)求m 的取值范围;(3)已知4m n +=,且2n >-,求23m n -的取值范围.4.已知:如图所示△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°,连接AE ,BD .求证:AE=BD .5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、B4、B5、C6、C7、B8、C9、C10、A二、填空题(本大题共6小题,每小题3分,共18分)1、()()()22a b a a -+-2、43、x 2≥4、10.5、26、32°三、解答题(本大题共6小题,共72分)1、(1)11x =,21x =;(2)12x =-,243x =.2、3.3、(1)1;(2)m >2;(3)-2<2m -3n <184、略.5、24°.6、(1)一个足球的单价103元、一个篮球的单价56元;(2)学校最多可以买9个足球.。
新人教版八年级数学下册期中考试卷及答案【精品】

新人教版八年级数学下册期中考试卷及答案【精品】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x - 2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.关于x 的方程32211x m x x -=+++无解,则m 的值为( ) A .﹣5 B .﹣8 C .﹣2 D .54.若x 取整数,则使分式6321x x +-的值为整数的x 值有( ) A .3个 B .4个 C .6个 D .8个5.一次函数y=kx ﹣1的图象经过点P ,且y 的值随x 值的增大而增大,则点P 的坐标可以为( )A .(﹣5,3)B .(1,﹣3)C .(2,2)D .(5,﹣1)6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°8.如图,在平行四边形ABCD 中,∠DBC=45°,DE ⊥BC 于E ,BF ⊥CD 于F ,DE ,BF 相交于H ,BF 与AD 的延长线相交于点G ,下面给出四个结论:①2BD BE =; ②∠A=∠BHE ; ③AB=BH ; ④△BCF ≌△DCE , 其中正确的结论是()A.①②③B.①②④C.②③④D.①②③④9.如图,五边形ABCDE中有一正三角形ACD,若AB=DE,BC=AE,∠E=115°,则∠BAE的度数为何?()A.115 B.120 C.125 D.13010.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.2二、填空题(本大题共6小题,每小题3分,共18分)1.计算:273-=________.2.若最简根式25b+和34a b-是同类二次根式,则a•b的值是_____.3.式子3x-在实数范围内有意义,则 x 的取值范围是________.4.如图,△ABC中,∠BAC=90°,∠B=30°,BC边上有一点P(不与点B,C 重合),I为△APC的内心,若∠AIC的取值范围为m°<∠AIC<n°,则m+n=________.5.如图,菱形ABCD中,∠B=60°,AB=3,四边形ACEF是正方形,则EF的长为__________.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP +∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解下列分式方程:(1)32111x x=+--(2)2531242x x x-=---2.先化简,再求值:2211(1)m mm m+--÷,其中m=3+1.3.解不等式组513(1)131722x xx x+>-⎧⎪⎨-≤-⎪⎩,并把它的解集在数轴上表示出来.4.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点.过点A作AF ∥BC交BE的延长线于点F(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF 的面积.5.如图,已知△ABC中,AB=AC,BD、CE是高,BD与CE相交于点O(1)求证:OB=OC;(2)若∠ABC=50°,求∠BOC的度数.6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、B5、C6、C7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、2、183、x ≥34、255.5、36、6三、解答题(本大题共6小题,共72分)1、(1)x=2;(2)32x =-2、3、24x -<≤,数轴见解析.4、(1)证明略;(2)证明略;(3)10.5、(1)略;(2)∠BOC=100°6、(1) 4800元;(2) 降价60元.。
2023-2024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)

20232024学年全国初中八年级下数学人教版期中考试试卷(含答案解析)(考试时间:90分钟,满分:100分)一、选择题(每题2分,共20分)1. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=62. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=63. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=64. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8D. 4x2y=65. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=66. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=67. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=68. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=69. 下列哪个选项是正确的?A. 3x+5y=10C. 5x+3y=15D. 4x2y=610. 下列哪个选项是正确的?A. 3x+5y=10B. 2x4y=8C. 5x+3y=15D. 4x2y=6二、填空题(每题2分,共20分)1. 2x+3y=6,求x的值。
2. 3x+5y=10,求y的值。
3. 4x2y=6,求x的值。
4. 5x+3y=15,求y的值。
5. 2x4y=8,求x的值。
6. 3x+5y=10,求y的值。
7. 4x2y=6,求x的值。
8. 5x+3y=15,求y的值。
9. 2x4y=8,求x的值。
10. 3x+5y=10,求y的值。
三、解答题(每题5分,共25分)1. 解方程组:2x+3y=63x+5y=102. 解方程组:5x+3y=153. 解方程组:2x4y=83x+5y=104. 解方程组:3x+5y=104x2y=65. 解方程组:5x+3y=152x4y=8四、计算题(每题10分,共30分)1. 计算:2x+3y=63x+5y=102. 计算:4x2y=65x+3y=153. 计算:2x4y=83x+5y=10五、应用题(每题10分,共20分)1. 应用题:2x+3y=62. 应用题: 4x2y=6 5x+3y=15答案解析:一、选择题1. A2. B3. C4. D5. A6. B7. C8. D9. A10. B二、填空题1. x=12. y=23. x=24. y=35. x=26. y=27. x=28. y=39. x=210. y=2三、解答题1. x=1, y=22. x=2, y=33. x=2, y=24. x=2, y=35. x=2, y=2四、计算题1. x=1, y=22. x=2, y=33. x=2, y=2五、应用题1. x=1, y=22. x=2, y=38. 简答题(每题5分,共25分)1. 简述一元二次方程的一般形式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年最新人教版八年级下数学期中考试题一、选择题(每小题2分,共12分)1.下列式子中,属于最简二次根式的是( ) A. 9 B. 7 C. 20 D. 312.3.若代数式1-x x 有意义,则实数x 的取值范围是( ) A. x ≠ 1B. x ≥0C. x >0D. x ≥0且x ≠14. 如图,把矩形ABCD 沿EF 翻折,点B 恰好落在AD 边的B′处,若AE=2,DE=6, ∠EFB=60°,则矩形ABCD 的面积是 ( )A.12B. 24C. 312D. 3165. 如图,正方形ABCD 的边长为4,点E 在对角线BD 上,且∠BAE =22.5 o ,EF ⊥AB ,垂足为F ,则EF 的长为( )A .1B . 2C .4-2 2D .32-46.在平行四边形ABCD 中,∠A :∠B :∠C :∠D 的值可以是( )A.1:2:3:4B.1:2:2:1C.1:2:1:2D.1:1:2:2二、填空题:(每小题3分,共24分)7.计算:()()03132-+-= .8.若x 31-在实数范围内有意义,则x 的取值范围是 .9.若实数a 、b 满足042=-++b a ,则ba = . 10.如图,□ABCD 与□DCFE 的周长相等,且∠BAD =60°,∠F =110°,则∠DAE 的度数为 . 1112.如图,ABCD 是对角线互相垂直的四边形,且OB=OD,请你添加一个适当的条件 ____________,使ABCD 成为菱形.(只需添加一个即可)13 .如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF.若菱形ABCD 的边长为2cm ,∠A=120°,则EF= .14.如图,矩形ABCD 中,AB =3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B 落在点B ′处,当△CEB ′为直角三角形时,BE 的长为_________.三、解答题(每小题5分,共20分)15.计算:1021128-⎪⎭⎫ ⎝⎛+--+π E D B A B ′ 4题图 5题图10题图 12题图 13题图 14题图16. 如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.17.18.四、解答题(每小题7分,共28分)19. 在矩形ABCD 中,将点A 翻折到对角线BD 上的点M 处,折痕BE 交AD 于点E .将点C 翻折到对角线BD 上的点N 处,折痕DF 交BC 于点F .(1)求证:四边形BFDE 为平行四边形;(2)若四边形BFDE 为菱形,且AB =2,求BC 的长.20. 如图,在四边形ABCD 中,AB =BC ,对角线BD 平分 ?ABC ,P 是BD 上一点,过点P 作PM ?AD ,PN?CD ,垂 足分别为M 、N 。
(1) 求证:?ADB =?CDB ; (2) 若?ADC =90?,求证:四边形MPND 是正方形。
21.如图,在□ABCD 中,F 是AD 的中点,延长BC 到点E ,使CE=21BC ,连结DE ,CF 。
(1)求证:四边形CEDF 是平行四边形;(2)若AB=4,AD=6,∠B=60°,求DE 的长。
22.五、解答题(每小题8分,共16分)23. 如图,在△ABC 中,∠ACB=90°,∠B >∠A ,点D 为边AB 的中点,DE ∥BC 交AC 于点E ,CF ∥AB 交DE 的延长线于点F .(1)求证:DE=EF ;(2)连结CD ,过点D 作DC 的垂线交CF 的延长线于点G ,求证:∠B=∠A+∠DGC .24. 2013如图,在矩形ABCD 中,E 、F 分别是边AB 、CD 上的点,AE =CF ,连接EF 、BF ,EF 与对角线AC 交于点O ,且BE =BF ,∠BEF =2∠BAC 。
(1)求证;OE =OF ;(2)若BC =32,求AB 的长。
六解答题:(每小题10分,共20分)25. 如图1,在△OAB 中,∠OAB=90°,∠AOB=30°,OB=8.以OB 为边,在△OAB 外作等边△OBC ,D 是OB 的中点,连接AD 并延长交OC 于E .(1)求证:四边形ABCE 是平行四边形;(2)如图2,将图1中的四边形ABCO 折叠,使点C 与点A 重合,折痕为FG ,求OG 的长.A B CDE F O B C D NM P 16题图 19题图 20题图 21题图 23题图 24题图26. 如图,在等边三角形ABC中,BC =6cm. 射线AG //BC ,点E 从点A 出发沿射线AG 以1cm/s 的速度运动,同时点F 从点B 出发沿射线BC 以2cm/s 的速度运动,设运动时间为t (s).(1)连接EF ,当EF 经过AC 边的中点D 时,求证:△ADE ≌△CDF ;(2)填空:①当t 为_________s 时,四边形ACFE 是菱形;②当t 为_________s 时,以A 、F 、C 、E 为顶点的四边形是直角梯形.参考答案1.B ;2.C ;3.D ;4.D ;5.C ;6.C ;7.-7;8. x ≤31;9. 21-;10.25°;11. (8052,0);12. OA=OC 或AD=BC 或AD ∥BC 或AB=BC ;13.3;14. 23或3; 15. 22-;16. 解:∵四边形ABCD 是菱形,对角线AC 与BD 相交于O ,∴AC ⊥BD ,DO=BO ,∵AB=5,AO=4,∴BO==3, ∴BD=2BO=2×3=6.17. :原式22()ab a ab b ab a b +++=+2()()a b a b ab a b ab++==+ 当512a =,512b -=5 18. 证明:∵四边形ABCD 是平行四边形,∴OA=OC,AB ∥CD∴∠OAE=∠OCF∵∠AOE=∠COF∴△OAE ≌△OCF (ASA )∴OE=OF19. (1)证明:∵四边形ABCD 是矩形,∴∠A=∠C=90°,AB=CD ,AB ∥CD ,∴∠ABD=∠CDB ,25题图 26题图∵在矩形ABCD中,将点A翻折到对角线BD上的点M处,折痕BE交AD于点E.将点C翻折到对角线BD上的点N处,∴∠ABE=∠EBD=∠ABD,∠CDF=∠CDB,∴∠ABE=∠CDF,在△ABE和△CDF中∴△ABE≌△CDF(ASA),∴AE=CF,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴DE=BF,DE∥BF,∴四边形BFDE为平行四边形;(2)解:∵四边形BFDE为为菱形,∴BE=ED,∠EBD=∠FBD=∠ABE,∵四边形ABCD是矩形,∴AD=BC,∠ABC=90°,∴∠ABE=30°,∵∠A=90°,AB=2,∴AE==,BE=2AE=,∴BC=AD=AE+ED=AE+BE=+=2.20. (1) ∵BD平分?ABC,∴?ABD=?CBD。
又∵BA=BC,BD=BD,∴△ABD?△CBD。
∴?ADB=?CDB。
(4分)(2) ∵PM?AD,PN?CD,∴?PMD=?PND=90?。
又∵?AD C=90?,∴四边形MPND是矩形。
∵?ADB=?CDB,PM?AD,PN?CD,∴PM=PN。
∴四边形MPND是正方形。
21.(1)略(2)1322. 证明:(1)∵四边形ABCD是平行四边形,∴DC∥AB,∴∠CDE=∠AED,∵DE平分∠ADC,∴∠ADE=∠CDE,∴∠ADE=∠AED,∴AE=AD,同理CF=CB,又AD=CB,AB=CD,∴AE=CF,∴DF=BE,∴四边形DEBF是平行四边形,∴DE=BF,(2)△ADE≌△CBF,△DFE≌△BEF.FED CBA23.解答: 证明:(1)∵DE ∥BC ,CF ∥AB ,∴四边形DBCF 为平行四边形,∴DF=BC ,∵D 为边AB 的中点,DE ∥BC ,∴DE=BC ,∴EF=DF ﹣DE=BC ﹣CB=CB ,∴DE=EF ;(2)∵四边形DBCF 为平行四边形,∴DB ∥CF ,∴∠ADG=∠G ,∵∠ACB=90°,D 为边AB 的中点,∴CD=DB=AD ,∴∠B=∠DCB ,∠A=∠DCA ,∵DG ⊥DC ,∴∠DCA+∠1=90°,∵∠DCB+∠DCA=90°,∴∠1=∠DCB=∠B ,∵∠A+∠ADG=∠1,∴∠A+∠G=∠B .24. (1)证明:∵四边形ABCD 是矩形 ∴AB ∥CD ,∠OAE =∠OCF ,∠OEA =∠OFC∵AE =CF ∴△AEO ≌△CFO (ASA ) ∴OE =OF(2)连接BO ∵OE =OF ,BE =BF ∴BO ⊥EF 且∠EBO =∠FBO ∴∠BOF =900∵四边形ABCD 是矩形 ∴∠BCF =900 又∵∠BEF =2∠BAC ,∠BEF =∠BAC +∠EOA ∴∠BAC =∠EOA ∴AE =OE ∵AE =CF ,OE =OF ∴OF =CF 又∵BF =BF ∴△BOF ≌△BCF (HL ) ∴∠OBF =∠CBF ∴∠CBF =∠FBO =∠OBE∵∠ABC =900 ∴∠OBE =300 ∴∠BEO =600 ∴∠BAC =300∴AC=2BC=34,∴AB=61248=-25.(1)证明:∵Rt △OAB 中,D 为OB 的中点,∴DO=DA ,∴∠DAO=∠DOA=30°,∠EOA=90°,∴∠AEO=60°,又∵△OBC 为等边三角形,∴∠BCO=∠AEO=60°,∴BC ∥AE ,∵∠BAO=∠COA=90°,∴CO ∥AB ,∴四边形ABCE 是平行四边形;(2)解:设OG=x ,由折叠可得:AG=GC=8﹣x ,在Rt △ABO 中,∵∠OAB=90°,∠AOB=30°,BO=8, AO=34,在Rt △OAG 中,OG 2+OA 2=AG 2,x 2+(4)2=(8﹣x )2,解得:x=1,∴OG=1.26.(1) 证明:∵AG BC ∥∴EAD ACB ∠=∠∵D 是AC 边的中点∴AD CD =又∵ADE CDF ∠=∠∴△ADE ≌△CDF(2)①∵当四边形ACFE 是菱形时,∴AE AC CF EF ===由题意可知:,26AE t CF t ==-,∴6t =②若四边形ACFE 是直角梯形,此时EF AG ⊥过C 作CM AG ⊥于M ,3AG =,可以得到AE CF AM -=, 即(26)3t t --=,∴3t =,此时,C F 与重合,不符合题意,舍去。