盐城市景山中学2016届九年级下期中考试数学试题含答案

合集下载

江苏省盐城市九年级下学期数学期中考试试卷

江苏省盐城市九年级下学期数学期中考试试卷

江苏省盐城市九年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·萧山模拟) -2的相反数是()A . 2B . -2C .D .2. (2分)计算的结果是A .B .C .D .3. (2分) (2019八下·定安期中) 数据0.000086用科学记数法表示为()A . 86×10-5B . 8.6×10-5C . 8.6×10-6D . 8.6×1054. (2分) (2019九上·郑州期中) 下列各立体图形中,自己的三个视图都全等的图形有()个①正方体;②球;③圆柱;④圆锥;⑤正六棱柱.A . 1个B . 2个C . 3个D . 4个5. (2分) (2019八下·马山期末) 一组数据2,2,4,3,6,5,2的众数和中位数分别是A . 3,2B . 2,3D . 2,46. (2分) (2017九上·老河口期中) 如图,AB为⊙O的直径,点C为⊙O上的一点,过点C作⊙O的切线,交直径AB的延长线于点D,若∠A=25°,则∠D的度数是()A . 25°B . 40°C . 50°D . 65°7. (2分)如图,在网格中,小正方形的边长均为1,点A,B,C都在格点上,则∠ABC的正切值是()A . 2B .C .D .8. (2分)(2016·哈尔滨) 明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是()B . 150m2C . 330m2D . 450m29. (2分)如图,正方形ABCD中,E为CD的中点,EF⊥AE,交BC于点F,则∠1与∠2的大小关系为()A . ∠1>∠2B . ∠1<∠2C . ∠1=∠2D . 无法确定10. (2分)(2019·岐山模拟) 如图,半径为3的⊙O经过等边△ABO的顶点A,B,点P为半径OB上的动点,连接AP,过点P作PC⊥AP交⊙O于点C,当∠ACP=30°时,AP的长为()A . 3B . 3或C .D . 3或二、填空题 (共6题;共6分)11. (1分) (2013八下·茂名竞赛) 有一个数值转换器,原理如右图.当输入的时,输出的等于________ .12. (1分) (2017七下·全椒期中) 分解因式﹣a2+4b2=________.13. (1分) (2017八下·兴化期末) 当a =________时,分式的值为-4.14. (1分)如图,⊙O过△ABC的顶点A、B、C,且∠C=30°,AB= 3,则弧AB长为________.15. (1分) (2019九上·济阳期末) △ABC中,AB=CB,AC=10,S△ABC=60,E为AB上一动点,连结CE,过A作AF⊥CE于F,连结BF,则BF的最小值是________.16. (1分) (2016八上·江宁期中) 如图,∠A=100°,∠E=25°,△ABC与△DEF关于直线l对称,则△ABC 中的∠C=________°.三、解答题 (共8题;共78分)17. (5分)计算。

2016年盐城数学中考真题

2016年盐城数学中考真题

2016年江苏省盐城市中考数学试卷参考答案与试题解析1.B2.A3.B 4.D.5.B6.B7.C8.A9.a(a﹣b)10.111.12.813.514.8π15.x=216.4017.8或2418.19.解:(1)原式=2﹣3=﹣1;(2)原式=9﹣7+2﹣2=2.20.解:原式=•=•=,当x=3时,原式=1.21.解:(1)甲的成绩从小到大的顺序排列为:89,90,90,93,中位数为90;乙的成绩从小到大的顺序排列为:86,92,94,94,中位数为(92+94)÷2=93.答:甲成绩的中位数是90,乙成绩的中位数是93;(2)6+3+2+2=10甲90×+93×+89×+90×=27+27.9+17.8+18=90.7(分)乙94×+92×+94×+86×=28.2+27.6+18.8+17.2=91.8(分)答:甲的数学综合素质成绩为90.7分,乙的数学综合素质成绩为91.8分.22.解:(1)∵质地完全相同的4只小球,小球上分别标有1、2、3、4四个数字,∴袋中随机摸出一只小球,求小球上所标数字为奇数的概率==;(2)列表得:和12341345235634574567∵共有12种等可能的结果,两次摸出的小球上所标数字之和为5的情况数为4,∴两次摸出的小球上所标数字之和为5的概率==.23.解:(1)如图所示:(2)四边形ABCD是矩形,理由:∵Rt△ABC中,∠ABC=90°,BO是AC边上的中线,∴BO=AC,∵BO=DO,AO=CO,∴AO=CO=BO=DO,∴四边形ABCD是矩形.24.解:(1)把B(12,20)代入y=中得:k=12×20=240(2)设AD的解析式为:y=mx+n把(0,10)、(2,20)代入y=mx+n中得:解得∴AD的解析式为:y=5x+10当y=15时,15=5x+10,x=115=,x==16答:恒温系统在一天内保持大棚里温度在15℃及15℃以上的时间有15小时.25.解:(1)由已知得:k=﹣2,把点(3,1)和k=﹣2代入y=kx+b中得:1=﹣2×3+b,∴b=7;(2)根据位似比为1:2得:函数y=kx+b的图象有两种情况:①不经过第三象限时,过(1,0)和(0,2),这时表达示为:y=﹣2x+2;②不经过第一象限时,过(﹣1,0)和(0,﹣2),这时表达示为:y=﹣2x﹣2;26.解:(1)连接AE,如图1,∵AD为半径的圆与BC相切于点E,∴AE⊥BC,AE=AD=2.在Rt△AEB中,sin∠ABE===,∴∠ABE=45°.∵AD∥BC,∴∠DAB+∠ABE=180°,∴的长度为=;(2)如图2,根据两点之间线段最短可得:当A、P、G三点共线时PG最短,此时AG=AP+PG=2+2﹣2=2,∴AG=AB.∵AE⊥BG,∴BE=EG.∵BE===2,∴EG=2,∴BG=4.27.解:(1)根据题意,得(10×2+2×3)×6×30=4680(名)安检所需要的总费用为:(2×3000+2×2×200+3×500+3×1×200)×6=53400(元),答:在规定时间内可通过4680名人员?安检所需要的总费用为53400元,(2)设每个入口处,有n个通道安放门式安检仪,而其余(5﹣n)个通道均为手持安检仪(0≤n≤5的整数),根据题意得,[10n+2(5﹣n)]×6×30≥7000,解不等式得,n≥3.5,∴n=4或n=5;安检所需要的总费用:w=[3000n+2n×200+500(5﹣n)+(5﹣n)×1×200]×6=16200n+21000当n越小,安检所需要的总费用越少,∴n=4时,安检所需要的总费用最少,为85800.即:每个入口处,有4个通道安放门式安检仪,而其余1个通道均为手持安检仪,安检所需要的总费用最少.28.解:(1)∵一次函数y=x+3的图象与x轴、y轴分别交于A、B两点,∴A(﹣3,0),B(0,3),∵抛物线y=﹣x2+bx+c过A、B两点,∴解得,∴b=﹣2,c=3.(2),对于抛物线y=﹣x2﹣2x+3,令y=0,则﹣x2﹣2x+3=0,解得x=﹣3或1,∴点C坐标(1,0),∵AD=DC=2,∴点D坐标(﹣1,0),∵BE=2ED,∴点E坐标(﹣,1),设直线CE为y=kx+b,把E、C代入得到解得,∴直线CE为y=﹣x+,由解得或,∴点M坐标(﹣,).(3)①∵△AGQ,△APR是等边三角形,∴AP=AR,AQ=AG,∠QAC=∠RAP=60°,在△QAR和△GAP中,,∴△QAR≌△GAP,∴QR=PG.②如图3中,∵PA+PB+PC=QR+PR+PC=QC,∴当Q、R、P、C共线时,PA+PG+PC最小,作QN⊥OA于N,AM⊥QC于M,PK⊥OA于K.∵∠GAO=60°,AO=3,∴AG=QG=AQ=6,∠AGO=30°,∵∠QGA=60°,∴∠QGO=90°,∴点Q坐标(﹣6,3),在RT△QCN中,QN=3,CN=7,∠QNC=90°,∴QC==2,∵sin∠ACM==,∴AM=,∵△APR是等边三角形,∴∠APM=60°,∵PM=PR,cos30°=,∴AP=,PM=RM=∴MC==,∴PC=CM﹣PM=,∵==,∴CK=,PK=,∴OK=CK﹣CO=,∴点P坐标(﹣,).∴PA+PC+PG的最小值为2,此时点P的坐标(﹣,).。

江苏省盐城市2016届九年级数学下册期初考试试题

江苏省盐城市2016届九年级数学下册期初考试试题

2015/2016学年度第二学期期初学情调研九年级数学试卷注意事项:1.本试卷考试时间为120分钟,试卷满分150分,考试形式闭卷.2.本试卷中所有试题必须作答在答题卡上规定的位置,否则不给分.3.答题前,务必将姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡上. 一、选择题(本大题共有8小题,每小题3分,共24分) 1.实数2-的倒数是( ▲ ) A .21-B .21C .2D .2- 2.已知⊙O 的半径为3 cm ,点P 到圆心O 的距离为2 cm ,则点P 在( ▲ )A .在⊙O 外B .在⊙O 上C .在⊙O 内D .无法确定3.若1-=x 是关于x 的方程012=-+mx x 的一个根,则m 的值是( ▲ )A .0B .1C .2D .-24.如图,点A 、B 、C 是⊙O 上三点,∠AOC=130°,则∠ABC=( ▲ ) A .50°B .60°C .65°D .70°5.下列事件中,属于随机事件的是( ▲ ) A .抛出的篮球会下落B .从只装有黑球、白球的袋中摸出红球C .367人中至少有2人是同月同日出生D .买一张体育彩票,中500万大奖(第4题图)6.某公司10名职工的5月份工资统计如下,则其中众数和中位数分别是( ▲ )A .2400、2400B .2400、2300C .2200D .2200、23007.已知圆锥的底面半径为3 cm ,母线长为5 cm ( ▲ )A .20 cm 2B .20π cm 2C . 15 cm 2D .15π cm 28.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过 点P (3,0),则c b a +-的值为( ▲ ) A .-1B .0C . 1D . 2二、填空题(本大题共10小题,每小题3分,共30分) 9. 当x 满足 ▲ 时,分式23-x 在实数范围内有意义. 10.一元二次方程x 2 =3x 的根是 ▲ .(第8题图)(第21题图)11.甲、乙两人进行射击比赛,每人10次射击的平均成绩都是8.5环,方差分别是23s =甲,22.5s =乙,则射击成绩较稳定的是 ▲ .12.抛物线5)3(22+-=x y 的顶点坐标为 ▲ .13.关于x 的方程062=+-m x x 有两个相等的实数根,则=m ▲ .14.某小区2014年底屋顶绿化面积为2000平方米,计划2016年底屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是 ▲ . 15.若132-=-a a ,则代数式 532++-a a 值为 ▲ .16.如图,等腰△ABC 中,AB=AC ,∠BAC=50°,以AB 为直径的圆O 与边AC 交于点D ,则∠DBC 的度数为 ▲ 度.17.如图,边长为4 cm 的正方形ABCD ,以点B 为圆心、BD 为半径画弧与BC 边的延长线交于点E ,则图中阴影部分的面积为 ▲ cm 2.18.如图,将正六边形ABCDEF 放置在直角坐标系内,A (﹣2,0),点B 在原点,把正六边形ABCDEF 沿x 轴正半轴作无滑动的连续翻转,每次翻转60°,经过2016次翻转之后,点C 的坐标是 ▲ .三、解答题(本大题共有10小题,共96分.解答时应写出文字说明、推理过程或演算步骤)19.(8分)(1)计算: 30227)3(1+---π (2)解方程:0542=--x x20.(8分)若0122=--x x ,先化简,后求出)2()1(2-+-x x x 的值.21.(8分)如图,已知圆O 中,AB=CD ,连结AC 、BD .求证:AC=BD .E D C B A (第17题图)(第16题图) (第18题图)(第22题图)墙D CBA 生物园22.(8分)如图,学校打算用长为16 cm 的篱笆围成一个长方形的生物园饲养小兔,生物园一面靠墙(篱笆只需围三面,AB 为宽);(1)写出长方形的面积y (m 2)与宽x (m )之间的函数关系式. (2)当x 为何值时,长方形的面积最大?最大面积为多少?23.(10分)为了解某市去年九年级学生学业考试体育成绩,现从中随机抽取部分学生的体育成绩进行分组(A :40分;B :39-37分;C :36-34分;D :33-28分;E :27-0分)统计如下:根据上面提供的信息,回答下列问题:(1)这次抽样调查中,抽取的学生人数为多少人?并将条形统计图补充完整;(2)这次抽样调查中,成绩的中位数应属哪一组?人数组A B C D E学业考试体育成绩条形(3)如果把成绩在34分以上(含34分)定为优秀,估计该市去年9000名九年级学生中,体育成绩为优秀的学生人数有多少人?24.(10分)如图,均匀的正四面体的各面依次标有1、2、3、4四个数字.小明做了60次投掷试验,结果统计如下:(1)计算上述试验中“4朝下”的频率是 ▲ ;(2)“根据试验结果,投掷一次正四面体,出现2朝下的概率是31”的说法正确吗?(3)随机投掷正四面体两次,请用列表或画树状图法,求两次朝下的数字之和大于4的概率.25.(10分)如图,抛物线为二次函数x x y 42-=的图象.(1)抛物线顶点A 的坐标是 ▲ ;(2)抛物线与x 轴的交点的坐标是 ▲ ; (3)通过观察图象,写出x x 42->0时x 的取值范围.1 326.(10分)风驰汽车销售公司12月份销售某型号汽车,进价为30万元/辆,售价为32万元/辆,当月销售量为x辆(x≤30,且x为正整数),销售公司有两种进货方案供选择:方案一:当x不超过5时,进价不变;当x超过5时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆(比如,当x=8时,该型号汽车的进价为29.7万元/辆);方案二:进价始终不变,当月每销售1辆汽车,生产厂另外返还给销售公司1万元/辆.(1)按方案一进货:①当x=11时,该型号汽车的进价为▲ 万元/辆;②当x>5时,写出进价y(万元/辆)与x(辆)的函数关系式;(2)当月该型号汽车的销售量为多少辆时,选用方案一和方案二销售公司获利相同?(注:销售利润=销售价-进价+返利).(第27题图1)MNM (第27题图2)27.(12分)问题情境: 在学完2.4节圆周角之后,老师出了这样一道题:如图1,已知点A 为∠MPN 的平分线PQ 上的任一点,以AP 为弦作圆O 与边PM 、PN 分别交于B 、C 两点,连结AB 、BC 、CA ,形成了圆O 的内接△ABC .小明同学发现△ABC 是一个等腰三角形,理由是∠ABC=∠APC ,∠ACB=∠APB ,又由角平分线得∠APC=∠APB ,所以∠ABC=∠ACB ,AB=AC 得证.请你说出小明使用的是圆周角的哪个性质: ▲ (只写文字内容).深入探究:爱钻研的小慧却画出了图2,与边PN 的反向延长线交于点C ,其它条件不变,△ABC 仍是等腰三形,请你写出证明过程.QNM (第27题图3)拓展提高:妙想的小聪提出如图3,如果圆O 与边PN 相切于点C (与P 点已重合),其它条件不变,△ABC 仍是等腰三角形吗?若是,请写出证明过程;若不是,请说明理由.5与x轴相交,其中一个交点A 28.(12分)已知抛物线c=2+y+xbx12(4,0),与y轴的交点B(0,2).(1)求b、c的值;(2)如图1,若将线段AB绕A点顺时针旋转90°至AD,求D 点的坐标,并判断D点是否在此抛物线上;(3)在(2)中条件不变的情况下,如图2,点P为x轴上一动点,过P点作x轴的垂线分别交BD、BA于M、N,交抛物线于Q,当P点从原点O出发,以每秒1个单位的速度沿x轴向右移动t秒时(0<t<4),此垂线也在向右平移.①当t为何值时,线段MQ的长度最大;②当t为何值时,以B、P、Q为顶点构成的三角形的面积与△BMN的面积相等.2015/2016学年度第二学期期初学情调研九年级数学答题纸二、填空题(共10小题,每题3分,共30分)三、解答题19.(8分)(1) (2)学校 班级 姓名 考试号_______________……………………………………装…………………………订……………………………线…………………………………(第22题图)墙D CBA 生物园组A B C D E学业考试体育成绩条形M (第27题图2)QNM (第27题图3)2015/2016学年度第二学期期初学情调研九年级数学答案一、选择(每题3分,共24分)9、2≠x 10、3,021==x x 11、乙 12、)5,3( 13、914、20% 15、616、25 17、84-π 18、)3,4033(三、解答题:(共96分)19、解:(1)原式=1-1+3 ……(3分) =3 ……(4分)(2)1,521-==x x ……(8分)20、解:化简得,所求式=1422+-x x ……(6分) 因为122=-x x ,所以,所求式=3……(8分)21、解:∵AB=CD ∴弧AB=弧CD ∴弧AB+弧AD=弧CD +弧AD即∴弧BD=弧AC ∴BD=AC ……(8分) 22、解:(1)x x y 1622+-=……(4分)(2)当x =4时,面积最大为32 m 2……(8分)23、解:(1)200人,条形图补充正确(高度为50)……(4分)(2)B 组……(7分)(3)9000×80﹪=7200人……(10分) 24、解:(1)61……(2分)(2)不正确……(4分) (3)图对 ……(8分)85=P ……(10分) 25、解:(1)(2,-4) …(2分)(2)(0,0)、(4,0)…(6分)(3)x >4或x <0 …(10分) 26、解:(1)① 29.4 ……(2分)②x y 1.05.30-=;……(6分) (2)x x x 35.11.02=+……(8分)解得:x 1=0(舍去),x 2=15.答:该月售出15辆汽车.……(10分)27、解:问题情境: 同弧所对的圆周角相等……(2分)深入探究:∵∠ABC+∠APC=180°,∠APN+∠APC=180°,∴∠ABC=∠APN .∵PA 平分∠MPN ,∴∠APB=∠APN ,∴∠ABC=∠APB .而∠APB=∠ACB ,∴∠ABC=∠ACB , ∴AB=AC . ……(7分) 拓展提高:仍是等腰三角形.……(8分)作直径CH ,连结AH ,∵CH 为直径, ∴∠AHC=90°,∴∠H+∠ACH=90°.∵CN 与圆O 相切, ∴CN ⊥CH ,∴∠ACN+∠ACH=90°,∴∠ACN=∠H .∵∠ABC=∠H , ∴∠ACN=∠ABC . ∵PA 平分∠MPN ,∴∠ACB=∠CAN . ∴∠ABC=∠ACB ,∴AB=AC . ……(12分)28、解:(1)⎪⎩⎪⎨⎧=++=++04320200c b c ……(1分) 2,613=-=c b ……(3分) (2)过点D 作DH ⊥x 轴于点H ,易证△BOA ≌△AHD ,D (6,4)……(6分)当x=6时,代入26131252+-=x x y 中得y=4,所以D 点在抛物线上(7分)(3)①BD :231+=x y ,所以当x=t 时,231+=t y M ,26131252+-=t t y Q , MQ=Q M y y -=-+)231(t )2613125(2+-t t =t t 251252+-, 当t=3时,MQ 最大.……(9分)②S △BQP =S △BMN ,就是QP=MN ,以抛物线与x 轴的另一交点(56,0)为界分类:(Ⅰ)0<t <56 , Q y =N M y y - ,t t t 6526131252=+-,得551218-=t , 另一解551218+=t ,舍去……(11分) (Ⅱ)56≤t <4,Q y -=N M y y -,t t t 65)2613125(2=+--,方程无NM (第27题图3)实数根.(12分)沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。

盐城市景山中学九年级下期中考试数学试题及答案(苏科版)

盐城市景山中学九年级下期中考试数学试题及答案(苏科版)

2015-2016年度第二学期期中检测初三年级数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1. 四个数-5,4,-0.1, 21中最大的数是( ▲ )A. -5B. 4C. -0.1D.21 2. 下列计算正确的是( ▲ )A. 6223)(b a ab =B. 632a a a =⋅C. 222)2)((b a b a b a -=-+D.325=-a a 3.下列标志中,可以看作是轴对称图形的是( ▲ )(A ) (B ) (C ) (D )4.若63-x 在实数范围内有意义,则x 的取值范围是( ▲ )A .x ≥-2B .x ≠-2C .x ≥2D .x ≠25.一个不透明的袋中装有除颜色外完全相同的4个白球和2个黑球,摸一次,摸到黑球的概率为( ▲ )A . 41B . 21 C . 31D . 16. 不等式组⎩⎨⎧>+<21x a x 有3个整数解,则a 的取值范围是( ▲ )A .21≤<aB . 10≤<aC .10<≤aD .21<≤a7.已知点G 为△ABC 的重心,若△ABC 的面积为12,则△BCG 的面积为( ▲ ) A . 6 B .4 C .3 D . 28. 如图,矩形OABC 的顶点A 、C 分别在x 、y 的正半轴上,点D 为对角线OB 的中点,反比例函数xky =在第一象限内的图像经过点D ,且与AB 、BC 分别交于E 、F 两点,若四边形BEDF 的面积为4.5,则k 的值为( ▲ )A .2B .3C .6D .4第8题图 第11题图二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)9. —5的相反数是 ▲ .10. 据国网江苏电力公司分析,我省预计今夏统调最高用电负荷将达到86000000千瓦,这个数据用科学记数法可表示为 ▲ 千瓦.11.如图,直线a ∥b ,三角板的直角顶点A 落在直线a 上,两条直线分别交直线b 于B 、C 两点.若∠1=42°,则∠2的度数是 ▲ . 12.分解因式:a 2-ab= ▲ .13.若一组数据2、-1、0、2、-1、a 的众数为a ,则这组数据的平均数为 ▲ . 14.圆锥的底面半径为2,母线长为6,圆锥的表面积为 ▲ .15. 关于x 的方程 3123--=--x x x a 有增根,那么a 的值是 ▲ . 16.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC=8,BD=6,OE ⊥BC ,垂足为点E ,则OE= ▲ . ▲ .第16题图 第17题图 第18题图17.如图,在矩形ABCD 中,AB =4,AD =2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,由线段EC 、BC ,弧EB 围成的图形的面积为 ▲ .18.如图所示,在△ABC 中,∠BAC =30°,AD 是BC 边上的高,若BD=3,CD=1,则AD的长为 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 19.(本题满分8分)(1) 计算:+|1﹣4sin 60°|+(π﹣)0(2) 解方程:2x 2﹣3x ﹣2=020.(本题满分8分)化简求值:÷(﹣a ),其中a=﹣2.21.(本题满分8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?学生及家长对中学生带手机的态度统计图 家长..对中学生带手机的态度统计图 反对无所谓赞成280210140B C A 第17题图AC B D图①图②22.(本题满分8分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:A方案:若两次抽得相同花色则甲胜,否则乙胜;B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?23.(本题满分10分) 如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,AB=4.(1)求证:△EDF≌△CBF;(2)求tan∠EBC的值.24.(本题满分10分)如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角23∠=°,量AEF得树干倾斜角38∠==°,.ADC AD∠=°,大树被折断部分和坡面所成的角604mBAC(1)求CAE∠的度数;(2)求这棵大树折断前的高度?= 1.71.4=).= 2.425.(本题满分10分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于点P,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=2,NP=NQ的长.26.(本题满分10分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题: (1)求乙车所行路程y 与时间x 的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)27.(本题满分12分)如图①,在矩形ABCD 中,AB =5,AD =203,AE ⊥BD ,垂足是E .点F 是点E 关于AB 的对称点,连结AF ,BF.(1)求AE 和BE 的长.(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB ,AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ 的长;若不存在,请说明理由.28. (本题满分12分)如图,已知抛物线y =k8(x +2)(x -4)(k 为常数,且k >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线y =-33x +b与抛物线的另一交点为D.(1)若点D的横坐标为-5,求抛物线的函数表达式.(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值.(3)在(1)的条件下,设F为线段BD上一点(不含端点),连结AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?初三数学参考答案一、选择题: 1—8 BADC CBBB二、填空题: 9、5 10、8.6×107 11、480 12、a(a-b) 13、61或3214、π16 15、2 16、512 17、π34-32-8 18、1532+三、解答题:19、(1)113232+-+= …………………………………………………3分 34= ………………………………………………………………4分(2),2x 1= 21-x 2=;………………………………………………4分20、原式=2a 1+,5分 333分21、(1)400 ,2分,图略280,2分(2)360,2分 (3)4550名 2分 22、(1)图表略,……………………………………………………………4分(2)A 方案:P (甲)=95 , B 方案 :P (甲)=94, 选择方案A ……8分23、(1)证明略,4分 (2)247 ,8分24、 解:(1)延长BA 交EF 于点G . 在Rt AGE △中,23E ∠=°, ∴67GAE ∠=°. ··············· 2分 又∵38BAC ∠=°,∴180673875CAE ∠=--=°°°°. ······ 3分 (2)过点A 作AH CD ⊥,垂足为H . ····· 4分在ADH △中,604ADC AD ∠==°,, cos DHADC AD ∠=,∴2DH =. ········ 5分sin AHADC AD∠=,∴AH = ······· 6分在Rt ACH △中,180756045C ∠=--=°°°°, 7分∴AC =CH AH == ······ 8分∴210AB AC CD =+=≈(米). ··············· 9分 答:这棵大树折断前高约10米. ····················· 10分 25、(1)证明略 5分 (2)证△MNP ∽△PNQ ,NQ=3 5分 26、(1)设乙车所行路程y 与时间x 的函数关系式为11y k x b =+,把(2,0)和(10,480)代入,得11112010480k b k b +=⎧⎨+=⎩,解得1160120k b =⎧⎨=-⎩, y ∴与x 的函数关系式为60120y x =-.…………………………………………………3分 (2)由图可得,交点F 表示第二次相遇,F 点横坐标为6,此时606120240y =⨯-=,F ∴点坐标为(6,240), ∴两车在途中第二次相遇时,它们距出发地的路程为240千米.………………………6分 (3)设线段BC 对应的函数关系式为22y k x b =+,把(6,240)、(8,480)代入,得222262408480k b k b +=⎧⎨+=⎩,解得22120480k b =⎧⎨=-⎩, ∴y 与x 的函数关系式为120480y x =-.………………………………………………7分∴当 4.5x =时,120 4.548060y =⨯-=. ∴点B 的纵坐标为60, ∵AB 表示因故停车检修,∴交点P 的纵坐标为60.………………………………………………………………8分 把60y =代入60120y x =-中,有6060120x =-,解得3x =, ∴交点P 的坐标为(3,60).…………………………………………………………9分 交点P 表示第一次相遇,∴乙车出发321-=小时,两车在途中第一次相遇.…………………………………10分27、解:(1)在Rt △ABD 中,AB =5,AD =203,由勾股定理,得BD =AB 2+AD 2=52+⎝ ⎛⎭⎪⎫2032=253.……………………………………………………………………………………………2分 ∵S △ABD =12BD ·AE =12AB ·AD ,∴AE =AB ·ADBD =5×203253=4.……………………………………………………………3分在Rt △ABE 中,AB =5,AE =4,由勾股定理,得BE =3. …………………………4分(第27题图解①)(2)设平移中的三角形为△A ′B ′F ′,如解图①所示. 由对称点性质可知,∠1=∠2.由平移性质可知,AB ∥A ′B ′,∠4=∠5=∠1,B ′F ′=BF =3. ①当点F ′落在AB 上时,∵AB ∥A ′B ′, ∴∠3=∠4,∴∠3=∠1=∠2, ∴BB ′=B ′F ′=3,即m =3;②当点F ′落在AD 上时,∵AB ∥A ′B ′, ∴∠6=∠2.∵∠1=∠2,∠5=∠1, ∴∠5=∠6.又易知A ′B ′⊥AD ,∴△B ′F ′D 为等腰三角形, ∴B ′D =B ′F ′=3,∴BB ′=BD -B ′D =253-3=163,即m =163.m =3或163(对一个得2分)…………………………………………………………8分(3)存在.理由如下:在旋转过程中,等腰△DPQ 依次有以下4种情形:①如解图②所示,点Q 落在BD 延长线上,且PD =DQ ,易知∠2=2∠Q .(第27题图解②)∵∠1=∠3+∠Q ,∠1=∠2, ∴∠3=∠Q ,∴A ′Q =A ′B =5,∴F ′Q =F ′A ′+A ′Q =4+5=9.在Rt △BF ′Q 中,由勾股定理,得BQ =F ′Q 2+F ′B 2=92+32=310.(第27题图解③)∴DQ =BQ -BD =310-253. ②如解图③所示,点Q 落在BD 上,且PQ =DQ ,易知∠2=∠P . ∵∠1=∠2,∴∠1=∠P ,∴BA ′∥PD ,则此时点A ′落在BC 边上. ∵∠3=∠2,∴∠3=∠1,∴BQ =A ′Q , ∴F ′Q =F ′A ′-A ′Q =4-BQ .在Rt △BQF ′中,由勾股定理,得BF ′2+F ′Q 2=BQ 2,即32+(4-BQ )2=BQ 2,解得BQ =258.∴DQ =BD -BQ =253-258=12524.③如解图④所示,点Q 落在BD 上,且PD =DQ ,易知∠3=∠4.(第27题图解④)∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°-12∠2.∵∠1=∠2,∴∠4=90°-12∠1.∴∠A ′QB =∠4=90°-12∠1,∴∠A ′BQ =180°-∠A ′QB -∠1=90°-12∠1,∴∠A ′QB =∠A ′BQ , ∴A ′Q =A ′B =5,∴F ′Q =A ′Q -A ′F ′=5-4=1.在Rt △BF ′Q 中,由勾股定理,得BQ =F ′Q 2+F ′B 2=12+32=10,∴DQ =BD -BQ =253-10.④如解图⑤所示,点Q 落在BD 上,且PQ =PD ,易知∠2=∠3.(第27题图解⑤)∵∠1=∠2,∠3=∠4,∠2=∠3, ∴∠1=∠4, ∴BQ =BA ′=5,∴DQ =BD -BQ =253-5=103.综上所述,存在4组符合条件的点P ,Q ,使△DPQ 为等腰三角形,其中DQ 的长度分别为310-253,12524,253-10或103.……………………………………………………12分 28、解:(1)抛物线y =k8(x +2)(x -4),令y =0,解得x =-2或x =4, ∴点A (-2,0),B (4,0).∵直线y =-33x +b 经过点B (4,0),∴-33×4+b =0,解得b =433, ∴直线BD 的表达式为y =-33x +433. 当x =-5时,y =3 3,∴点D (-5,33). ∵点D (-5,3 3)在抛物线y =k8(x +2)(x -4)上,∴k8(-5+2)(-5-4)=3 3, ∴k =839.∴此时抛物线的函数表达式为y =839(x +2)(x -4)936493169382--=x x .………………4分 (2)由抛物线表达式,令x =0,得y =-k ,∴点C (0,-k ),OC =k .∵点P 在第一象限内的抛物线上,∴∠ABP 为钝角.因此若两个三角形相似,只可能是△ABC ∽△APB 或△ABC ∽△APB . ①若△ABC ∽△APB ,则有∠BAC =∠PAB ,如解图①所示.(第28题图解①)设点P (x ,y ),过点P 作PN ⊥x 轴于点N ,则ON =x ,PN =y . tan ∠BAC =tan ∠PAB ,即k 2=y x +2,∴y =k2x +k .∴点P ⎝ ⎛⎭⎪⎫x ,k 2x +k ,代入抛物线的表达式y =k 8(x +2)(x -4),得k 8(x +2)(x -4)=k2x +k ,整理,得kx 2-6kx -16k =0,∵k >0,∴解得x =8或x =-2(与点A 重合,舍去), ∴点P (8,5k ). ∵△ABC ∽△APB , ∴AC AB =AB AP ,即k 2+46=625k 2+100, 解得k =±455.∵k >0,∴k =455.②若△ABC ∽△APB ,则有∠ABC =∠PAB ,如解图②所示.(第28题图解②)与①同理,可求得k = 2.综上所述,k =455或k = 2.…………………………………………………………8分(3)由(1)知:D (-5,3 3),如解图③,过点D 作DN ⊥x 轴于点N ,则DN =3 3,ON =5,BN =4+5=9,∴tan ∠DBA =DN BN =339=33,∴∠DBA =30°.(第28题图解③)过点D 作DK ∥x 轴,则∠KDF =∠DBA =30°.过点F 作FG ⊥DK 于点G ,则FG =12DF .11 由题意,动点M 运动的路径为折线AF +DF ,运动时间t =AF +12DF , ∴t =AF +FG ,即运动时间的大小等于折线AF +FG 的长度.由垂线段最短可知,折线AF +FG 的长度的最小值为DK 与x 轴之间的垂线段. 过点A 作AH ⊥DK 于点H ,则t 最小=AH ,AH 与直线BD 的交点,即为所求之F 点.∵点A 的横坐标为-2,直线BD 的表达式为y =-33x +433, ∴y =-33×(-2)+433=2 3, ∴点F (-2,2 3).∴当点F 的坐标为(-2,23)时,点M 在整个运动过程中用时最少.…………12分。

盐中初三期中数学试卷答案

盐中初三期中数学试卷答案

一、选择题1. 下列各数中,有理数是()A. √2B. πC. 3/4D. -1/2答案:C解析:有理数是可以表示为两个整数之比的数,包括整数、分数和小数。

在给出的选项中,只有3/4是分数,因此是有理数。

2. 若a,b,c是等差数列的前三项,且a+b+c=12,a+c=8,则b=()A. 4B. 6C. 8D. 10答案:B解析:由等差数列的性质,可知b是a和c的算术平均数,即b=(a+c)/2。

将a+c=8代入得b=4。

再由a+b+c=12,代入b=4,得a+c=8,所以a=2,c=6。

因此,b=6。

3. 若函数f(x)=2x-1在区间[1,3]上单调递增,则函数g(x)=f(x^2)-f(x)在区间[1,3]上的单调性是()A. 单调递增B. 单调递减C. 先增后减D. 先减后增答案:A解析:首先求出f(x^2)-f(x)的表达式,即f(x^2)-f(x)=2x^2-1-(2x-1)=2x^2-2x。

由于f(x)=2x-1在区间[1,3]上单调递增,因此x^2也在区间[1,3]上单调递增。

由于x^2-1也在区间[1,3]上单调递增,所以2x^2-2x也在区间[1,3]上单调递增。

4. 在直角坐标系中,点A(2,3),B(-3,1),则线段AB的中点坐标是()A. (1,2)B. (-1,2)C. (1,1)D. (-1,1)答案:B解析:线段AB的中点坐标可以通过计算两点坐标的平均值得到。

即中点坐标为((2-3)/2, (3+1)/2)=(-1/2, 2)。

由于题目选项中没有-1/2,因此选择最接近的答案B(-1,2)。

5. 若a,b,c是三角形的三边长,且a+b+c=10,a^2+b^2=36,则三角形面积S的最大值是()A. 4B. 5C. 6D. 7答案:C解析:由勾股定理可知,若a^2+b^2=c^2,则三角形是直角三角形。

由题意,a^2+b^2=36,所以三角形是直角三角形。

设c为斜边,则c=6。

2016年江苏省九年级下学期期中考试数学试卷(附答案)

2016年江苏省九年级下学期期中考试数学试卷(附答案)
(第17题)(第18题)
三、解答题(本大题共10小题,共计84分.解答时应写出必要的证明过程或演算步骤.)
19.(本题满分8分)
(1)计算: ,(2)化简:
20.(本题满分8分)
(1)解不等式组: (2)解方程: .
21.(本题满分8分)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.
江苏省九年级下学期期中考试数学试卷
注意事项:1.本卷满分130分.考试时间为120分钟.
2.卷中除要求近似计算的结果取近似值外,其余各题均应给出精确结果.
一、精心选一选(本大题共10小题,每小题3分,共30分,每题的四个选项中,只有一个符合题意):
1. 的绝对值是()
A. B. C. D.
2.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )
A.1个B.2个C.3个D.4个
二、仔细填一填(本大题共8小题,每空2分,共计16分):
11.函数 中,自变量 的取值范围是.
12.因式分解: =.
13.平面直角坐标系中,点A(2,3)关于x轴的对称点坐标为.
14.如图,菱形ABCD中,对角线AC交BD于O,AB=8,E是CD的中点,则OE的长等于.
购车预算(万元)
频数
频率
0~5
20
0.05
5~10
a
0.13
10~15
152
0.38
15~20
b
d
20~25
28
0.07
25~30
24
0.06
合计

九年级(下)期中数学试卷含答案

九年级(下)期中数学试卷含答案

九年级(下)期中数学试卷一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°3.若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.24.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.25.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.96.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1二、填空题7.因式分解3x2﹣3y2=.8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为.10.在函数y=中,自变量x的取值范围是.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=.12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为.三、解答题13.(1)解方程:=﹣(2)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB,求证:∠A=∠E.14.先化简,再求代数式(﹣)÷的值,其中a=+1.15.如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.(1)求证:DC是⊙O的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.16.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?17.如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.22.如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.(1)求证:OP=PC;(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S 与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.六、解答题23.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.参考答案与试题解析一、选择题1.﹣3的相反数是()A.3 B.﹣3 C.D.【考点】14:相反数.【分析】由相反数的定义容易得出结果.【解答】解:﹣3的相反数是3,故选:A.2.如图,直线AB∥CD,直线EF与AB,CD分别交于点E,F,EC⊥EF,垂足为E,若∠1=60°,则∠2的度数为()A.15°B.30°C.45°D.60°【考点】JA:平行线的性质.【分析】根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补解答.【解答】解:如图,∠3=∠1=60°(对顶角相等),∵AB∥CD,EG⊥EF,∴∠3+90°+∠2=180°,即60°+90°+∠2=180°,解得∠2=30°.故选B.3.若a﹣b+c=0,则关于x的一元二次方程ax2+bx+c=0必有一根为()A.0 B.1 C.﹣1 D.2【考点】A3:一元二次方程的解.【分析】由a﹣b+c=0求得b=a+c,将其代入方程ax2+bx+c=0中,可得方程的一个根是﹣1.【解答】解:∵a﹣b+c=0,∴b=a+c,①把①代入方程ax2+bx+c=0中,ax2+(a+c)x+c=0,ax2+ax+cx+c=0,ax(x+1)+c(x+1)=0,(x+1)(ax+c)=0,∴x1=﹣1,x2=﹣(非零实数a、b、c).故选:C.4.如图,△ABC中,已知AB=8,∠C=90°,∠A=30°,DE是中位线,则DE的长为()A.4 B.3 C.D.2【考点】KX:三角形中位线定理;KO:含30度角的直角三角形.【分析】先由含30°角的直角三角形的性质,得出BC,再由三角形的中位线定理得出DE即可.【解答】解:∵∠C=90°,∠A=30°,∴BC=AB=4,又∵DE是中位线,∴DE=BC=2.故选D.5.如图,△ABO的面积为3,且AO=AB,双曲线y=经过点A,则k的值为()A.B.3 C.6 D.9【考点】G5:反比例函数系数k的几何意义;KH:等腰三角形的性质.【分析】过点A作OB的垂线,垂足为点C,根据等腰三角形的性质得OC=BC,再根据三角形的面积公式得到OB•AC=3,易得OC•AC=3,设A点坐标为(x,y),即可得到k=xy=OC•AC=3.【解答】解:过点A作OB的垂线,垂足为点C,如图,∵AO=AB,∴OC=BC=OB,∵△ABO的面积为3,∴OB•AC=3,∴OC•AC=3.设A点坐标为(x,y),而点A在反比例函数y=(k>0)的图象上,∴k=xy=OC•AC=3.故选B.6.如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是()A.b2>4acB.ax2+bx+c≥﹣6C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>nD.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1【考点】H4:二次函数图象与系数的关系;H5:二次函数图象上点的坐标特征;HA:抛物线与x轴的交点;HC:二次函数与不等式(组).【分析】由抛物线与x轴有两个交点则可对A进行判断;由于抛物线开口向上,有最小值则可对B进行判断;根据抛物线上的点离对称轴的远近,则可对C进行判断;根据二次函数的对称性可对D进行判断.【解答】解:A、图象与x轴有两个交点,方程ax2+bx+c=0有两个不相等的实数根,b2﹣4ac>0所以b2>4ac,故A选项正确;B、抛物线的开口向上,函数有最小值,因为抛物线的最小值为﹣6,所以ax2+bx+c ≥﹣6,故B选项正确;C、抛物线的对称轴为直线x=﹣3,因为﹣5离对称轴的距离大于﹣2离对称轴的距离,所以m<n,故C选项错误;D、根据抛物线的对称性可知,(﹣1,﹣4)关于对称轴的对称点为(﹣5,﹣4),所以关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1,故D选项正确.故选C.二、填空题7.因式分解3x2﹣3y2=3(x+y)(x﹣y).【考点】55:提公因式法与公式法的综合运用.【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【解答】解:3x2﹣3y2=3(x2﹣y2)=3(x+y)(x﹣y).故答案为:3(x+y)(x﹣y).8.几个棱长为1的正方体组成的几何体的三视图如图所示,则这个几何体的体积是5.【考点】U3:由三视图判断几何体.【分析】根据三视图,该几何体的主视图以及俯视图可确定该几何体共有两行三列,故可得出该几何体的小正方体的个数,即可得出这个几何体的体积.【解答】解:综合三视图可知,这个几何体的底层应该有3+1=4个小正方体,第二层应该有1个小正方体,因此搭成这个几何体所用小正方体的个数是4+1=5个,所以这个几何体的体积是5.故答案为:5.9.如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD变形为以A为圆心,AB为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD的面积为25.【考点】MO:扇形面积的计算.【分析】根据扇形面积公式:S=•L•R(L是弧长,R是半径),求出弧长BD,根据题意=CD+BC,由此即可解决问题.【解答】解:由题意=CD+BC=10,S扇形ADB=••AB=×10×5=25,故答案为25.10.在函数y=中,自变量x的取值范围是x≥1.【考点】E4:函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.11.小明用S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2]计算一组数据的方差,那么x1+x2+x3+…+x10=30.【考点】W7:方差.【分析】根据计算方差的公式能够确定数据的个数和平均数,从而求得所有数据的和.【解答】解:∵S2= [(x1﹣3)2+(x2﹣3)2+…+(x10﹣3)2],∴平均数为3,共10个数据,∴x1+x2+x3+…+x10=10×3=30,故答案为:30.12.当﹣1≤x≤2时,二次函数y=(x﹣m)2+m2有最小值3,则实数m的值为或.【考点】H7:二次函数的最值.【分析】根据二次函数的最值问题列出方程求出m的值,再根据二次项系数大于0解答.【解答】解:∵二次函数y=(x﹣m)2+m2有最小值3,二次项系数a=1>0,故图象开口向上,对称轴为x=m,当m<﹣1时,最小值在x=﹣1取得,此时有(m+1)2+m2=3,求得m=,∵m<﹣1,∴m=;当﹣1≤m≤2时,最小值在x=m时取得,即有1﹣m2=﹣2求得m=或m=﹣(舍去)当m>2时,最小值在x=2时取得,即(2﹣m)2+m2=3求得m=(舍去)故答案为:或.三、解答题13.(1)解方程:=﹣(2)如图,点B在线段AD上,BC∥DE,AB=ED,BC=DB,求证:∠A=∠E.【考点】KD:全等三角形的判定与性质;B3:解分式方程.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)由BC与DE平行得到一对同位角相等,利用SAS得到三角形ABC与三角形EDB全等,利用全等三角形对应角相等即可得证.【解答】解:(1)去分母得:2=2x﹣1﹣3,解得:x=3,经检验x=3是分式方程的解;(2)∵BC∥DE,∴∠ABC=∠D,在△ABC和△EDB中,,∴△ABC≌△EDB,∴∠A=∠E.14.先化简,再求代数式(﹣)÷的值,其中a=+1.【考点】6D:分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•(a+1)=,当a=+1时,原式=.15.如图,AB是⊙O的直径,点C在⊙O上,点D在AB延长线上,且∠BCD=∠A.(1)求证:DC是⊙O的切线;(2)若∠A=30°,AC=2,求图中阴影部分的面积.【考点】MD:切线的判定;MO:扇形面积的计算.【分析】(1)连结OC,如图,根据圆周角定理得∠ACB=90°,再利用等腰三角形的性质得∠A=∠OCA,∠OBC=∠OCB,则∠A+∠BCO=90°,加上∠BCD=∠A,所以∠BCD+∠BCO=90°,于是根据切线的判定方法可判断DC是⊙O的切线;(2)根据含30度的直角三角形三边的关系,在Rt△ACB中计算出BC=AC=2,AB=2BC=4,再计算出∠AOC=120°,然后根据扇形面积公式,利用图中阴影部分的面积=S扇形AOC ﹣S△AOC进行计算.【解答】(1)证明:连结OC,如图,∵AB是⊙O的直径,∴∠ACB=90°,∵OA=OC,OB=OC,∴∠A=∠OCA,∠OBC=∠OCB,∴∠A+∠BCO=90°,∵∠BCD=∠A,∴∠BCD+∠BCO=90°,即∠OCD=90°,∴OC⊥CD,∴DC是⊙O的切线;(2)在Rt△ACB中,∵∠A=30°,∴BC=AC=2,AB=2BC=4,∵∠AOC=180°﹣∠A﹣∠ACO=120°,∴图中阴影部分的面积=S扇形AOC ﹣S△AOC=S扇形AOC﹣S△ABC=﹣••2•2=π﹣.16.已知:▱ABCD的两边AB,AD的长是关于x的方程x2﹣mx+﹣=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?【考点】AD:一元二次方程的应用;L5:平行四边形的性质;L8:菱形的性质.【分析】(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.【解答】解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2﹣4(﹣)=0,整理得:(m﹣1)2=0,解得m=1,当m=1时,原方程为x2﹣x+=0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2﹣2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.17.如图,已知矩形OABC中,OA=3,AB=4,双曲线y=(k>0)与矩形两边AB、BC分别交于D、E,且BD=2AD(1)求k的值和点E的坐标;(2)点P是线段OC上的一个动点,是否存在点P,使∠APE=90°?若存在,求出此时点P的坐标,若不存在,请说明理由.【考点】GB:反比例函数综合题.【分析】(1)由矩形OABC中,AB=4,BD=2AD,可得3AD=4,即可求得AD的长,然后求得点D的坐标,即可求得k的值,继而求得点E的坐标;(2)首先假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m,由∠APE=90°,易证得△AOP∽△PCE,然后由相似三角形的对应边成比例,求得m的值,继而求得此时点P的坐标.【解答】解:(1)∵AB=4,BD=2AD,∴AB=AD+BD=AD+2AD=3AD=4,∴AD=,又∵OA=3,∴D(,3),∵点D在双曲线y=上,∴k=×3=4;∵四边形OABC为矩形,∴AB=OC=4,∴点E的横坐标为4.把x=4代入y=中,得y=1,∴E(4,1);(2)假设存在要求的点P坐标为(m,0),OP=m,CP=4﹣m.∵∠APE=90°,∴∠APO+∠EPC=90°,又∵∠APO+∠OAP=90°,∴∠EPC=∠OAP,又∵∠AOP=∠PCE=90°,∴△AOP∽△PCE,∴,∴,解得:m=1或m=3,∴存在要求的点P,坐标为(1,0)或(3,0).四、解答题18.学校实施新课程改革以来,学生的学习能力有了很大提高.王老师为进一步了解本班学生自主学习、合作交流的现状,对该班部分学生进行调查,把调查结果分成四类(A:特别好,B:好,C:一般,D:较差)后,再将调查结果绘制成两幅不完整的统计图(如图).请根据统计图解答下列问题:(1)本次调查中,王老师一共调查了20名学生;(2)将条形统计图补充完整;(3)为了共同进步,王老师从被调查的A类和D类学生中分别选取一名学生进行“兵教兵”互助学习,请用列表或画树状图的方法求出恰好选中一名男生和一名女生的概率.【考点】X6:列表法与树状图法;VB:扇形统计图;VC:条形统计图.【分析】(1)由题意可得:王老师一共调查学生:(2+1)÷15%=20(名);(2)由题意可得:C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);继而可补全条形统计图;(3)首先根据题意列出表格,再利用表格求得所有等可能的结果与恰好选中一名男生和一名女生的情况,继而求得答案.【解答】解:(1)根据题意得:王老师一共调查学生:(2+1)÷15%=20(名);故答案为:20;(2)∵C类女生:20×25%﹣2=3(名);D类男生:20×(1﹣15%﹣50%﹣25%)﹣1=1(名);如图:(3)列表如下:A类中的两名男生分别记为A1和A2,男A1男A2…女A男D男A1男D男A2男D女A男D女D男A1女D男A2女D女A女D共有6种等可能的结果,其中,一男一女的有3种,所以所选两位同学恰好是一位男生和一位女生的概率为:=.19.利用直尺画图(先用铅笔画图,然后再用墨水笔将符合条件的图形画出).(1)利用图1中的网格,过P点画直线AB的平行线和垂线;(2)平移图(2)网格中的三条线段AB、CD、EF,使平移后三条线段首尾顺次相接组成一个三角形;(3)如果每个方格的边长是单位1,那么图(2)中组成的三角形的面积等于3.5.【考点】Q4:作图﹣平移变换;JA:平行线的性质.【分析】(1)根据网格结构的特点,利用直线与网格的夹角的关系找出与AB平行的格点以及垂直的格点作出即可;(2)根据网格结构的特点,过点E找出与AB、CD位置相同的线段,过点F找出与AB、CD位置相同的线段,作出即可;(3)根据S△=S正方形﹣三个角上的三角形的面积即可得出结论.【解答】解:(1)、(2)如图所示;=3×3﹣×1×2﹣×2×3﹣×1×3(3)S△EFH=9﹣1﹣3﹣=3.5.故答案为:3.5.20.如图,一个书架上的方格中放着四本厚度和长度相同的书,其中左边两边上紧贴书架方格内侧竖放,右边两本书自然向左斜放,支撑点为C,E,右侧书角正好靠在方格内侧上,若书架方格长BF=40cm,∠DCE=30°.(1)设一本书的厚度为acm,则EF=a cm;(2)若书的长度AB=20cm,求一本书的厚度(结果保留根号)【考点】T8:解直角三角形的应用.【分析】(1)根据三角形的内角和得到∠CED=60°,根据三角函数的定义即可得到结论;(2)设一本书的厚度为acm,根据BF=40cm,列方程即可得到结论.【解答】解:(1)如图,∵∠DCE=30°,∴∠CED=60°,∴∠GEH=30°,∴EH==a,∴HF=acos30°=a;∴EF=EH+HF=a故答案为:a;(2)设一本书的厚度为acm,则BD=2a,∴DE=CE=10cm,∵BF=40cm,∴2a+10+a=40,解得:a≈7.4.答:一本书的厚度7.4cm.五、解答题21.如图,抛物线C1:y=x2+4x﹣3与x轴交于A、B两点,将C1向右平移得到C2,C2与x轴交于B、C两点.(1)求抛物线C2的解析式.(2)点D是抛物线C2在x轴上方的图象上一点,求S△ABD的最大值.(3)直线l过点A,且垂直于x轴,直线l沿x轴正方向向右平移的过程中,交C1于点E交C2于点F,当线段EF=5时,求点E的坐标.【考点】HF:二次函数综合题.【分析】(1)先依据配方法求得抛物线C1的顶点坐标,然后令y=0,求得点A、B的坐标,从而可判断出C1平移的方向和距离,于是得到抛物线C2的顶点坐标,从而得到C2的解析式;(2)根据函数图象可知,当点D为C2的顶点时,△ABD的面积最大;(3)设点E的坐标为(x,﹣x2+4x﹣3),则点F的坐标为(x,﹣x2+8x﹣15),然后可求得EF长度的解析式,最后根据EF=5,可列出关于x的方程,从而可求得x的值,于是的得到点E的坐标.【解答】解:(1)∵y=﹣x2+4x﹣3=﹣(x﹣2)2+1,∴抛物线C1的顶点坐标为(2,1).令y=0,得﹣(x﹣2)2+1=0,解得:x1=1,x2=3.∵C2经过B,∴C1向右平移了2个单位长度.∵将抛物线向右平移两个单位时,抛物线C2的顶点坐标为(4,1),∴C2的解析式为y2=﹣(x﹣4)2+1,即y=﹣x2+8x﹣15.(2)根据函数图象可知,当点D为C2的顶点时,纵坐标最大,即D(4,1)时,△ABD的面积最大.S△ABD=AB•|y D|=×2×1=1.(3)设点E的坐标为(x,﹣x2+4x﹣3),则点F的坐标为(x,﹣x2+8x﹣15).EF=|(﹣x2+4x﹣3)﹣(﹣x2+8x﹣15)|=|﹣4x+12|.∵EF=5,∴﹣4x+12=5或﹣4x+12=﹣5.解得:x=或x=.∴点E的坐标为(,)或(,﹣)时,EF=5.22.如图,△AOB是等腰直角三角形,直线BD∥OA,OB=OA=1,P是线段AB上一动点,过P点作MN∥OB,分别交OA、BD于M、N,PC⊥PO,交BD于点C.(1)求证:OP=PC;(2)当点C在射线BN上时,设AP长为m,四边形POBC的面积为S,请求出S 与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线BN上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰三角形时的PM的值;如果不可能,请说明理由.【考点】LO:四边形综合题.【分析】(1)首先利用矩形的判定得出四边形OBNM 为矩形,即可得出∠CPN=∠POM ,进而得出△OPM ≌△PCN ,求出即可;(2)利用S=S △OPB +S △PBC 进而得出S 与m 的函数关系;(3)利用①当点P 与点A 重合时,PC=BC=1,②如图②,当点C 在OB 下方,且PB=CB 时,分别求出即可.【解答】(1)证明:如图①,△AOB 是等腰直角三角形,AO=BO=1,∴∠A=45°,∠AOB=90°,直线BN ∥OA ,MN ∥OB ,∴四边形OBNM 为矩形,∴MN=OB=1,∠PMO=∠CNP=90°而∠AMP=90°,∠A=∠APM=∠BPN=45°,∴OM=BN=PN ,∵∠OPC=90°,∴∠OPM +∠CPN=90°,又∵∠OPM +∠POM=90°,∴∠CPN=∠POM ,在△OPM 和△PCN 中,∴△OPM ≌△PCN (ASA ),∴OP=PC ,(2)解:∵AM=PM=APsin45°=m , ∴NC=PM=m ,∴BN=OM=PN=1﹣m ;∴BC=BN ﹣NC=1﹣m ﹣m=1﹣m , S=S △OPB +S △PBC =BO•MO +BC•PN ,=m 2﹣m +1(0≤m );(3)解:△PBC可能为等腰三角形,①当点P与点A重合时,PC=BC=1,此时PM=0,②如图②,当点C在OB下方,且PB=CB时,有OM=BN=PN=1﹣m,∴BC=PB=PN=﹣m,∴NC=BN+BC=1﹣m+﹣m,由(2)知:NC=PM=m,∴1﹣m+﹣m=m,∴m=1.∴PM=m=;∴使△PBC为等腰三角形时的PM的值为0或.六、解答题23.问题提出:如图1,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连结AP、BP,求AP+BP的最小值.(1)尝试解决:为了解决这个问题,下面给出一种解题思路:如图2,连接CP,在CB上取点D,使CD=1,则有==,又∵∠PCD=∠BCP,∴△PCD∽△BCP.∴=,∴PD=BP,∴AP+BP=AP+PD.请你完成余下的思考,并直接写出答案:AP+BP的最小值为.(2)自主探索:在“问题提出”的条件不变的情况下,AP+BP的最小值为.(3)拓展延伸:已知扇形COD中,∠COD=90°,OC=6,OA=3,OB=5,点P是上一点,求2PA+PB的最小值.【考点】MR:圆的综合题.【分析】(1)利用勾股定理即可求出,最小值为AD=;(2)连接CP,在CA上取点D,使CD=,则有,可证△PCD∽△ACP,得到PD=AP,即:AP+BP=BP+PD,从而AP+BP的最小值为BD;(3)延长OA到点E,使CE=6,连接PE、OP,可证△OAP∽△OPE,得到EP=2PA,得到2PA+PB=EP+PB,当E、P、B三点共线时,得到最小值.【解答】解:(1)如图1,连结AD,∵AP+BP=AP+PD,要使AP+BP最小,∴AP+AD最小,当点A,P,D在同一条直线时,AP+AD最小,即:AP+BP最小值为AD,在Rt△ACD中,CD=1,AC=6,∴AD==,AP+BP的最小值为,故答案为:;(2)如图2,连接CP,在CA上取点D,使CD=,∴,∵∠PCD=∠ACP,∴△PCD∽△ACP,∴,∴PD=AP,∴AP+BP=BP+PD,∴同(1)的方法得出AP+BP的最小值为BD==.故答案为:;(3)如图3,延长OA到点E,使CE=6,∴OE=OC+CE=12,连接PE、OP,∵OA=3,∴,∵∠AOP=∠AOP,∴△OAP∽△OPE,∴,∴EP=2PA,∴2PA+PB=EP+PB,∴当E、P、B三点共线时,取得最小值为:BE==13.。

盐城九年级期中试卷数学【含答案】

盐城九年级期中试卷数学【含答案】

盐城九年级期中试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 如果一个三角形的两边分别是8厘米和15厘米,那么这个三角形的第三边的长度可能是多少?A. 3厘米B. 23厘米C. 17厘米D. 20厘米2. 下列哪个数是负数?A. -5B. 0C. 3D. 1/23. 如果一个正方形的边长是6厘米,那么它的面积是多少平方厘米?A. 12B. 36C. 18D. 244. 下列哪个数是最大的?A. √3B. √2C. √5D. √15. 如果一个圆的半径是4厘米,那么它的周长是多少厘米?A. 8πB. 16πC. 4πD. 2π二、判断题(每题1分,共5分)1. 任何两个奇数相加的结果都是偶数。

()2. 0除以任何数都等于0。

()3. 任何数乘以0都等于0。

()4. 如果一个数的平方是16,那么这个数一定是4。

()5. 1是最大的正整数。

()三、填空题(每题1分,共5分)1. 如果一个三角形的两个内角分别是30度和60度,那么第三个内角的度数是______度。

2. 如果一个数的平方是25,那么这个数是______。

3. 2的平方根是______。

4. 如果一个圆的直径是10厘米,那么它的半径是______厘米。

5. 3的立方是______。

四、简答题(每题2分,共10分)1. 解释什么是质数。

2. 解释什么是平行线。

3. 解释什么是比例。

4. 解释什么是因数。

5. 解释什么是相似三角形。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 如果一个数的平方是49,那么这个数是什么?3. 一个圆的半径是3厘米,求这个圆的面积。

4. 如果一个三角形的两个内角分别是45度和45度,那么第三个内角的度数是多少?5. 两个数的和是15,它们的差是3,求这两个数。

六、分析题(每题5分,共10分)1. 解释如何计算一个三角形的面积。

2. 解释如何计算一个圆的周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

盐城市景山中学2016届九年级第二学期数学试题含答案初三年级数学试题一、选择题(本大题共有8小题,每小题3分,共24分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上) 1. 四个数-5,4,-0.1,21中最大的数是( ▲ ) A. -5 B. 4C. -0.1D.212. 下列计算正确的是( ▲ )A. 6223)(b a ab =B. 632a a a =⋅C. 222)2)((b a b a b a -=-+D.325=-a a 3.下列标志中,可以看作是轴对称图形的是( ▲ )(A ) (B ) (C ) (D )4.若63-x 在实数范围内有意义,则x 的取值范围是( ▲ ) A .x ≥-2B .x ≠-2C .x ≥2D .x ≠25.一个不透明的袋中装有除颜色外完全相同的4个白球和2个黑球,摸一次,摸到黑球的概率为( ▲ ) A .41 B . 21 C . 31D . 16. 不等式组⎩⎨⎧>+<21x a x 有3个整数解,则a 的取值范围是( ▲ )A .21≤<aB . 10≤<aC .10<≤aD .21<≤a7.已知点G 为△ABC 的重心,若△ABC 的面积为12,则△BCG 的面积为( ▲ )A . 6B .4C .3D . 28. 如图,矩形OABC 的顶点A 、C 分别在x 、y 的正半轴上,点D 为对角线OB 的中点,反比例函数xky在第一象限内的图像经过点D ,且与AB 、BC 分别交于E 、F 两点,若四边形BEDF 的面积为4.5,则k 的值为( ▲ )A .2B .3C .6D .4第8题图 第11题图二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上) 9. —5的相反数是 ▲ .10. 据国网江苏电力公司分析,我省预计今夏统调最高用电负荷将达到86000000千瓦,这个数据用科学记数法可表示为 ▲ 千瓦.11.如图,直线a ∥b ,三角板的直角顶点A 落在直线a 上,两条直线分别交直线b 于B 、C 两点.若∠1=42°,则∠2的度数是 ▲ .12.分解因式:a 2-ab= ▲ .13.若一组数据2、-1、0、2、-1、a 的众数为a ,则这组数据的平均数为 ▲ . 14.圆锥的底面半径为2,母线长为6,圆锥的表面积为 ▲ . 15. 关于x 的方程3123--=--x x x a 有增根,那么a 的值是 ▲ . 16.如图,在菱形ABCD 中,对角线AC 与BD 相交于点O ,AC=8,BD=6,OE ⊥BC ,垂足为点E ,则OE=▲.▲ .第16题图 第17题图 第18题图17.如图,在矩形ABCD 中,AB =4,AD =2,以点A 为圆心,AB 长为半径画圆弧交边DC 于点E ,由线段EC 、BC ,弧EB 围成的图形的面积为 ▲ .18.如图所示,在△ABC 中,∠BAC =30°,AD 是BC 边上的高,若BD=3,CD=1,则AD 的长为 ▲ .三、解答题(本大题共有10小题,共96分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤) 19.(本题满分8分)(1) 计算:+|1﹣4sin 60°|+(π﹣)0(2) 解方程:2x 2﹣3x ﹣2=0EBCDA第17题图ACBD20.(本题满分8分)化简求值:÷(﹣a ),其中a=﹣2.21.(本题满分8分)“校园手机”现象越来越受到社会的关注.“寒假”期间,某校小记者随机调查了某地区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图:(1)求这次调查的家长人数,并补全图①;(2)求图②中表示家长“赞成”的圆心角的度数;(3)已知某地区共6500名家长,估计其中反对中学生带手机的大约有多少名家长?学生及家长对中学生带手机的态度统计图 家长..对中学生带手机的态度统计图图①图②22.(本题满分8分)有3张扑克牌,分别是红桃3、红桃4和黑桃5.把牌洗匀后甲20%反对无所谓赞成家长学生无所谓反对赞成30803040140类别人数28021014070先抽取一张,记下花色和数字后将牌放回,洗匀后乙再抽取一张.(1)列表或画树状图表示所有取牌的可能性;(2)甲、乙两人做游戏,现有两种方案:A方案:若两次抽得相同花色则甲胜,否则乙胜;B方案:若两次抽得数字和为奇数则甲胜,否则乙胜.请问甲选择哪种方案胜率更高?23.(本题满分10分) 如图,将矩形ABCD沿BD对折,点A落在E处,BE与CD相交于F,若AD=3,AB=4.(1)求证:△EDF≌△CBF;(2)求tan∠EBC的值.24.(本题满分10分)如图所示,山坡上有一棵与水平面垂直的大树,一场台风过后,大树被刮倾斜后折断倒在山坡上,树的顶部恰好接触到坡面.已知山坡的坡角∠=°,大树被折断部分和坡面所成的角∠=°,量得树干倾斜角38BACAEF23°,.∠==604mADC AD(1)求CAE ∠的度数; (2)求这棵大树折断前的高度?(结果精确到个位,参考数据:2 1.4=,3 1.7=,6 2.4=).25.(本题满分10分)如图,已知MN 是⊙O 的直径,直线PQ 与⊙O 相切于点P ,NP 平分 ∠MNQ .(1)求证:NQ ⊥PQ ;(2)若⊙O 的半径R =2,NP =23,求NQ 的长.26.(本题满分10分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时).图中折线OABC 、线段DE 分别表示甲、乙两车所行路程y (千米)与时间x (小时)之间的函数关系对应的图象(线段AB 表示甲出发不足2小时因故停车检修).请根据图象所提供的信息,解决如下问题: (1)求乙车所行路程y 与时间x 的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)27.(本题满分12分)如图①,在矩形ABCD 中,AB =5,AD =203,AE ⊥BD ,垂足是E .点F是点E 关于AB 的对称点,连结AF ,BF.AOD PB F CEy (千米)x (小时)480681024.5(1)求AE 和BE 的长.(2)若将△ABF 沿着射线BD 方向平移,设平移的距离为m (平移距离指点B 沿BD 方向所经过的线段长度).当点F 分别平移到线段AB ,AD 上时,直接写出相应的m 的值.(3)如图②,将△ABF 绕点B 顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF 为△A ′BF ′,在旋转过程中,设A ′F ′所在的直线与直线AD 交于点P ,与直线BD 交于点Q .是否存在这样的P ,Q 两点,使△DPQ 为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.28. (本题满分12分)如图,已知抛物线y =k8(x +2)(x -4)(k 为常数,且k >0)与x 轴从左至右依次交于A ,B 两点,与y 轴交于点C ,经过点B 的直线y =-33x +b 与抛物线的另一交点为D .(1)若点D 的横坐标为-5,求抛物线的函数表达式.(2)若在第一象限内的抛物线上有点P ,使得以A ,B ,P 为顶点的三角形与△ABC 相似,求k 的值.(3)在(1)的条件下,设F 为线段BD 上一点(不含端点),连结AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FD 以每秒2个单位的速度运动到D 后停止,当点F 的坐标是多少时,点M 在整个运动过程中用时最少?初三数学参考答案一、选择题: 1—8 BADC CBBB二、填空题: 9、5 10、8.6×107 11、480 12、a(a-b) 13、61或32 14、π16 15、2 16、512 17、π34-32-8 18、1532+ 三、解答题:19、(1)113232+-+= …………………………………………………3分 34= ………………………………………………………………4分 (2),2x 1= 21-x 2=;………………………………………………4分 20、原式=2a 1+,5分 33 3分 21、(1)400 ,2分,图略280,2分 (2)360,2分 (3)4550名 2分22、(1)图表略,……………………………………………………………4分 (2)A 方案:P (甲)=95, B 方案 :P (甲)=94, 选择方案A ……8分 23、(1)证明略,4分 (2)247 ,8分 24、 解:(1)延长BA 交EF 于点G .在Rt AGE △中,23E ∠=°,∴67GAE ∠=°. ·················································· 2分 又∵38BAC ∠=°,∴180673875CAE ∠=--=°°°°. ························ 3分 (2)过点A 作AH CD ⊥,垂足为H . ····················· 4分 在ADH △中,604ADC AD ∠==°,,cos DHADC AD∠=,∴2DH =. ···························· 5分sin AHADC AD∠=,∴23AH =. ························· 6分 在Rt ACH △中,180756045C ∠=--=°°°°, ······· 7分 ∴26AC =,23CH AH ==. ························· 8分∴2623210AB AC CD =+=++≈(米). ················································· 9分 答:这棵大树折断前高约10米. ··········································································· 10分25、(1)证明略 5分 (2)证△MNP ∽△PNQ ,NQ=3 5分26、(1)设乙车所行路程y 与时间x 的函数关系式为11y k x b =+,把(2,0)和(10,480)代入,得11112010480k b k b +=⎧⎨+=⎩,解得1160120k b =⎧⎨=-⎩,y ∴与x 的函数关系式为60120y x =-.…………………………………………………3分(2)由图可得,交点F 表示第二次相遇,F 点横坐标为6,此时606120240y =⨯-=,F ∴点坐标为(6,240),∴两车在途中第二次相遇时,它们距出发地的路程为240千米.………………………6分(3)设线段BC 对应的函数关系式为22y k x b =+,把(6,240)、(8,480)代入,得222262408480k b k b +=⎧⎨+=⎩,解得22120480k b =⎧⎨=-⎩, ∴y 与x 的函数关系式为120480y x =-.………………………………………………7分∴当 4.5x =时,120 4.548060y =⨯-=. ∴点B 的纵坐标为60, ∵AB 表示因故停车检修,∴交点P 的纵坐标为60.………………………………………………………………8分 把60y =代入60120y x =-中,有6060120x =-,解得3x =,∴交点P 的坐标为(3,60).…………………………………………………………9分 交点P 表示第一次相遇,∴乙车出发321-=小时,两车在途中第一次相遇.…………………………………10分27、解:(1)在Rt△ABD中,AB=5,AD=203,由勾股定理,得BD=AB2+AD2=52+⎝⎛⎭⎫2032=25 3.……………………………………………………………………………………………2分∵S△ABD=12BD·AE=12AB·AD,∴AE=AB·ADBD=5×203253=4.……………………………………………………………3分在Rt△ABE中,AB=5,AE=4,由勾股定理,得BE=3. …………………………4分(第27题图解①)(2)设平移中的三角形为△A′B′F′,如解图①所示.由对称点性质可知,∠1=∠2.由平移性质可知,AB∥A′B′,∠4=∠5=∠1,B′F′=BF=3.①当点F′落在AB上时,∵AB∥A′B′,∴∠3=∠4,∴∠3=∠1=∠2,∴BB′=B′F′=3,即m=3;②当点F′落在AD上时,∵AB∥A′B′,∴∠6=∠2.∵∠1=∠2,∠5=∠1,∴∠5=∠6.又易知A ′B ′⊥AD ,∴△B ′F ′D 为等腰三角形,∴B ′D =B ′F ′=3,∴BB ′=BD -B ′D =253-3=163,即m =163. m =3或163(对一个得2分)…………………………………………………………8分 (3)存在.理由如下:在旋转过程中,等腰△DPQ 依次有以下4种情形: ①如解图②所示,点Q 落在BD 延长线上,且PD =DQ ,易知∠2=2∠Q .(第27题图解②)∵∠1=∠3+∠Q ,∠1=∠2,∴∠3=∠Q ,∴A ′Q =A ′B =5,∴F ′Q =F ′A ′+A ′Q =4+5=9.在Rt △BF ′Q 中,由勾股定理,得BQ =F ′Q 2+F ′B 2=92+32=310.(第27题图解③)∴DQ =BQ -BD =310-253. ②如解图③所示,点Q 落在BD 上,且PQ =DQ ,易知∠2=∠P .∵∠1=∠2,∴∠1=∠P ,∴BA ′∥PD ,则此时点A ′落在BC 边上.∵∠3=∠2,∴∠3=∠1,∴BQ =A ′Q ,∴F ′Q =F ′A ′-A ′Q =4-BQ .在Rt △BQF ′中,由勾股定理,得BF ′2+F ′Q 2=BQ 2,即32+(4-BQ )2=BQ 2,解得BQ =258. ∴DQ =BD -BQ =253-258=12524. ③如解图④所示,点Q 落在BD 上,且PD =DQ ,易知∠3=∠4.(第27题图解④)∵∠2+∠3+∠4=180°,∠3=∠4,∴∠4=90°-12∠2. ∵∠1=∠2,∴∠4=90°-12∠1. ∴∠A ′QB =∠4=90°-12∠1, ∴∠A ′BQ =180°-∠A ′QB -∠1=90°-12∠1, ∴∠A ′QB =∠A ′BQ ,∴A ′Q =A ′B =5,∴F ′Q =A ′Q -A ′F ′=5-4=1.在Rt △BF ′Q 中,由勾股定理,得BQ =F ′Q 2+F ′B 2=12+32=10,∴DQ=BD-BQ=253-10.④如解图⑤所示,点Q落在BD上,且PQ=PD,易知∠2=∠3.(第27题图解⑤)∵∠1=∠2,∠3=∠4,∠2=∠3,∴∠1=∠4,∴BQ=BA′=5,∴DQ=BD-BQ=253-5=103.综上所述,存在4组符合条件的点P,Q,使△DPQ为等腰三角形,其中DQ的长度分别为310-253,12524,253-10或103.……………………………………………………12分28、解:(1)抛物线y=k8(x+2)(x-4),令y=0,解得x=-2或x=4,∴点A(-2,0),B(4,0).∵直线y=-33x+b经过点B(4,0),∴-33×4+b=0,解得b=433,∴直线BD的表达式为y=-33x+433.当x=-5时,y=3 3,∴点D(-5,33).∵点D(-5,3 3)在抛物线y=k8(x+2)(x-4)上,∴k8(-5+2)(-5-4)=3 3,∴k=83 9.∴此时抛物线的函数表达式为y =839(x +2)(x -4) 936493169382--=x x .………………4分 (2)由抛物线表达式,令x =0,得y =-k ,∴点C (0,-k ),OC =k .∵点P 在第一象限内的抛物线上,∴∠ABP 为钝角.因此若两个三角形相似,只可能是△ABC ∽△APB 或△ABC ∽△APB .①若△ABC ∽△APB ,则有∠BAC =∠P AB ,如解图①所示.(第28题图解①)设点P (x ,y ),过点P 作PN ⊥x 轴于点N ,则ON =x ,PN =y .tan ∠BAC =tan ∠P AB ,即k 2=y x +2,∴y =k 2x +k . ∴点P ⎝⎛⎭⎫x ,k 2x +k ,代入抛物线的表达式y =k 8(x +2)(x -4),得k 8(x +2)(x -4)=k 2x +k , 整理,得kx 2-6kx -16k =0,∵k >0,∴解得x =8或x =-2(与点A 重合,舍去),∴点P (8,5k ).∵△ABC ∽△APB ,∴AC AB =AB AP ,即k 2+46=625k 2+100, 解得k =±455. ∵k >0,∴k =455.②若△ABC ∽△APB ,则有∠ABC =∠P AB ,如解图②所示.(第28题图解②)与①同理,可求得k = 2.综上所述,k =455或k = 2.…………………………………………………………8分 (3)由(1)知:D (-5,3 3),如解图③,过点D 作DN ⊥x 轴于点N ,则DN =3 3,ON =5,BN =4+5=9, ∴tan ∠DBA =DN BN =339=33,∴∠DBA =30°.(第28题图解③)过点D 作DK ∥x 轴,则∠KDF =∠DBA =30°.过点F 作FG ⊥DK 于点G ,则FG =12DF . 由题意,动点M 运动的路径为折线AF +DF ,运动时间t =AF +12DF , ∴t =AF +FG ,即运动时间的大小等于折线AF +FG 的长度.由垂线段最短可知,折线AF +FG 的长度的最小值为DK 与x 轴之间的垂线段. 过点A 作AH ⊥DK 于点H ,则t 最小=AH ,AH 与直线BD 的交点,即为所求之F 点. ∵点A 的横坐标为-2,直线BD 的表达式为y =-33x +433,∴y=-33×(-2)+433=2 3,∴点F(-2,2 3).∴当点F的坐标为(-2,23)时,点M在整个运动过程中用时最少.…………12分。

相关文档
最新文档